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Course: Mathematical Statistics
Term: Fall 2017

Instructor: Gordan Žitković

Lecture 5
Probability review - joint distributions

5.1 Random vectors

So far we talked about the distribution of a single random variable Y. In
the discrete case we used the notion of a pmf (or a probability table) and in
the continuous case the notion of the pdf, to describe that distribution and
to compute various related quantities (probabilities, expectations, variances,
moments).

Now we turn to distributions of several random variables put together.
Just like several real numbers in an order make a vector, so n random vari-
ables, defined in the same setting (same probability space), make a random
vector. We typically denote the components of random vectors by subscripts,
so that (Y1, Y2, Y3) make a typical 3-dimensional random vector. We can also
think of a random vector as a random point in an n-dimensional space. This
way, a random pair (Y1, Y2) can be thought of as a random point in the plane,
with Y1 and Y2 interpreted as its x- and y-coordinates.

There is a significant (and somewhat unexpected) difference between the
distribution of a random vector and the pair of distributions of its compo-
nents, taken separately. This is not the case with non-random quantities. A
point in the plane is uniquely determined by its (two) coordinates, but the
distribution of a random point in the plane is not determined by the dis-
tributions of its projections onto the coordinate axes. The situation can be
illustrated by the following example:

Example 5.1.1.

1. Let us toss two unbiased coins, and let us call the outcomes Y1 and
Y2. Assuming that the tosses are unrelated, the probabilities of the
following four outcomes

{Y1 = H, Y2 = H}, {Y1 = H, Y2 = T},
{Y1 = T, Y2 = H}, {Y1 = T, Y2 = T}

are the same, namely 1/4. In particular, the probabilities that the
first coin lands on H or T are the same, namely 1/2. The distribution
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tables for both Y1 and Y2 are the same and look like this

H T
1/2 1/2

.

Let us now repeat the same experiment, but with two coins at-
tached to each other (say, welded together) as in the picture:

Figure 1. Two quarters welded together, so that when one falls on heads
the other must fall on tails, and vice versa.

We can still toss them and call the outcome of the first one Y1 and
the outcome of the second one Y2. Since they are welded, it can
never happen that Y1 = H and Y2 = H at the same time, or that
Y1 = T and Y2 = T at the same time, either. Therefore of the four
outcomes above only two “survive”

{Y1 = H, Y2 = H}, {Y1 = H, Y2 = T},
{Y1 = T, Y2 = H}, {Y1 = T, Y2 = T}

and each happens with the probability 1
2 . The distribution of Y1

considered separately from Y2 is the same as in the non-welded
case, namely

H T
1/2 1/2

,

and the same goes for Y2. This is one of the simplest examples, but
it already strikes the heart of the matter: randomness in one part
of the system may depend on the randomness in the other part.

2. Here is an artistic (geometric) view of an analogous phenomenon.
The projections of a 3D object on two orthogonal planes do not
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determine the object entirely. Sculptor Markus Raetz used that fact
to create the sculpture entitled “Yes/No”:

Figure 2. Yes/No - A “typographical” sculpture by Markus Raetz

Not to be outdone, I decided to create a different typographical
sculpture with the same projections (I could not find the exact same
font Markus is using so you need to pretend that my projections
match his completely). It is not hard to see that my sculpture differs
siginificantly from Marcus’s, but they both have (almost) the same
projections, namely the words “Yes” and “No”.

Figure 3. My own attempt at a “typographical” sculpture, using SketchUp.
You should pretend that Markus’s and mine fonts are the same.
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5.2 Joint distributions - the discrete case

So, in order to describe the distribution of the random vector (Y1, . . . , Yn), we
need more than just individual distributions of its components Y1 . . . Yn. In
the discrete case, the events whose probabilities finally made their way into
the distribution table were of the form {Y = i}, for all i in the support SY of
Y. For several random variables, we need to know their joint distribution,
i.e., the probabilities of all combinations

{Y1 = i1, Y2 = i2, . . . , Yn = in},

over the set of all combinations (i1, i2, . . . , in) of possible values our random
variables can take. These numbers cannot comfortably fit into a table, except
in the case n = 2, where we talk about the joint distribution table which
looks like this

j1 j2 . . .
i1 P[Y1 = i1, Y2 = j1] P[Y1 = i1, Y2 = j2] . . .
i2 P[Y1 = i2, Y2 = j1] P[Y1 = i2, Y2 = j2] . . .
...

