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Lecture 4

Functions of random variables

Let Y be a random variable, discrete and continuous, and let g be a func-
tion from R to R, which we think of as a transformation. For example, Y
could be a height of a randomly chosen person in a given population in
inches, and g could be a function which transforms inches to centimeters, i.e.
2(y) =254 xy. Then W = g(Y) is also a random variable, but its distribu-
tion (pdf), mean, variance, etc. will differ from that of Y. Transformations of
random variables play a central role in statistics, and we will learn how to
work with them in this section.

4.1 Computing expectations

Expectations of functions of random variables are easy to compute, thanks to
the following result, sometimes known as the fundamental formula.

Theorem 4.1.1. Suppose that Y is a random variable, g is a transformation,
i.e., a real function, and W = g(Y). Then

1. if Y is discrete, with pmf py, we have

E[W] =}, g pr(v),
yESy

2. if Y is continuous, with pdf fy, we have

E[W] = / o; sW)fy(v)dy.

We have already used this formula, without knowing, when we wrote
down a formula for the variance

(o]

VarlY] = E[(Y i = [ (v ) fily) dy.

—00

Indeed, we applied the transformation g(y) = (y — py)? to Y and then com-
puted the expectation of the new random variable W = g(Y) = (Y — uy)>.
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Example 4.1.2. The stopping distance (the distance traveled by the car
from the moment the brake is applied to the moment it stops) in feet
is a quadratic function of the car’s speed (in mph), i.e.,

gy) =cy

where c is a constant which depends on the physical characteristics
of the car, its brakes, the road surface, etc. For the purposes of this
example, let’s take a realistic value ¢ = 0.07 (in appropriate units).

In a certain traffic study, the distribution of cars’ speeds at the onset
of breaking is empirically determined to be uniformly distributed on
the interval [60, 90], measured in miles per hour. What is the expected
value of the stopping distance?

The stopping distance W is given by W = ¢(Y), where g(y) = 0.07y?,
and so, according to our formula, we have

EW = [ sWfrdy= | 007y soleglion(v) dy
90
=0.07/30 2 dy = 399.
/ /60 y-dy

If we compute the expected speed, we get

1 90
E[Y) =4 [ ydy=75,

and if we compute the stopping distance of the car traveling at 75 mph,
we get
8(75) = 393.75.

It follows that the average (expected) stopping distance is not the same
as the stopping distance corresponding to the average speed. Why is
that?

Caveat: What we observed at the end of Example 4.1.2 is so important
that it should be repeated:

In general, E[g(Y)] # g(E[Y])!.

In fact, the only time we can guarantee equality for any Y is when g is
an affine function, i.e., when g(y) = ay + B for some constants « and

B.
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4.2 The cdf-method

The fundamental formula of Theorem 4.1.1 is useful for computing expec-
tations, but it has nothing to say about the distribution of W = g(Y). For
example, we may wonder whether the distribution of stopping distances is
uniform on some interval, just like the distribution of velocities at the on-
set of breaking in Example 4.1.2. There are several methods for answering
this question, and we start with the one which almost always works - the
cdf-method.

Suppose that we know the cdf Fy of Y and that we we are interested in
the distribution of W = g(Y). Using the definition of the cdf Fyy of W, we
can write

Fiu(w) = PW < @] = Plg(Y) < .

The probability on the right is not quite the cdf of Y, but if it can be rewritten
in terms of probabilities involving Y, or, better, the cdf of Y, we are in business:

1. If g is strictly increasing, then it admits an inverse function ¢! and we
can write

Fiy(w) = P[g(Y) <w] =P[Y < g7 (w)] = Fy (g™ (w)),

and we have an expression of Fy in terms of Fy. Once Fy is known, it can
be used further to compute the pdf (in the continuous case) or the pmf (in
the discrete case), or ...

2. A very similar computation can be made if g is strictly decreasing. The
only difference is that now P[g(Y) < w] = P[Y > ¢~ !(w)]. In the con-
tinuous case we have P[Y > y] = 1 — Fy(y) (why only in continuous?),
S0

Fy(w) =P[g(Y) < w] =P[Y > g7 (w)] =1 Fy(g™ (w)).

3. The function g is neither increasing nor decreasing, but the inequality
g(y) < w can be “solved” in simple terms. To understand what is meant
by this, have a look at examples below.

Example 4.2.1.

