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Lecture 9
Estimators

We defined an estimator as any function of the data which is not allowed
to depend on the value of the unknown parameters. Such a broad definition
allows for very silly examples. To rule out bad estimators and to find the
ones that will provide us with the most “bang for the buck”, we need to
discuss, first, what it means for an estimator to be “good”. There is no one
answer to this question, and a large part of entire discipline (decision theory)
tries to answer it. Some desirable properties of estimators are, however, hard
to argue with, so we start from those.

9.1 Unbiased estimators

Definition 9.1.1. We say that an estimator θ̂ is unbiased for the pa-
rameter θ if

E[θ̂] = θ.

We also define the bias E[θ̂]− θ of θ̂, and denote it by bias(θ̂).

In words, θ̂ is unbiased if we do not expect θ̂ to be systematically above or
systematically below θ. Clearly, in order to talk about the bias of an estimator,
we need to specify what that estimator is trying to estimate. We will see
below that same estimator can be unbiased as an estimator for one parameter,
but biased when used to estimate another parameter.

Another important question that needs to be asked about Definition 9.1.1
above is: what does it mean to take the expected value of θ̂, when we do not
know what its distribution is. Indeed, θ̂ is a function of the random sample
from an unknown distribution D. In order to take the expected value of θ̂,
we need to know D, but we do not. What we are really doing is computing
the expected value of θ̂ as a function of θ. It would, in fact, be more accurate
to write Eθ [θ̂], because this expected value depends on θ, and the result will
be an expression that features θ somewhere in it. So what do we mean by
E[θ̂] = θ, then? It means that Eθ [θ̂] = θ for each possible value of the parameter
θ. In other words, we need a guarantee that the expected value of θ̂ is θ, no
matter what θ nature throws at us.
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Example 9.1.2. Let (Y1, . . . , Yn) be a random sample from N(µ, σ), with
both µ and σ > 0 unknown, and let

µ̂ = Ȳ =
Y1 + · · ·+ Yn

n
.

Let us think of µ̂ as an estimator for µ (that is why we named it µ̂). As
a function of the parameter θ = (µ, σ), the expected value of µ̂ is given
by

E[µ̂] = E[Ȳ] = 1
n

(
E[Y1] + E[Y2] + · · ·+ E[Yn]

)
= 1

n (µ + µ + · · ·+ µ) = µ,

which means that µ̂ is unbiased for µ. It is clearly not unbiased if we
interpret it as an estimator for σ. Indeed, its bias in that case is given
by

bias(µ̂) = E[µ̂]− σ = µ− σ,

and this quantity is not equal to 0 for all possible values of the param-
eters µ and σ.

Computing the expected value of an estimator can sometimes be done
without knowing its distribution (like in the example above). In general, one
needs to know exactly how θ̂ is distributed:

Definition 9.1.3. The sampling distribution of an estimator θ̂ is its
probability distribution (expressed as a function of the unknown pa-
rameter(s)).

Example 9.1.4. Let (Y1, . . . , Yn) be a random sample from N(µ, σ), just
like in the previous example, and let µ̂ = Ȳ (the sample mean). Since
each Yi is normally distributed with parameters µ and σ > 0, the sum
Y1 + · · ·+ Yn is also normal, and so is the average µ̂ = 1

n (Y1 + · · ·+
Yn). The two parameters of this normal distribution are obtained by
computing the mean and the standard deviation of µ̂. We have already
computed the mean, namely µ, and, in order to compute the standard
deviation, we first compute its variance:

Var[µ̂] = Var[ 1
n (Y1 + · · ·+ Yn)] =

1
n2

(
Var[Y1] + · · ·+ Var[Yn]

)
= 1

n2

(
σ2 + σ2 + · · ·+ σ2

)
= nσ2

n2 = σ2

n .

