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Lecture 2
Probability review - continuous random variables

2.1 Probability Density functions (pdfs)

Some random variables naturally take one of a continuum of values, and
cannot be associated with a countable set. The simplest example is the uni-
form random variable Y on [0, 1] (also known as a random number), which
can take any value in the interval [0, 1], with the probability of it landing
between a and b, where 0 < a < b < 1, given by

P
[
Y ∈ [a, b]

]
= b− a. (2.1.1)

One of the most counterintuitive things about Y is that P[Y = y] = 0 for
any y ∈ [0, 1], even though we know that Y will take some value in [0, 1].
Therefore, unlike in the discrete case, where the probabilities given by the
pmf pY(y) = P[Y = y] contain all the information, in the case of the uniform
these are completely uninformative. The right questions to ask is the one of
(2.1.1), i.e., one needs to focus on probabilities of values in intervals. The class
of random variables where such questions come with an easy-to-represent
answer are called continuous. More precisely

Definition 2.1.1. A random variable Y is said to have a continuous
distribution if there exists a function fY : R→ [0, ∞) such that

P
[
Y ∈ [a, b]

]
=
∫ b

a
fY(y) dy for all a < b.

The function fY is called the probability density function (pdf) of Y.

Not any function can serve as a pdf. The pdf of any random variable will
always have the following properties:

1. fY(y) ≥ 0 for all y, and

2.
∫ ∞
−∞ fY(y) dy = 1 since the P[Y ∈ (−∞, ∞)] = 1.
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It can be shown that any such function is a pdf of some continuous random
variables, but we will focus on a small number of important examples in
these notes.

Caveat:

1. There are random variables which are neither continuous nor dis-
crete, but we will not encounter them in these notes (even though
some important random variables in applications - e.g., insurance -
fall into this category.)

2. One should think of the pdf fY as an analogue of the pmf in the
discrete case, but this analogy should not be stretched too far. For
example, we can easily have fY(y) > 1 at some y, or even on an
entire interval. This is the consequence of the fact that fY(y) is not
the probability of anything. It is a probability density, i.e., for small
(in the sense of a limit) ∆y > 0 we have

P
[
Y ∈ [y, y + ∆y]

]
≈ fY(y)∆y,

i.e. fY(y) is, approximately, the quotient between the probability of
in interval and the size of the same interval.

2.2 The “indicator” notation

Before we list some of the most important examples of continuous random
variables, we need to introduce a very useful notation tool.

Definition 2.2.1. For a set A ⊆ R, the function 1A : R→ R, given by

1A(y) =

{
1, y ∈ A,
0, otherwise,

is called the indicator of A.

As its name already suggests, interval indicators indicate whether their
argument y belongs to the set A or not. The graph of a typical indicator -
when A is an interval [a, b] - is given in Figure 1.
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Figure 1. The indicator function 1[1,2] of the interval [1, 2].

Indicators are useful when dealing with functions that are defined with
different formulas on different parts of their domain.

Example 2.2.2. The uniform distribution U(l, r) is a slight generaliza-
tion of the uniform U(0, 1) distribution mentioned above. It models a
number randomly chosen in the interval [l, r] such that the probability
of getting a point in the subinterval [a, b] ⊆ [l, r] is proportional to its
length b− a. Since the probability of choosing some point in [l, r] is 1,
by definition, we have to have

P[Y ∈ [a, b]] = 1
r−l (b− a) for all a < b ∈ [l, r].

To show that this is a continuous distribution, we need to show that it
admits a pdf, i.e., a function f such that∫ b

a
fY(y) dy = 1

r−l (b− a) for all a < b.

For a, b < l or a, b > r we must have P[Y ∈ [a, b]] = 0, so∫ b

a
fY(y) dy = 0 for a, b ∈ R \ [l, r].

These two requirements force that

fY(y) = 1
r−l for y ∈ [l, r] and fY(y) = 0 for y 6∈ [l, r], (2.2.1)

and we can easily check that fY(y) is, indeed, the pdf of Y.

The indicator notation can be used to write (2.2.1) in a more compact
way:

fY(y) = 1
r−l 1[l,r](y).