...
...

. . .

Example 5.2.1. Two dice are thrown (independently of each other) and
their outcomes are denoted by Y1 and Y2. Since P[Y1 = i, Y2 = j] = 1/36

for any i, j ∈ {1, 2, . . . , 6}, the joint distribution table of (Y1, Y2) looks
like this

1 2 3 4 5 6
1 1/36 1/36 1/36 1/36 1/36 1/36

2 1/36 1/36 1/36 1/36 1/36 1/36

3 1/36 1/36 1/36 1/36 1/36 1/36

4 1/36 1/36 1/36 1/36 1/36 1/36

5 1/36 1/36 1/36 1/36 1/36 1/36

6 1/36 1/36 1/36 1/36 1/36 1/36

The situation is more interesting if Y1 still denotes the outcome of the
first die, but Z now stands for the sum of the numbers on two dies. It
is not hard to see that the joint distribution table of (Y1, Z) now looks
like this:

2 3 4 5 6 7 8 9 10 11 12
1 1/36 1/36 1/36 1/36 1/36 1/36 0 0 0 0 0
2 0 1/36 1/36 1/36 1/36 1/36 1/36 0 0 0 0
3 0 0 1/36 1/36 1/36 1/36 1/36 1/36 0 0 0
4 0 0 0 1/36 1/36 1/36 1/36 1/36 1/36 0 0
5 0 0 0 0 1/36 1/36 1/36 1/36 1/36 1/36 0
6 0 0 0 0 0 1/36 1/36 1/36 1/36 1/36 1/36
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Going from the joint distribution of the random vector (Y1, Y2, . . . , Yn) to
individual (called marginal) distributions of Y1, Y2, . . . , Yn is easy. To com-
pute P[Y1 = i] we need to sum P[Y1 = i, Y2 = i2, . . . , Yn = in], over all combi-
nations (i2, . . . , in) where i2, . . . , in range trough all possible values Y2, . . . , Yn
can take.

Example 5.2.2. Continuing the previous example, let us compute the
marginal distribution of Y1, Y2 and Z. For Y1 we sum the probabilities
in each row in in the joint distribution table of (Y1, Y2) to obtain

1 2 3 4 5 6
1/6 1/6 1/6 1/6 1/6 1/6

The same table is obtained for the marginal distribution of Y2 (even
though we sum over columns this time). For the marginal distribu-
tion of Z, we use the joint distribution table for (Y1, Z) and sum over
columns:

2 3 4 5 6 7 8 9 10 11 12
1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

Once the distribution table of a random vector (Y1, . . . , Yn) is given, we
can compute (in theory) the probability of any event concerning the random
variables Y1, . . . , Yn, but simply summing over the set of appropriate entries
in the joint distribution.

Example 5.2.3. We continue with random variables Y1, Y2 and Z de-
fined above and ask the following question: what is the probability
that two dice have the same outcome? In other words, we are inter-
ested in P[Y1 = Y2]? The entries in the table corresponding to this
event are boxed:

1 2 3 4 5 6
1 1/36 1/36 1/36 1/36 1/36 1/36

2 1/36 1/36 1/36 1/36 1/36 1/36

3 1/36 1/36 1/36 1/36 1/36 1/36

4 1/36 1/36 1/36 1/36 1/36 1/36

5 1/36 1/36 1/36 1/36 1/36 1/36

6 1/36 1/36 1/36 1/36 1/36 1/36

,

so that

P[Y1 = Y2] = 1/36 + 1/36 + 1/36 + 1/36 + 1/36 + 1/36 = 1/6.
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5.3 Joint distributions - the continuous case

Just as in the univariate case (the case of a single random variable), the con-
tinuous analogue of the distribution table (or the pmf) is the pdf. Recall that
pdf fY(y) of a single random variable Y is the function with the property that

P[Y ∈ [a, b]] =
∫ b

a
fY(y) dy.