1. Linear transformations. Let Y be any random variable, and let
W = g(Y) where g(y) = a+ by is a linear transformation with
b > 0. Since b > 0, the function g is strictly increasing. Therefore,

Fy(w) =P[g(Y) <w] =Pla+bY < w] =Py < &4
= B (%5%).

This expression is especially nice if Y is a continuous random vari-
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able because then so is W, and we have

fw(w) = LFy(w) = L (22) = fr(%9)1,

where the last equality follows from the chain rule. Here are some
important special cases:

a) Linear transformations of a normal. If Y ~ N(0,1) is a unit
_1ln
normal, then fy(y) = \/%e 2Y", and so,

(w—a)®

fW(w): \/ﬁe_ 2.

We recognize this as the pdf of the normal distribution, but this
time with paramters a and b. This inverse of this computation
lies behind the familiar z-score transformation: if Y ~ N(u,0),
then Z = # ~ N(0,1).

b) Linear transformations of a uniform. If Y ~ U(0,1) is a ran-
dom number, ¢(y) = a+by and W = g(Y), then Fy(w) =
Fy((w —a)/b) and, so,

fw(w) = §fr((w—a)/b)) = 11 ((w —a)/b).

When we talked about indicators, we mentioned that a dif-
ferent notation for the same function can simplify computa-
tions in some cases. Here is the case in point. If we replace
1jo.1)((w — a)/b) by 11o<(w—a)/p<1}, We can rearrange the ex-
pression inside {} and get

fW(w) = %l{ugwgwb} = %l[ﬂ,a—&-b}(w)/

and we readily recognize fyy as the pdf of another uniform dis-
tribution, but this time with parameters a and b. If we wanted
to transform U(0,1) into U(I,r), we would simply need to pick
a=landb=r—L

It is not a coincidence that linear transformations of normal and
uniform random variables result in random variables in the same
parametric families (albeit with different parameters). Parametric
families are often (but not always) chosen to have this exact prop-
erty.

2. Inverse Exponential distribution. Let Y ~ E(7) be an exponen-
tially distributed random variable, and let g(y) = 1/y. The func-
tion g is strictly decreasing on (0, ) and so, for w > 0, we have

Fw(w) = P[1/Y < w] = P[Y > 1/w] = 1 — Fy(1/w) = ¢~ 7.
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This computation will not work for w < 0, but we know that W
always takes positive values, as it is the reciprocal of Y, which is
always positive. Therefore, Fyy(w) = 0 for w < 0. We can differen-
tiate the expression for Fy to obtain the pdf fiy:

_ 1
fw(w) = e 1 ) (w).

This pdf cannot be recognized as the pdf of any of our named
distributions, but it is sometimes called the inverse exponential
distribution, and it is used in wireless communications.

Figure 1. The pdf of the inverse exponential distribution.

3. x2-distribution. Let Y ~ N(0,1) be the unit normal random vari-
able, and let ¢(y) = y?. This is an example of a transformation
which is neither increasing nor decreasing. We can still try to make
sense of the expression g(y) < w, ie., ¥*> < w and use the cdf-
method:

Fyw(w) = P[Y? < w).

For w < 0it is impossible that Y2 < w, so we immediately conclude
that Fiy(w) = 0 for w < 0. When w > 0, we have

PY? < w] = P[Y € [, va]] = P[Y < va] - P[Y < —v/al.
Since P[Y = —y/w] = 0 (as Y is continuous), we get
0, w<0
Fy(Vw) = K (=vw), w =0.
We differentiate both sides in w and use the fact that Fy is a normal

1,
d _ 1 -5 5
cdf so that dyFy(y) = 7t 2¥" to obtain

Fy(w) = {

lu]
fw(w) = —5=e" 21 ) (w). (4-2.1)

A random variable with the pdf fy(w) of (4.2.1) above is said to
have a y2-distribution (pronounced [kai-skwer]). It is very impor-
tant in statistics, and we will spend a lot more space on it later.
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Figure 2. The pdf of the x? distribution.

4.3 The h-method

The application of the cdf-method can sometimes be streamlined, leading to
the so-called h-method or the method of transformations. It works when
Y is a continuous random variable and when the transformation function
¢ admits an inverse function h. Supposing that is the case, remember that,
when g is increasing, we have

Fy (w) = Fy(g™! (w)) = Fr(h(w)).