Therefore sd[µ̂] = σ√
n , and the sampling distribution of µ̂ is N(µ, σ√

n ).
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Example 9.1.5. Sampling distributions are sometimes best understood
when illustrated by simulations. Consider the elections example, and
suppose that the true value of the parameter p is 0.4. The pollster does
not know this, all she sees is the data collected from a sample (of size
n = 10, to fit on the page)

A A B A B A B A B B

She uses the estimator p̂ which computes the sample proprtion of A.
In this case p̂ = 5/10 = 0.5. Another pollster, or, if you want to let
your imagination run wild, the same pollster in a parallel universe,
collected a different sample

B B B A B B B A B A

Her estimate p̂ equals 3/10 = 0.3. We keep repeating the same for 13

more statisticians, and we get the following list of estimates

0.5, 0.3, 0.1, 0.6, 0.4, 0.5, 0.5, 0.2, 0.3, 0.2, 0.2, 0.3, 0.4, 0.8, 0.2

Some statisticians were right on the nose, but some of them were far
off (think of the unlucky pollster who got 0.8 - she would predict that
the candidate A would win by a landslide, while he or she will, in
fact, lose). The point is, of course, that most of the statisticians were
relatively close.
We increase the number of statisticians to 2000 and repeat the same
procedure. The list of 2000 estimates is too big to be reproduced in
these notes, but we can summarize it quite well by a histogram:

0.2 0.4 0.6 0.8 1.0
p0

100

200

300

400

Figure 1. Histogram of the values of the estimate p̂ obtined by 2000 statisticians

Sometimes our intuition about what is biased and what is not can be a
little bit off. Let us start with the case where our intuition works just fine:
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Example 9.1.6. Let (Y1, . . . , Yn) be a random sample from N(78, σ).
In this case, we know the mean - it happens to be 78 - but not the
standard deviation of our observations. Such examples occur when
we try to calibrate measuring instruments by using them to measure a
known quantity.

We are interested in an unbiased estimator of σ2. A natural idea is to
use the sample variance

S2 = 1
n

n

∑
k=1

(Yk − 78)2.

We compute the expected value of S2:

E[S2] = 1
n

n

∑
k=1

E[(Yk − 78)2] = 1
n

n

∑
k=1

σ2 = σ2,

where we used the fact that Yk ∼ N(78, σ) so that E[(Yk − 78)2] =
Var[Yk] = σ2. Therefore, S2 is unbiased for σ2.

Let us now repeat the exercise, but in a slightly different situation:

Example 9.1.7. This time, we are using our measuring device to mea-
sure an unknown quantity. It is brand new and we have never used
it before, so we do not know anything about its error, and we do not
have the resources to calibrate it first. Therefore, we need to be able
to get some information about both µ and σ at the same time, from
the random sample. In other words, we are in the situation where
(Y1, . . . , Yn) is a random sample from N(µ, σ), with both µ and σ un-
known. We cannot use the estimator from Example 9.1.6 anymore for
the simple reason that we knew that µ = 78 then, but that may not
be the case anymore. We cannot replace 78 by the symbol µ either -
S2 would no longer be an estimator. A way out is to first estimate µ
and the use the estimated value in its place when computing the sample
variance. We already know that Ȳ is an unbiased estimator for µ, so
we may define1

S′2 = 1
n

n

∑
k=1

(Yk − Ȳ)2. (9.1.1)

Let us check whether S2 is an unbiased estimator of σ2. We expand
the squares in its definition and use the fact that Y1 + · · ·+Yn = nȲ in
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the following computation:

E[S′2] = 1
n

n

∑
k=1

E[(Yk − Ȳ)2] = 1
n

n

∑
k=1

E[Y2
k ]− 2 1

n

n

∑
k=1

E[YkȲ] + 1
n

n

∑
k=1

E[Ȳ2]

= 1
n

n

∑
k=1

E[Y2
k ]− 2E[ 1

n

n

∑
k=1

YkȲ] + 1
n nE[Ȳ2]

= 1
n

n

∑
k=1

E[Y2
k ]− 2E[Ȳ2] + E[Ȳ2] = 1

n

n

∑
k=1

E[Y2
k ]−E[Ȳ2].

Since Yk ∼ N(µ, σ), we have E[Y2
k ] = Var[Yk] + (E[Yk])

2 = σ2 + µ2. On
the other hand, Ȳ ∼ N(µ, σ/

√
n), so E[Ȳ2] = µ2 + σ2/n, and it follows

that
E[S′2] = 1

n n(µ2 + σ2)− (µ2 + σ2/n) = (1− 1
n )σ

2.

Thus, S′2 is not unbiased. In fact, since (1− 1/n) < 1 its bias E[S′2]−
σ2 = − 1

n σ2 is always negative.