In the multivariate case (the case of a random vector, i.e., several random
variables), the pdf of the random vector (Y1, . . . , Yn) becomes a function of
several variables fY1,...,Yn(y1, . . . , yn) and it is characterized by the property that

P[Y1 ∈ [a1, b1], Y2 ∈ [a2, b2], . . . , Yn ∈ [an, bn]] =

=
∫ b1

a1

∫ b2

a2

· · ·
∫ bn−1

an−1

∫ bn

an
fY1,...,Yn(y1, . . . , yn) dyn dyn−1 . . . dy2 dy1.

This formula is better understood if interpreted geometrically. The left-hand
side is the probability that the random vector (Y1, . . . , Yn) (think of it as a
random point in Rn) lies in the region [a1, b1] × . . . [an, bn], while the right-
hand side is the integral of fY1,...,Yn over the same region.

Example 5.3.1. A point is randomly and uniformly chosen inside a
square with side 1. That means that any two regions of equal area
inside the square have the same probability of containing the point.
We denote the two coordinates of this point by Y1 and Y2 (even though
X and Y would be more natural), and their joint pdf by fY1,Y2 . Since the
probabilities are computed by integrating fY1,Y2 over various regions in
the square, there is no reason for f to take different values on different
points inside the square; this makes fY1,Y2(y1, y2) = c for some constant
c > 0, for all points (y1, y2) in the square. Our random point never
falls outside the square, so the value of f outside the square should be
0. Pdfs (either in one or in several dimensions) integrate to 1 , so we
conclude that f should be given by

fY1,Y2(y1, y2) =

{
1, (y1, y2) ∈ [0, 1]2

0, otherwise.

Once a pdf of a random vector (Y1, . . . , Yn) is given, we can compute all
kinds of probabilities with it. For any region A ⊂ Rn (not only for rectangles
of the form [a1, b1]× . . . [an, bn]), we have

P[(Y1, . . . , Yn) ∈ A] =
∫ ∫
· · ·

∫
A

fY1,...,Yn(y1, . . . , yn)dyn . . . dy1.

As it is almost always the case in the multivariate setting, this is much better
understood through an example:
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Example 5.3.2. Let (Y1, Y2) be the random uniform point in the square
[0, 1]2 from the previous example. To compute the probability that the
distance from (Y1, Y2) to the origin (0, 0) is at most 1, we define

A =
{
(y1, y2) ∈ [0, 1]2 :

√
y2

1 + y2
2 ≤ 1

}
,

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4. The region A.

Therefore, since fY1,Y2(y1, y2) = 1, for all (y1, y2) ∈ A, we have

P[(Y1, Y2) is at most 1 unit away from (0,0)] = P[(Y1, Y2) ∈ A]

=
∫∫

A
fY1,Y2(y1, y2) dy2dy1 =

∫∫
A

1 dy1 dy2 = area(A) = π
4 .

The calculations in the previous example sometimes fall under the head-
ing of geometric probability because the probability π/4 we obtained is simply
the ratio of the area of A and the area of [0, 1]2 (just like one computes a
uniform probability in a finite setting by dividing the number of “favorable”
cases by the total number). This works only if the underlying pdf is uniform.
In practice, pdfs are rarely uniform.

Example 5.3.3. Let (Y1, Y2) be a random vector with the pdf

fY1,Y2(y1, y2) =

{
6y1, 0 ≤ y1 ≤ y2 ≤ 1
0, otherwise,

or, in the indicator notation,

fY1,Y2(y1, y2) = 6y11{0≤y1≤y2≤1}.
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Here is a sketch of what f looks like

Figure 5. The pdf of (Y1, Y2)

This still corresponds to a distribution of a random point in the unit
square, but this distribution is no longer uniform - the point can
only appear in the upper left triangle, and the larger the value of y1
the more likely the point. To compute, e.g., the probability P[Y1 ≥
1/2, Y2 ≥ 1/2] we integrate fY1,Y2 over the region [1/2, 1]× [1/2, 1]:

P[Y1 ≥ 1/2, Y2 ≥ 1/2] =
∫ 1

1
2

∫ 1

1
2

6y11{0≤y1≤y2≤1} dy2 dy1.