Not only does this give a single formula valid for all y, it also reveals
that [l, r] is the “effective” part of the domain of fY. We can think of fY
as “the constant 1

r−l , but only on the interval [l, r]; it is zero everywhere
else”.
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The interval-indicator notation will come into its own a bit later when we
discuss densities of several random variables (random vectors), but for now
let us comment on how it allows us to write any integral as an integral over
(−∞, ∞). The idea behind is that any function f multiplied by the indicator
1[a,b] stays the same on [a, b], but takes value 0 everywhere else. Therefore,∫ b

a
f (y) dy =

∫ ∞

−∞
f (y)1[a,b](y) dy,

because the integral of the function 0 is 0, even when taken over infinite
intervals.

Finally, let us introduce another notation for the indicator functions. It
turns out to be more intuitive, at least for intervals, and will do wonders
for the evaluation of iterated integrals. Since the condition y ∈ [a, b] can be
written as a ≤ y ≤ b, we sometimes write

1{a≤y≤b} instead of 1[a,b](y).

2.3 First examples of continuous random variables

Example 2.3.1.

1. Uniform distribution. We have already encountered the uniform
distribution U(l, e) on the interval [l, r] and we have shown that it
is a continuous distribution with the pdf

fY(y) = 1
r−l 1[l,r](y).

As always, this is really a whole family of distributions, parameter-
ized by two real parameters a and b.

l r
y

1
r-l

Figure 2. The density function (pdf) of the uniform U(a, b) distribution.

2. Normal distribution The family of normal distributions - denoted
by Y ∼ N(µ, σ) - is also parameterized by two parameters µ ∈ R

and σ > 0 and its pdf is given by the (at first sight complicated)
formula: The normal distribution is symmetric around µ and its
standard deviation (as we shall see shortly) is σ; its graph is shown
in Figure 3.
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Figure 3. The density function (pdf) of the normal distribution N(µ, σ).

The function fY is defined by the above formula for each y ∈ R and
it is a notrivial task to show that it is, indeed, a pdf of anything.
The difficulty lies in evaluating the integral∫ ∞

−∞
fY(y) dy

and showing that it equals to 1. This is, indeed, true, but needs
a bit more mathematics than we care to get into right now. The
probabilities P[Y ∈ [a, b]] are not any easier to compute for concrete
a, b and, in general, do not admit a closed form (formula). That is
why we used to use tables of precomputed approximate values (we
use software today).

Nevertheless, the normal distribution is, arguably, the most impor-
tant distribution in probability and statistics. The main reason for
that is that it appears in the central limit theorem (which we will
talk more about later), and, therefore, shows up whenever a large
number of independent random influences act at the same time.

3. Exponential distribution. The exponential distribution is a contin-
uous analogue of the geometric distribution and is used in mod-
eling lifetimes of light bulbs or waiting times in the supermarket
checkout lines. It comes in a parametric family E(τ), parameterized
by the positive parameter τ > 0. Its pdf is given by

fY(y) = 1
τ e−y/τ1[0,∞)(y).

The graph of fY is given on the right

y

1
τ

Figure 4. The density function (pdf) of the exponential E(τ) distribution.
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The use of an interval indicator in the expression above signals
that fY is positive only for y > 0, and that, in turn, means that an
exponential random variable cannot take negative values.

Caveat: Many books use a different parametrization of the
exponential family, namely Y ∼ E(λ) if

fY(y) = λe−λy1{[0,∞)}(y),

so that, effectively λ = 1/τ. Both parameters have meaning-
ful interpretations, and, depending on the context, one can
be more natural than the other. Keep this in mind to avoid
unnecessary confusion.

2.4 Expectations and standard deviations

The definitions of the expectation will look similar to that in the discrete
case, but sums will be replaced by integrals. Once the expectation is defined,
everything else can be repeated verbatim from the previous lecture.

Definition 2.4.1. For a continuous random variable Y with pdf fY we
define the expectation E[Y] of Y by

E[Y] =
∫ ∞

−∞
y fY(y) dy, (2.4.1)

as long as
∫ ∞
−∞ |y fY(y)| dy < ∞. When this value is +∞, we say that

the expectation of Y is not defined.

The definition of the variance and the standard deviation are analogous
to their discrete versions:

Var[Y] =
∫ ∞

−∞
(y− µY)

2 fY(y) dy where µY = E[Y],

and sd[Y] =
√

Var[Y]. Theorem ?? and Proposition ?? are valid exactly as
written in the continuous case, too.

Let us compute expectations and variances/standard deviations of the
distributions from Example 2.3.1.

Example 2.4.2.