If we assume that everything is differentiable and that Y and W admit pdfs
fy and fu, we can take a derivative in w to obtain

fw(w) = B (w) = £ (B (h(w)) ) = 5By (h(w)) fh(w) = fr(h(w))H (w).

Another way of deriving the same formula is to interpret the pdf fy(y) as the
quantity such that

PY € [y,y+ 2yl = fr(y) by,
when Ay > 0 is “small”. Applying the same to W = g(Y) in two ways yields
P[W € [w,w+ Aw]] = fw(w) Aw,
by also, assuming that g is increasing,

PW € [w,w + Aw] = P[g(Y) € [w, 0+ Aw]] = P[Y € [h(w), h(w + Aw)]]
~ P[Y € [h(w), h(w) + Awh (w)]] = fy(h(w))H (w)Aw.
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The approximate equality ~ between the third and the fourth probability
above uses the fact that h(w + Aw) ~ h(w) + Aw h'(w) which is nothing but
a consequence of the definition of the derivative

h(w+Aw)—h(w)
Aw :

It could also be seen as the first-order Taylor formula for / around w.

The derivation above can be made fully rigorous, leading to the follow-
ing theorem (why does the absolute value |h’'(w)| appear there?). The word
interval in it means (a,b), where either a or b could be infinite (so that, for
example, R itself is also an interval).

Theorem 4.3.1 (The h-method). Suppose that the function g is
1. defined on an interval I C R.
2. its image is an interval | C R
3. g has a continuously-differentiable inverse function h: | — I

Suppose that Y is a continuous random variable with pdf fy such that
fy(y) =0fory & 1. Then W = g(Y) is also a continuous random variable
and its pdf is given by the following formula:

fw(w) = fy (h(w)) [ (w)] Lipepy-

Note: in almost all applications I = {y € R : fy(y) > 0}, for a properly
defined version of fy and | = g(I).
Example 4.3.2.

1. Let Y be a continuous random variable with pdf

fY(y) = ﬂ(l}kyz) .

The distribution of Y is called the Cauchy distribution. We define
W = g(Y) where g(y) = arctan(y). The function g is defined on
the interval I = R and its image is the interval | = (=m/2,m/ 2).
Moreover, its inverse is the function /i : | — I given by

h(w) = tan(w).

This function admits a derivative 1/ (w) = 1/ cos?(w).

Theorem 4.3.1 can be applied and it states that

fw(®) = ey et Hoe(-n/21/2)) = 7 l{we(-n/2m/2)}
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This allows us to identify the distribution of W as uniform on the
interval (—7t/2,7t/2),ie,Y ~ U(—7m/2,7/2).

2. Let Y ~ E(7), and let g(y) = /y. The function g is defined on
I = (0,00) and maps it into | = (0,00), and its inverse is h(w) =
w? : ] — I. The pdf fy of y is given by

A (y) = Lexp(—y/T) 150

and, so, by Theorem 4.3.1 W = /Y = g(Y) is a continuous random
variable with density

fw(w) = 2wexp(—w?/T) 10y

where we removed the absolute value around /' (w) = 2w because
of the indicator 1;~¢. This is known as the Weibull distribution.

3. Let Y and W be as in Example 4.1.2, ie, Y ~ U(60,90) and
¢(y) = cy?, where ¢ = 0.07. Then g : R — R is neither increas-
ing nor decreasing, and does not admit an inverse. However, it is
increasing on the set (60,90) where the random variable Y takes
place, i.e., where fy(y) > 0 (we can exclude the end-points 60
and 90 because they happen with probability 0). If we restrict g
to the interval I = (60,90), it admits an inverse h : ] — I, where
J = (g(60),¢(90)) = (252,567), and

h(w) = /%, we].
The pdf fyy(w) of W is then given by
fw(y) = fy(h(w))H (w) = ﬁ%ﬁwfl/zl{we]}-

Here are the graphs of the pdfs of Y and W = g(Y):

£ — 0.004 ~

y v Y
60 90 Y 252 576 v

Figure 3. The pdfs of Y and W = g(Y) (with both axes scaled differently)
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4.4 Problems

Problem 4.4.1. Let Y be an exponential random variable with parameter 7 >
0. Compute the cdf Fjy and the pdf fiy of the random variable W = Y3.

Problem 4.4.2. Let Y be a uniformly distributed random variable on the in-
terval [0,1], and let W = exp(Y). Compute E[W], the CDF Fy of W and the
pdf fw of W.