We would like to compute this double integral as an iterated integral,
i.e., by evaluation the “inner” y2-integral first, and then integrate the
result with respect to y1. The indicator notation helps us with the
bounds. Indeed, when doing the inner integral, we can think of y1 as
a constant and interpret the indicator function as a function of y1 only;
it will tell us to integrate from y1 to 1. Since the outer integral is over
the region in which y1 ≥ 1/2, the inner integral is given by∫ 1

1
2

6y11{0≤y1≤y2≤1} dy2 = 6y1

∫ 1

y1

dy2 = 6y1(1− y1).

It remains to integrate the obtain result from 1/2 to 1:

P[Y1 ≥ 1/2, Y2 ≥ 1/2] =
∫ 1

1
2

6y1(1− y1) dy1 = 1
2 .

the integrals become more complicated, as the following example shows.
It also sheds some light on the usefulness of indicators.
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Example 5.3.4. Suppose that the pair (Y1, Y2) has a pdf as above given
by

fY1,Y2(y1, y2) = 6y11{0≤y1≤y2≤1}.

Let us compute now the same probability as in Example (5.3.1),
namely that the point (Y1, Y2) is at most 1 unit away from (0, 0). It
is still the case that

P[(Y1, Y2) is at most 1 unit away from (0,0)] = P[(Y1, Y2) ∈ A] =

=
∫∫

A
fY1,Y2(y1, y2) dy2dy1,

but, since f is no longer uniform, this integral is no longer just the area
of A. We use the indicator notation to write

fY1,Y2(y1, y2) = 6y11{0≤y1≤y2≤1},

and replace the integration over A by multiplication by the indicator
of A, i.e., 1{y2

1+y2
2≤1} to obtain

∫ ∞

−∞

∫ ∞

∞
6y11{0≤y1≤y2≤1}1{y2

1+y2
2≤1} dy2 dy1.

This can be rewritten as∫ 1

0

∫ 1

0
6y11{y2≥y1, y2

2≤1−y2
1}

dy2 dy1.

We do the inner integral, first, and interpret the indicator as if y1 were
a constant: ∫ 1

0
6y11{y2≥y1,y2≤

√
1−y2

1}
dy2.

The value of this integral is simply 6y1 multiplied by the length of the

interval [y1,
√

1− y2
1], when it it nonempty. Graphically, it the situation

looks like this:
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(
1

2
,
1

2
)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

y1

y2

Figure 6. The region where 0 ≤ y1 ≤ y1 ≤ 1 and y2
1 + y2

2 ≤ 1.

The curves y2 = y1 and y2 =
√

1− y2
1 intersect to the right of

0 at the point (1/
√

2, 1/
√

2), and, so, the inner integral becomes

6y1(
√

1− y2
1 − y1) for y1 ∈ [0, 1/

√
2] and 0 otherwise, i.e.,

∫ 1

0
6y11{y2≥y1,y2≤

√
1−y2

1}
dy2 = 6y1(

√
1− y2

1 − y1)1{0≤y1≤1/
√

2}

=

{
6y1(

√
1− y2

1 − y1), y1 ∈ [0, 1/
√

2]

0, otherwise.

We continue with the outer integral

∫ 1

0
6y1(

√
1− y2

1 − y1)1{0≤y1≤1/
√

2} dy1 =
∫ 1√

2

0
6y1(

√
1− y2

1 − y1) dy1

= (−2(1− y2
1)

3/2 − 2y3
1)
∣∣∣ 1√

2
0

= 2−
√

2.

Therefore P[Y2
1 + Y2

2 ≤ 1] = 2−
√

2, when (Y1, Y2) have the joint dis-
tribution fY1,Y2(y1, y2) = 6y11{0≤y1≤y2≤1}.

So far we focused on computing probabilities involving two random vari-
ables. One can compute expected values of such quantities, as well, using a
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familiar (fundamental) formula:

Theorem 5.3.5. Let (Y1, . . . , Yn) be a continuous random vector, let g be a
function of n variables, and let W = g(Y1, . . . , Yn). Then

E[W] =
∫ ∞

−∞
. . .
∫ ∞

−∞
g(y1, . . . , yn) fY1,...,Yn(y1, . . . , yn) dyn . . . dy1,

provided the multiple integral on the right is well-defined.

Example 5.3.6. Continuing from Example 5.3.4, the pair (Y1, Y2) has a
pdf given by

fY1,Y2(y1, y2) = 6y11{0≤y1≤y2≤1}.