1. Uniform distribution The computations needed for the expecta-
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tion and the variance of the uniform U(l, r) distribution are quite
simple:

E[Y] =
∫ ∞

−∞
y fY(y) dy = 1

r−l

∫ ∞

−∞
y1[l,r](y) dy

= 1
r−l

∫ r

l
y dy = 1

r−l
r2−l2

2 = l+r
2 .

Similarly,

Var[Y] =
∫ ∞

−∞
(y− l+r

2 )2 fY(y) dy = 1
r−l

∫ r

l
(y− l+r

2 )2 dy

= 1
r−l [

1
3 (y−

l+r
2 )3]ba =

1
12 (r− l)2

2. Normal distribution. To compute the expectation of the normal
distribution N(µ, σ), we need to evaluate the following integral

E[Y] =
∫ ∞

−∞
y 1√

2πσ2 e−
(y−µ)2

2σ2 dy.

We change the variable z = (y− µ)/σ to obtain

E[Y] =
∫ ∞

−∞
(σz + µ) 1√

2π
e−

1
2 z2

dz

= σ√
2π

∫ ∞

−∞
ze−

1
2 z2

dz + µ
∫ ∞

−∞

1√
2π

e−
1
2 z2

dz = µ.

The integral next to µ evaluates to 1, because it is simply the inte-
gral of the density function f of the standard normal N(0, 1). The
integral next to σ√

2π
is 0 because it is an integral of an odd function

over the entire R.

To compute the variance, we need to evaluate the integral

Var[Y] =
∫ ∞

−∞
(y− µ)2 1√

2πσ2 e−
(y−µ)2

2σ2 dy,

because we now know that µY = µ. The same change of variables
as above yields:

Var[Y] = σ2 1√
2π

∫ ∞

−∞
z2e−

1
2 z2

dz = σ2,

where we used the fact (which can be obtained using integration

by parts, but we skip the details here) that
∫ ∞
−∞ z2e−

1
2 z2

dz =
√

2π.
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3. Exponential distribution. The integrals involved in the evaluation
of the expectation and the variance of the exponential distribution
are simpler and only involve a bit of integration by parts, so we skip
the details. It should be noted that the interval indicator notation
we used to define the pdf of the exponential tells use immediately
what bounds to use for integration. For Y ∼ E(τ), we have

E[Y] =
∫ ∞

−∞
y fY(y) dy =

∫ ∞

−∞
y/τe−y/τ1[0,∞)(y) dy

=
∫ ∞

0
y/τe−y/τ dy = τ.

Therefore µY = τ and, so,

Var[Y] = E[Y2]− (E[Y])2 =
∫ ∞

−∞
y2 fY(y) dy− τ2

=
∫ ∞

0
y2/τe−y/τ dy− τ2.

To evaluate the first integral on the right, we change variables z =
y/τ, so that

Var[Y] = τ2
∫ ∞

0
z2e−z dz− τ2 = 2τ2 − τ2 = τ2,

where we used the fact (which can be derived by integration by
parts) that

∫ ∞
0 z2e−z dz = 2.

2.5 Moments

The expectation is the integral of the first power y = y1 multiplied by the pdf,
and the variance involves a similar integral with y replaced by y2. Integrals
of higher powers of y are important in statistics; not as important as the
expectation and variance, but still important enough to have names:

Definition 2.5.1. For a random variable Y with pdf fY and k = 1, 2, . . . ,
we define k-th (raw) moment µk by

µk = E[Yk] =
∫ ∞

−∞
yk fY(y) dy,

as well as the k-th central moment µc
k by

µc
k = E[(Y−E[Y])k] =

∫ ∞

−∞
(y− µ1)

k fY(y) dy.
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We see immediately from the definition that the expectation (mean) is the
first (raw) moment and that the variance is the second central moment, i.e.,

µ1 = E[Y], µc
2 = Var[Y].

The third and fourth moment of the standardized random variable, namely,

E
[(Y−E[Y]

sd[Y]

)3
]

and E
[(Y−E[Y]

sd[Y]

)4
]

.

are called skeweness and kurtosis, respectively. It is easy to see that, in
terms of moments, we can express skeweness as µc

3/(µc
2)

3/2 and kurtosis as
µc

4/(µc
2)

2.

Example 2.5.2.