1why we use the notation S′2 and not S2 will be explained shortly.

To find an unbiased estimator all we have to do is multiply the original
expression (9.1.1) by n/(n− 1), which leads to the following estimator for σ2:

S2 = 1
n−1

n

∑
k=1

(Yk − Ȳ)2.

This, unbiased, version of the sample variance turns out to be even more
important than the “naive” one. Therefore, we choose to denote it by S2 and
use the longer notation S′2 for the less important version. We do not care
to distinguish notationally between the known-µ and the unknown-µ case -
these will never be used in the same context.

The examples above features some of the most important estimators in
statistics; let us list them again in one place:

estimator formula notation

sample mean Y1+···+Yn
n Ȳ

sample variance (known mean) 1
n ∑n

k=1(Yk − µ)2 S2

sample variance (unknown mean, biased) 1
n ∑n

k=1(Yk − Ȳ) S′2

sample variance (unknown mean, unbiased) 1
n−1 ∑n

k=1(Yk − Ȳ)2 S2
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9.2 Mean-square errors and UMVUE

While being unbiased is a nice property, it alone does not guarantee that the
estimator is any good. We would like it to be “close” to the true parameter
“most of the time”, and not just “right on average”. This leads us to following
definition

Definition 9.2.1. Let θ̂ be an estimator of the parameter θ. Then

1. the error of θ̂ is θ̂ − θ,

2. the absolute error of θ̂ is
∣∣θ̂ − θ

∣∣
3. the relative error of θ̂ is

∣∣∣ θ̂−θ
θ

∣∣∣,
4. the squared error of θ̂ is (θ̂ − θ)2, and

5. the mean-squared error of θ̂ is MSE(θ̂) = E[(θ̂ − θ)2].

6. the standard error1 of θ̂ is se(θ̂) =
√

Var(θ̂).

1even though this is really just the standard deviation of the estimator θ̂, it is given
its own name so that it does not get confused with the population standard deviation.

All of the above quantify the discrepancy between the true value of the
parameter θ and its estimate θ̂. Unfortunately, none of them are available
to the statistician, even after the data are collected - they all depend on the
parameter θ. Indeed, if we knew the error exactly, there would be no need
for statistics - we would simply adjust the value of θ̂ by that error and get θ
exactly.

In some cases, however, we can say a great deal about the mean-squared
error1 and use it to find good estimators. Just like the other quantities defined
above, MSE(θ̂) is not a number - it is a function of the parameter θ̂.

Example 9.2.2. Consider the elections example, where (Y1, . . . , Yn) is a
random sample from the B(p)-distribution, with an unknown param-
eter p ∈ (0, 1). We consider two estimators

p̂1 = Ȳ = Y/n, and p̂2 = 1+Y
n+2 ,

where Y = ∑n
i=1 Yi is the number of votes for candidate A. To compute

the mean-square errors of p̂1 and p̂2 we note first that Y ∼ b(n, p), so
that E[Y] = np and E[Y2] = Var[Y] + (E[Y])2 = np(1 − p) + n2 p2.

1the reason we are using squared error (θ̂ − θ)2 instead of the absolute error
∣∣θ̂ − θ

∣∣ is the
same reason we use the standard deviation and not the absolute deviation - mathematics is
much simpler.
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Therefore

MSE( p̂1) = E[(Y
n − p)2] = 1

n2 E[Y2]− 2p
n E[Y] + p2

= ( p(1−p)
n + p2)− 2p2 + p2 = p(1−p)

n .

Similarly, but with a bit more algebra,

MSE( p̂2) = E[( 1+Y
n+2 − p)2] = 1

(n+2)2 E[(Y + 1− p(n + 2))2]

= 1
(n+2)2

(
E[Y2] + 2(1− p(n + 2))E[Y] + (1− p(n + 2))2

)
= 1+p(1−p)(n−4)

(n+2)2

These two expression do not mean much, but if we plot them on the
same graph, we can easily compare the two estimators:

0.2 0.4 0.6 0.8 1.0
p

0.01

0.02

0.03

0.04

0.05

0.06

MSE[p1]

MSE[p2]

Figure 2. Mean-square errors for p̂1 and p̂2 with n = 5.