Let us compute the expected square of the distance of the point (Y1, Y2)
to the origin, i.e., E[g(Y1, Y2)], where g(y1, y2) = y2

1 + y2
2. According to

Theorem 5.3.5 above, we have

E[g(Y1, Y2)] =
∫ ∞

−∞

∫ ∞

−∞
(y2

1 + y2
2) fY1,Y2(y1, y2) dy2 dy1

=
∫ 1

0

∫ 1

0
(y2

1 + y2
2)6y11{y1≤y2} dy2 dy1

=
∫ 1

0

∫ 1

y1

(y2
1 + y2

2)6y1 dy2 dy1

=
∫ 1

0
(2y1 + 6y3

1 − 8y4
1) dy1 = 9

10 .

5.4 Marginal distributions and independence

While the distributions of the components Y1 and Y2, considered separately,
do not tell the whole story about the distribution of the random vector
(Y1, Y2), going the other way is quite easy.

Proposition 5.4.1. If the random vector (Y1, . . . , Yn) has the pdf
fY1,...,Yn(y1, . . . , yn), then each Yi is a continuous random variable with the
pdf fYi given by

fYi (y) =
∫ ∞

−∞
· · ·

∫ ∞

−∞

fY1,...Yn(y1, . . . , yi−1, y, yi+1, . . . , yn) dyn . . . dyi+1 dyi−1 . . . dy1.
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In words, the pdf of the i-th component is obtained by integrating the
multivariate pdf fY1,...,Yn over (−∞, ∞) in all variables except for yi. This is
sometimes referred to as integrating out the other variables.

Example 5.4.2. Let (Y1, Y2) have the pdf

fY1,Y2(y1, y2) = 6y11{0≤y1≤y2≤1},

from example 5.3.4. To obtain the (marginal) pdfs of Y1 and Y2, we
follow Proposition 5.4.1 above:

fY1(y) =
∫ ∞

−∞
fY1,Y2(y, y2) dy2 =

∫ ∞

−∞
6y1{0≤y≤y2≤1} dy2

= 6y(1− y)1{0≤y≤1}.

To compute the marginal pdf of Y2, we proceed in a similar way

fY2(y) =
∫ ∞

−∞
fY1,Y2(y1, y) dy1 =

∫ ∞

−∞
6y11{0≤y1≤y≤1} dy1

= 1{0≤y≤1}

∫ y

0
6y1 dy1 = 3y21{0≤y≤1}.

The simplest way one can supply the information that can be used to
construct the joint pdf from the marginals is to require that the components
be independent.

Definition 5.4.3. Two random variables Y1 and Y2 are said to be inde-
pendent if

P[Y1 ∈ [a1, b1], Y2 ∈ [a2, b2]] = P[Y1 ∈ [a1, b1]]×P[Y2 ∈ [a2, b2]],

for all a1 < b1 and all a2 < b2.

One defines the notion of independence for n random variables
Y1, . . . , Yn by an analogous condition:

P[Y1 ∈ [a1, b1], Y2 ∈ [a2, b2], . . . , yn ∈ [an, bn]] =

= P[Y1 ∈ [a1, b1]]×P[Y2 ∈ [a2, b2]]× · · · ×P[Yn ∈ [an, bn]],

for all a1 < b1, a2 < b2, . . . , and all an < bn.

Broadly speaking, independence comes into play in two ways:

1. It is a modeling choice. That means that the situation modeled makes it
plausible that the random variables have nothing to do with each other,
and that the outcome of one of them does not affect the outcome of the
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other. The basic example here is the case of two different coins tossed
separately.

2. It is a mathematical consequence. Sometimes, random variables that are
defined in complicated ways from other random variables happen to be
independent, even though it is intuitively far from obvious. An example
here is the fact (which we will talk about later in more detail) that the
sample mean and the sample standard deviation in a random sample
from a normal distribution are independent, even though both of them
are functions of the same set random variables (the sample).

There is an easy way to check whether continuous random variables are
independent:

Theorem 5.4.4 (The factorization criterion). Continuous random vari-
ables Y1, Y2, . . . , Yn are independent if and only if

fY1,...,Yn(y1, y2, . . . , yn) = fY1(y1) fY2(y2) . . . fYn(yn),

for all y1, . . . , yn, where fY1 , . . . , fYn are the marginal pdfs of Y1, . . . , Yn.