1. Uniform distribution We leave this to the reader as an exercise in
the Problems section below.

2. Normal Distribution Let us compute the central moments, too.
Since Y− µ ∼ N(0, σ), whenever Y ∼ N(µ, σ), central moments of
N(µ, σ) are nothing by raw moments of N(0, σ). For that, we need
to compute the integrals∫ ∞

−∞
yk fY(y) dy =

∫ ∞

−∞

1
2πσ yke−

1
2 y2

dy. (2.5.1)

For odd k, these are integrals of odd functions over the entire R,
and therefore, their value is 0, i.e.,

µk = 0 for k odd.

For even k, there is no such a shortcut, and the integral in (2.5.1)
can be computed by parts:∫ ∞

−∞
yke−

1
2σ2 y2

dy = 1
k+1 yk+1e−

1
2σ2 y2 ∣∣∣∞

−∞
−

−
∫ ∞

−∞

1
k+1 yk+1 (− 1

σ2 y)e−
1

2σ2 y2
dy.

Since limy→±∞ yk+1e−
1

2σ2 y2
= 0, we obtain

1
2πσ

∫ ∞

−∞
yke−

1
2σ2 y2

dy = 1
2πσ

1
σ2(k+1)

∫ ∞

−∞
yk+2e

1
2σ2 y2

dy.

Written more compactly,

µk+2 = σ2(k + 1)µk.
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Starting from µ2 = 1
2πσ

∫ ∞
−∞ y2e−

1
2σ2 y2

= σ2, we get

µk = σk (k− 1)× (k− 3)× · · · × 5× 3× 1, for k even.

3. Exponential distribution. A similar, integration-by-parts proce-
dure as above, allows us to compute the (raw) moments of the
exponential (we skip the details):

µk =
∫ ∞

0
yk 1

τ e−y/τ dy = τkk× (k− 1)× · · · × 2× 1 = τk k!,

for k = 1, 2, 3, . . . . The central moments are not so important, and
do not admit such a nice closed formula.

2.6 Problems

Problem 2.6.1. Let Y be a continuous random variable whose pdf fY is given
by

fY(y) =

{
cy2, y ∈ [−1, 1]
0, otherwise,

for some constant c.

1. Write down an expression for fY using the interval-indicator notation.

2. What is the value of c?

3. Compute E[Y] and sd[Y].

Problem 2.6.2. Let Y be a continuous random variable with the pdf

fY(y) = 15
4 y2(1− y2)1{−1≤y≤1}.

Compute P[Y2 ≤ 1/4].

Problem 2.6.3. The random variable Y has the pdf fY(y) = 3
2 y21{−1≤y≤1}.

Compute the probability P[2Y2 ≥ 1].

Problem 2.6.4. Let Y have the pdf f (y) = 1
π(1+y2)

for y ∈ (−∞, ∞). Compute

the probability that Y−2 lies in the interval [1/4, 4].

Problem 2.6.5 (The exponential distribution). Suppose that the random vari-
able Y follows an exponential distribution with parameter τ > 0, i.e., Y ∼
E(τ), i.e., Y is a continuous random variable with the density function fY
given by

fY(y) = 1
τ e−y/τ1y≥0.
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Compute the following quantities

1. P[Y = 0], 2. P[Y ≤ 0], 3. P[Y ≤ y] for y ∈ (−∞, ∞),

4. P[Y > 1], 5. P[|Y− 2| > 1], 6. E[Y], 7. E[Y2], 8. Var[Y],

9. The mode of Y (look up mode if you don’t know what it is)

10. The median of Y (look up median if you don’t know what it is)

11. (Optional) P[ bYc is odd ]‘’, where bac denotes the largest integer ≤ a.
Which one is bigger P[ bYc is odd ] or P[ bYc is even ]? Explain without
using any calculations.

Problem 2.6.6 (The triangular distribution). We say that the random variable
Y follows the triangular distribution with parameters l < r if it is continuous
with pdf fY given by

fY(y) = c(y− l)1
[l, 1

2 (l+r)]
(y) + c(r− y)1

[ 1
2 (l+r),r]

(y).

1. Determine the value of the constant c,

2. Compute the expectation and the standard deviation of Y

3. Assuming that l = −1 and r = 1, compute P
[∣∣∣Y−E[Y]

∣∣∣ ≥ sd[Y]
]
.

Problem 2.6.7 (Moments of the uniform distribution). Let Y follow the uni-
form distribution U(l, r) on the interval [l, r], where l < r, i.e., its density is
given by

fY(y) = 1
r−l 1{l≤y≤r} =

{
1/(r− l), if y ∈ [l, r],
0, otherwise.

Compute the moments µk and central moments µc
k, k = 1, 2, . . . of Y,
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