Indeed, the first one is better for extreme values of p, and the second
one for p closed to 1/2. For larger values of n, the difference is not so
dramatic:

0.2 0.4 0.6 0.8 1.0
p

0.001

0.002

0.003

0.004

0.005

0.006

MSE[p1]

MSE[p2]

Figure 3. Mean-square errors for p̂1 and p̂2 with n = 50.

Without any knowledge about the true value of p, it is hard to decide
which estimator to use. Sometimes, however, a single estimator beats all
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others, no matter what the value of the parameter is.

Definition 9.2.3. An estimator θ̂ for θ is said to be the uniformly min-
imum variance unbiased estimator (UMVUE) if

1. θ̂ is unbiased, and

2. MSE(θ̂) ≤ MSE(θ̂′) for all θ, and all unbiased estimators θ̂′ of θ.

The reason for restricting to unbiased estimators only in the previous def-
inition is simple. One can always construct biased (and very bad) estimators
which outperform any other estimator for a particular value of the parameter.
Simply set θ̂ = 0.8, no matter what the data say. If it happens that θ = 0.8,
θ̂ provides a perfect estimate (Even a broken clock is right twice a day.) Also,
once an unbiased estimator is chosen, some of the computations simplify
significantly:

Proposition 9.2.4. We have

MSE(θ̂) = (se(θ̂))2 + (bias(θ̂))2.

In particular, if θ̂ is unbiased, MSE(θ̂) = (se(θ̂))2.

Proof. By writing (θ̂ − θ)2 = (θ̂ −E[θ̂] + E[θ̂]− θ)2, and then expanding the
square

(θ̂ − θ)2 = (θ̂ −E[θ̂])2 + 2(θ̂ −E[θ̂])(E[θ̂]− θ) + (E[θ̂]− θ)2,

we can write MSE(θ̂) = E(θ̂ − θ)2 as a sum of three terms

MSE(θ̂) = E[(θ̂ −E[θ̂])2] + 2E[(θ̂ −E[θ̂])(E[θ̂]− θ)] + E[(E[θ̂]− θ)2].

The first term is the variance of θ̂, i.e., se(θ̂)2. The expression inside the
expectation in the third term is not random, so the entire term equals (E[θ̂]−
θ)2, which equals bias(θ̂)2. Finally, the expression inside the expectation
in the second term is the product the constant (E[θ̂] − θ) and the random
variable (θ̂ −E[θ]). The constant can be pulled out of the expectation:

E[(θ̂ −E[θ])(E[θ̂]− θ)] = (E[θ̂]− θ)E[θ̂ −E[θ̂]] = 0,

since E[θ̂ −E[θ̂]] = E[θ̂]−E[θ̂] = 0.

We have not developed all the mathematics needed to establish the UMVUE
property of some of the popular estimators (we need the notions of suffi-
ciency and completeness, and the Rao-Blackwell theorem), but here are some
examples without proof:
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Example 9.2.5. The following are UMVUEs:

1. Ȳ, for µ, when (Y1, . . . , Yn) is a random sample from N(µ, 1).

2. Ȳ, for p, when (Y1, . . . , Yn) is a random sample from B(p)

3. S2 = 1
n−1 ∑n

k=1(Yi − Ȳ)2, for σ, when (Y1, . . . , Yn) is a random sam-
ple from N(µ, σ)

We can say more about minimum-variance operators in some restricted
classes:

Definition 9.2.6. An estimator µ̂ is said to be linear if it is a linear
function of the data, i.e., if it of the form

µ̂ = α1Y1 + α2Y2 + · · ·+ αnYn,

for some constants α1, . . . , αn.

Example 9.2.7. The sample mean Ȳ is linear since it equals α1Y1 +

· · ·+ αnYn with α1 = α2 = · · · = αn = 1
n .

The sample variance S2 is not linear, as its formula

S2 = 1
n−1

n

∑
k=1

(Yk − Ȳ)2,

involves terms like Y2
k and YkYl .

Definition 9.2.8. A linear estimator θ̂ is said to be the best linear un-
biased estimator (BLUE) if

1. θ̂ is unbiased, and

2. MSE(θ̂) ≤ MSE(θ̂′) for all θ, and all unbiased linear estimators θ̂′

of θ.