It gets even better. One does not need to compute the marginals to apply
the theorem above:

Theorem 5.4.5 (The factorization criterion 2.0). Continuous random vari-
ables Y1, Y2, . . . , Yn are independent if and only if there exist nonnegative
functions f1, f2, . . . , fn (which are not necessarily the marginals) such that

fY1,...,Yn(y1, y2, . . . , yn) = f1(y1) f2(y2) . . . fn(y1),

for all y1, . . . , yn.

A similar factorization criterion holds for discrete random variables, as
well. One simply needs to replace pdfs by pmfs.

Example 5.4.6.

1. In the example of a random point chosen uniformly over the square
[0, 1]2, the pdf of the two coordinates Y1, Y2 was given by the expres-
sion

fY1,Y2(y1, y2) = 1{y1,y2∈[0,1]} = 1{0≤y1≤1}1{0≤y2≤1}.

the functions f1(y1) = 1{0≤y1≤1} and f2(y2) = 1{0≤y2≤1} have the
property that fY1,Y2(y1, y2) = f1(y1) f2(y2). Therefore, the factoriza-
tion criterion 2.0 can be used to conclude that Y1 and Y2 are inde-
pendent. This makes intuitive sense. If we are told the x-coordinate
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of this point, we are still just as ignorant about its y coordinate as
before.

2. Consider now the case where the distribution is no longer uniform,
but comes with the pdf

fY1,Y2(y1, y2) = 6y11{0≤y1≤y2≤1}.

If we forgot the indicator, the remaining part, namely 6y1, can be
easily factorized. Indeed, 6y1 = f1(y1) f2(y2), where f1(y1) = 6y1
and f2(y1) = 1. The presence of the indicator, however, prevents
us from doing the same for fY1,Y2 . We have already computed the
marginals fY1 and fY2 in Example 5.4.2; if we multiply them to-
gether, we obtain

fY1(y1) fY2(y2) = 6y1(1− y1)1{0≤y1≤1}3y2
21{0≤y2≤1}

= 18y1y2
21{0≤y1,y2≤1},

which is clearly not equal to fY1,Y2 . Using the original factoriza-
tion criterion, we may conclude that Y1 and Y2 are not indepen-
dent. Like above, this makes perfect intuitive sense. The indicator
1{0≤y1≤y2≤1} forces the value of Y1 to be below that of Y2. Therefore,
the information that, e.g., Y2 = 0.1 would change our belief about
Y1 a great deal. We would know with certainty that Y1 ∈ [0, 0.1]
- a conclusion we would not have been able to reach without the
information that Y2 = 0.1.

The factorization theorem(s), i.e., Theorems 5.4.4 and 5.4.5 have another,
extremely useful consequence:

Proposition 5.4.7. Let Y1, . . . , Yn be independent random variables, and let
g1, . . . , gn be functions. Then

E[g1(Y1) . . . gn(Yn)] = E[g1(Y1)] . . . E[gn(Yn)],

provided all expectations are well defined.

We do not give proofs in these notes, but it is not hard to derive Propo-
sition 5.4.7 in the case of continuous random variables by combining the fac-
torization criterion (Theorem 5.4.4) with the fundamental formula (Theorem
5.3.5).

Example 5.4.8. In the context of the random, uniformly distributed
point (Y1, Y2) in the unit square, let us compute E[exp(Y1 + Y2)]. One

Last Updated: September 25, 2019



Lecture 5: Joint Distributions 15 of 21

approach would be to multiply the function g(y1, y2) = ey1+y2 by the
pdf fY1,Y2 of (Y1, Y2) and integrate over the unit square. The other is to
realize that Y1 and Y2 are independent and use Proposition 5.4.7 with
g1(y1) = ey1 and g2(y2) = ey2

E[eY1+Y2 ] = E[eY1 ]E[eY2 ] =
∫ 1

0
ey dy×

∫ 1

0
ey dy = (e− 1)2.

5.5 Functions of two random variables

When we talked about a function of a single random variable and considered
the transformation W = g(Y), we listed several methods, like the cdf-method
and the h-method. These methods can be extended further to the case of sev-
eral random variables, but we only deal briefly with the case of two random
variables in these notes. The special case of the sum of several independent
random variable will be dealt with later.