Problem 4.4.3. A scientist measures the side of cubical box and the result is
a random variable (due to the measurement error) Y, which we assume is
normally distributed with mean p = 1 and ¢ = 0.1 (both in feet). In other
words, the true measurement of the side of the box is 1 foot, but the scientist
does not know that; she only knows the value of Y.

1. What is the distribution of the volume W of the box?

2. What is the probability that the scientist’s measurement overestimates the
volume of the box by more than 10%? (Hint: Review z-scores and com-
putations of probabilities related to the normal distribution. You will not
need to integrate anything here, but may need to use software (if you
know how) or look into a normal table. We will talk more about how to
do that later. For now, use any method you want.)

Problem 4.4.4. Let Y be a continuous random variable with the density func-
tion fy given by
243y y e (1’ 3)

fry) = {16'

0, otherwise.

The pdf fiy(w) of W = Y? is

@) fw(w)= 21+63\/‘§"1me(1,3)}
(b) fw(w) = %1{%@9)}
(© fw(w) = %1{%(1,9)}
(d) fw(w) = %1{%(13)}
() none of the above

Problem 4.4.5. The Maxwell-Boltzmann distribution describes the distribu-
tion of speeds of particles in an (idealized) gas, and its pdf is given by

3 a2
frly) = e P10 (),

where B > 0 is a constant that depends on the properties of the particular
gas studied.
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The kinetic energy of a gas particle with speed y is %myz. What is the dis-
tribution (pdf) of the kinetic energy if the particle speed follows the Maxwell-
Boltzmann distribution?

Problem 4.4.6. Let Y be a uniform distribution on (0,1). The distribution of
the random variable — 1 log(Y) is

(a) exponential E(T) with T =2
(b) exponential E(t) with T =1/2
(c) uniform U(0,1/2) on (0,1/2)
(d) uniform U(0,2) on (0,2)

(e) none of the above

Problem 4.4.7. Let Y be an exponential random variable with parameter 7 >
—1. Then E[fe~Y] =
@7 (b) 1 () 125 (d) 1% (e) none of the above

Problem 4.4.8. Let Y be a random variable with the pdf fy(y) = m The

pdf of W =1/Y?is
(a) nﬁ%Hw)l{u»o}
1
(b) nﬁ(Hw)l{u»o}

2
© e

2 2
(d) n(liw“)

(e) none of the above

(Hint: You do not need to actually compute the cdf of Y.)
Problem 4.4.9. The pdf of W = 1/Y?, where Y ~ E(7) is

(@) 3y ¥ 1)
®) = (—y¥2)e V¥, o
(c) %671/(yzr)1{y>0}

(d) 2Ty13/2 e M/ (TVY) 1eyso0y
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(e) none of the above

Problem 4.4.10. Let Y be a uniform random variable on [—1,1], and let W =
Y2. The pdf of W is

(a) %\/ml{-kwa}

®) F51j0<0e)

© 551 {0<w1)

(d) 2wlo ey
(e) none of the above

Problem 4.4.11. Let Y be a uniform random variable on [0,1], and let W = Y?.
The pdf of W is

(a) %‘wll{71<w<l}

(b) ﬁ1{0<w<1}

(c) ﬁ1{0<w<1}

(d) 2wl{o<w<y

(e) none of the above

Problem 4.4.12. Fuel efficiency of a sample of cars has been measured by a
group of American engineers, and it turns out that the distribution of gas-
mileage is uniformly distributed on the interval [10 mpg, 30 mpg], where
mpg stands for miles per gallon. In particular, the average gas-mileage is 20
mpg.

A group of European engineers decided to redo the statistics, but, being
European, they used European units. Instead of miles per gallon, they used
liters per 100 km. (Note that the ratio is reversed in Europe - higher numbers
in liters per km correspond to worse gas mileage). If one mile is 1.609 km and
one gallon is 3.785 liters, the average gas-mileage of 20 mpg, obtained by the
Americans, translates into 11.762 liters per 100 km. However, the average gas
mileage obtained by the Europeans was different from 11.762, even though
they used the same sample, and made no computational errors. How can
that be? What did they get? Is the distribution of gas-mileage still uniform,
when expressed in European units? If not, what is its pdf?

Problem 4.4.13. Let Y be a uniformly distributed random variable on the
interval (0,1). Find a function g such that the random variable W = g(Y)
has the exponential distribution with parameter 7 = 1. (Hint: Use the h-
method.)
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