In words, BLUE is the best estimator (measured in mean-square error),
but only among all linear estimators. It may happen that a better estimator
exists, but then it cannot be linear.
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Example 9.2.9. Consider a random sample (Y1, . . . , Yn) from the
N(µ, σ)-distribution with unknown µ and σ. For a linear estimator

θ̂ = α1Y1 + · · ·+ αnYn,

we have

E[θ̂] =
n

∑
k=1

αkE[Yk] =
n

∑
k=1

αkµ = µ
(

α1 + · · ·+ αn

)
,

and we conclude that θ̂ is unbiased if and only if α1 + · · · + αn = 1.
Assuming that that is the case, and remembering that the MSE equals
variance for unbiased estimators, we have

MSE(θ̂) = Var[α1Y1 + · · ·+ αnYn] = α2
1 Var[Y1] + · · ·+ α2

n Var[Yn]

= σ2(α2
1 + · · ·+ α2

n).

At this point, we are faced with the following minimization problem:

minimize the sum α2
1 + · · ·+ α2

n, over all α1, . . . , αn such that
∑n

k=1 αk = 1.

Intuitively, the sum of squares is going to be minimized when all αi
are the same. To show that that is indeed the case, we start from n = 2.
In this case α1 + α2 = 1, and, so

α2
1 + α2

2 = α2
1 + (1− α1)

2 = 2α2
1 − 2α1 + 1.

We differentiate the right-hand side in α1 and set the result to 0 to get
4α1 − 2 = 0, i.e., α1 = 1/2. It is not hard to check that this is, indeed,
the unique minimum.
The general case follows from the well-known quadratic-arithmetic
inequality, which holds for all α1, . . . , αn ≥ 0:√

α2
1+···+α2

n
n ≥ α1+···+αn

n . (9.2.1)

It is not very hard to prove - simply square both sides, multiply by n2

and subtract the right-hand side from the left-hand side. You will get
(can you see why?)

(α1 − α2)
2 + (α1 − α3)

2 + · · ·+ (αn−1 − αn)
2.

As a sum of squares, this quantity is always nonnegative; therefore
the left-hand side of (9.2.1) is always larger than its right-hand side.
Moreover, they are only equal if all the expressions inside the squares
are 0, i.e., if all αi are equal.
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In our special case, when ∑i αi = 1, the quadratic-arithmetic inequality
becomes √

1
n (α

2
1 + · · ·+ α2

2) ≥
1
n , i.e. α2

1 + · · ·+ α2
2 ≥ 1

n ,

and the equality is attained when all α1 are the same, i.e., when αi = 1
n

for each i.

Therefore, the sample mean Ȳ is the unique BLUE in this model.

9.3 Problems

Problem 9.3.1. Which of the following estimators is not unbiased for µ if
Y1, . . . , Yn is a random sample from the normal distribution N(µ, σ):

(a) Yn (b) 1
2 (Y1 + Y2) (c) Y1 − Y2 + Y3 (d) Ȳ (e) all of the above are

unbiased

Problem 9.3.2. Let Y1, . . . , Yn be a random sample from a uniform distribu-
tion U(0, θ), with the parameter θ > 0. The quantity

θ̂ = c
n

n

∑
i=1

Y2
i

is an unbiased estimator for θ when

(a) c = 3 (b) c = 3/θ2 (c) c = 2/θ2 (d) c = 1 (e) none of the above

Problem 9.3.3. Let Y1, . . . , Yn be a random sample from U(0, θ), with an un-
known θ > 0. For what value of the constant c is the estimator θ̂ = c ∑n

i=1 Yi
unbiased for θ?

(a) 1 (b) 1/n (c) 2/n (d) n (e) none of the above

Problem 9.3.4. Let (Y1, . . . , Yn) be a random sample from the normal distri-
bution with mean µ ∈ R and standard deviation σ > 0.

1. Is µ̂ = Y1+Yn
2 unbiased for µ? What is it mean square error?

2. Repeat the above but consider µ̂ to be an estimator for σ.

Problem 9.3.5. Let Y1, . . . , Yn be a random sample from the uniform distri-
bution on [0, θ], where θ > 0 is an unknown parameter. We consider the
estimator

θ̂ = c
1
n

n

∑
i=1

Y2
i .

where c is a constant (not dependent on θ or on Y1, . . . , Yn).
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1. For what value of the constant c will θ̂ be an unbiased estimator for θ2? Is
there such a value if θ̂ is used as an estimator for θ instead of θ2?