The main approach remains the cdf-method. To find the pdf fW of the
function W = g(Y1, Y2) of a pair of random variables with the joint pdf fY1,Y2
we write down the expression for the cdf FW :

FW(w) = P[W ≤ w] = P[g(Y1, Y2) ≤ w] = P[(Y1, Y2) ∈ A],

where A is the set of all pairs (y1, y2) ∈ R2 such that g(y1, y2) ≤ w. Un-
fortunately, no nice function from R2 to R admits an inverse, so we have to
“solve” the inequality g(y1, y2) ≤ w on a case by case basis. Supposing that
we can do that, it remains to remember that

P[(Y1, Y2) ∈ A] =
∫∫

A
fY1,Y2(y1, y2) dy1 dy2.

Here are some examples:

Example 5.5.1. Suppose that Y1 and Y2 are both uniformly distributed
on (0, 1) and independent. Their joint pdf is then given by

fY1,Y2(y1, y2) = 1{0≤y1≤1, 0≤y2≤1}.

If we are interested in the distribution of W = Y1 + Y2, we need to
describe the set A = {(y1, y2) ∈ R2 : y1 + y2 ≤ w}. These are simply
the regions below the 45-degree line y2 ≤ w− y1, passing throught the
point (0, w) on the y2-axis. Since the density fY1,Y2 is positive only in
the unit square [0, 1]× [0, 1], we are only interested in the intersection
of A with it. For w > 1, this intersection is the entire [0, 1]× [0, 1]. For
w < 0, this intersection is empty. The typical cases with w ∈ (0, 1] and
w ∈ (1, 2) are given in the two pictures below:
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Figure 7. Typical regions of integration for w ∈ (0, 1] on the left and w ∈ (1, 2)
on the right.

Once we have the region corresponding to P[Y1 +Y2 ≤ x], the integral
of the pdf over it is not hard to evaluate - indeed, the pdf fY1,Y2 is
constant over it, with value 1, so all we need to do it calculate its area.
In the case w ∈ (0, 1] we have the are of a right equilateral triangle
with sides w and w, making its area 1

2 w2. In the case w > 1, the area
under consideration is the area of the square [0, 1] × [0, 1] minus the
area of the (white) triangle in the top right corner, i.e., 1− (2−w)2/2 =
−1 + 2w− w2/2. Putting all together, we get

FW(w) = P[W ≤ w] =


0, w < 0
1
2 w2 w ∈ [0, 1)
−1 + 2w− 1

2 w2, w ∈ [1, 2]
1 w ≥ 2

It remains to differentiate FW(w) to obtain:

fW(w) =


0, w < 0
w w ∈ [0, 1)
2− w, w ∈ [1, 2]
0 w ≥ 2

The obtained distribution is sometimes called the triangle distribution
and its pdf is depicted below:
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Figure 8. The pdf fW(w) of the sum W = Y1 + Y2 of two independent U(0, 1)
random variables.

Here is another example which yields a special case of a distribution very
important in hypothesis testing in statistics:

Example 5.5.2. Let Y1 and Y2 be two independent χ2 random vari-
ables, and let W = Y2/Y1 be their quotient, i.e., W = g(y1, y2) where
g(y1, y2) = y2/y1. Remembering that χ2 takes only positive values

and that its pdf is 1√
2πy

e−
1
2 y1{y>0}, we easily obtain that

fY1,Y2(y1, y2) =
1

2π
√

y1y2
e−

1
2 (y1+y2)1{y1>0, y2>0}.