2. Using the value of c obtained above, compute the mean squared error of
θ̂ (when interpreted as an estimator of θ2).

Problem 9.3.6. Let Y1, . . . , Yn be a random sample from the uniform distri-
bution U(0, θ), with parameter θ > 0. The MSE (mean-squared error) of the
estimator θ̂ = cȲ for θ is the smallest when the constant c equals

(a) 1
2 (b) 2 (c) 6n

3n+1 (d) 3n
6n+1 (e) none of the above

Problem 9.3.7. Let Y1, . . . , Yn be a random sample from the normal distribu-
tion N(µ, 1), with the unknown parameter µ and a known variance, equal
to 1. The MSE (mean-squared error) of the estimator θ̂ = Ȳ + c for µ is the
smallest when the constant c equals

(a) −µ (b) 0 (c) 1 (d) 1
n (e) none of the above

Problem 9.3.8. Let Y1, . . . , Yn be a random sample of size n ≥ 2, from N(µ, σ)
and let the estimators µ̂1, µ̂2 and µ̂3, for µ, be given by

µ̂1 = Y1, µ̂2 = 1
2 (Y1 + Y2) and µ̂3 = Ȳ.

Then, no matter what µ and σ are, we always have

(a) MSE(µ̂1) ≤ MSE(µ̂2) ≤ MSE(µ̂3)

(b) MSE(µ̂3) ≤ MSE(µ̂2) ≤ MSE(µ̂1)

(c) MSE(µ̂3) ≤ MSE(µ̂1) ≤ MSE(µ̂2)

(d) MSE(µ̂1) ≤ MSE(µ̂3) ≤ MSE(µ̂2)

(e) none of the above

Problem 9.3.9. Let Y1, . . . , Yn be a random sample from the normal distribu-
tion with mean 0 and an unknown standard deviation σ > 0. The mean-
squared error (MSE) of the estimator θ̂ = 1

n ∑n
i=1 Y2

i for σ2 is

(a) σ4

2 (b) σ2

2 (c) 2σ4

n (d) σ4

2n

(e) none of the above

(Hint: What is the distribution of 1
σ2 ∑i Y2

i ?)

Problem 9.3.10. Let (Y1, Y2) be a random sample (of size n = 2) from the
uniform distribution U(0, θ), with θ > 0 unknown.

Last Updated: September 25, 2019



Lecture 9: Estimators 13 of 13

1. Find constants c1, c2 and c3 such that the following estimators

θ̂1 = c1Y1, θ̂ = c2Y2 and θ̂3 = c3 max(Y1, Y2),

are unbiased. (Hint: For θ̂3, integrate the function max(y1, y2) multiplied
by the joint density of Y1, Y2. Split the integral over [0, θ]× [0, θ] into two
parts - one where y1 ≥ y2 and the other where y1 < y2 and note that
max(y1, y2) = y11{y1≥y2} + y21{y1<y2}.)

2. With values c1, c2 and c3 as above, compute mean-square errors MSE(θ̂1),
MSE(θ̂2) and MSE(θ̂3) of θ̂1, θ̂2 and θ̂3.

3. Sketch the graphs of MSE(θ̂1), MSE(θ̂2) and MSE(θ̂3) as a functions of
θ. Is one of the three clearly better (in the mean-square sense) than the
others?

Problem 9.3.11. A random variable with pdf

fY(y) = 1
2τ e−|y|/τ ,

is called a double exponential distribution, with parameter τ > 0.

1. Compute E[Y] and E[|Y|] if Y is double exponential with paramter τ.
(Hint: Use the fundamental formula to get an integral for E[Y] and note
that the function under the integral is odd in the case of E[Y], and even in
the case of E[|Y|]. That makes the computation of E[Y] immediate, and
reduces the computation of E[|Y|] to (twice) a simple integral which does
not contain the absolute value. )

Let now Y1, . . . , Yn be a random sample from the double exponential distri-
bution with an unknown parameter τ > 0, and let the estimator τ̂ be defined
by

τ̂ = 1
n

n

∑
i=1
|Xi| .

2. Is τ̂ unbiased?

3. Compute MSE(τ̂)?
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