To get a handle on the region where g(y1, y2) ≤ w, we first note that it
is enough to consider w > 0, as W takes only positive values. For such
a w, we have

A = {(y1, y2) ∈ (0, ∞)× (0, ∞) : y2/y1 ≤ w}
= {(y1, y2) ∈ (0, ∞)× (0, ∞) : y2 ≤ wy1},

so that A is simply the (infinite) region bounded by the y1-axis from
below and the line y2 = wy1 from above. We integrate the joint pdf
over that region:

FW(w) =
∫∫

A
fY1,Y2(y1, y2) dy1 dy2

=
∫ ∞

0

1√
2πy1

e−
1
2 y1

∫ wy1

0

1√
2πy2

e−
1
2 y2 dy2 dy1

=
∫ ∞

0

1√
2πy2

e−
1
2 y2 FY1(wy2) dy2

At this point we are stuck and we do not have a closed form expression
for the cdf of the χ2-distribution. On the other hand, what we are after
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is the pdf and not the cdf of W, so there may be some hope, after all. If
we differentiate both sides with respect to w (and accept without proof
that we can differentiate inside the integral on the right-hand side), we
get, for w > 0

fW(w) =
∫ ∞

0

1√
2πy2

e−
1
2 y2 fY1(wy2)y2 dy2

=
∫ ∞

0

1
2πy2

√
w e−

1
2 (y2+wy2) fY1(wy2)y2 dy2

= 1
2π
√

w

∫ ∞

0
e−

1
2 (1+w)y2 dy2 = 1

π
√

w(1+w)

The distribution of the random variable with the pdf 1
π(1+w)

√
w 1{w>0}

is called the F-distribution (or, more precisely, the F(1, 1)-distribution)
and the graph of its pdf is given below:

0 1 2 3 4

0.5

1.0

1.5

2.0

Figure 9. The pdf of the F(1, 1)-distribution.

5.6 Problems

Problem 5.6.1. Three (fair and independent) coins are thrown; let Y1, Y2 and
Y3 be the outcomes (encoded as H or T). Player 1 gets $1 if H shows on
coin 1 (Y1 = H) and/or $2 if H shows on coin 2 (Y2 = H). Player 2, on
the other hand, gets $1 when Y2 = H and/or $2 when Y3 = H. With W1
and W2 denoting the total amount of money given to Player 1 and Player 2,
respectively,

1. Write down the marginal distributions (pmfs) of W1 and W2,

2. Write down the joint distribution table of (W1, W2).

3. Are W1 and W2 independent?
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Problem 5.6.2. Let (Y1, Y2) be a random vector with the following distribu-
tion table

−1 1
1 1

6
1
2

2 ∗ ◦
.

If it is know that Y1 and Y2 are independent, the values ∗ and ◦ in the second
row are

(a) ∗ = 1/6, ◦ = 3/4

(b) ∗ = 1/12, ◦ = 1/4

(c) ∗ = 1/6, ◦ = 1/6

(d) ∗ = 1/24, ◦ = 7/24

(e) none of the above

Problem 5.6.3. Let Z1 ∼ N(1, 1), Z2 ∼ N(2, 2) and Z3 ∼ N(3, 3) be inde-
pendent random variables. The distribution of the random variable W =

Z1 +
1
2 Z2 +

1
3 Z3 is

(a) N(5/3, 7/6)

(b) N(3, 3)

(c) N(3,
√

3)

(d) N(3,
√

5/3)

(e) none of the above

(Note: In our notation N(µ, σ) means normal with mean µ and standard
deviation σ.)

Problem 5.6.4. A point is chosen uniformly over a 1-yard wooden stick, and a
mark is made. The procedure is repeated, independently, and another mark
is made. The stick is then sawn at the two marks, yielding three shorter
sticks. What is the probability that at least one of those sticks is at least 1/2
yard long?

Problem 5.6.5. The random vector (Y1, Y2) has the pdf

fY1,Y2(y1, y2) = 6y11{0≤y1≤y2≤1}.

Then,
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(a) The pdf of Y1 is 2y1{0≤y≤1}.

(b) The pdf of Y2 is 3y21{0≤y≤1}.

(c) Y1 and Y2 are independent.

(d) P[Y1 = 1/12, Y2 = 1/6] = 1/2

(e) none of the above

Problem 5.6.6. Let Y1 and Y2 be independent exponential random variables
with parameters τ1 and τ2.

1. What is the joint density of (Y1, Y2)?

2. Compute P[Y1 ≥ Y2].

Problem 5.6.7. A dart player throws a dart at a dartboard - the board itself
is always hit, but any region of the board is as likely to be hit as any other
of the same area. We model the board as the unit disc {y2

1 + y2
2 ≤ 1}, and

the point where the board is hit by a pair of random variables (Y1, Y2). This
means that (Y1, Y2) is uniformly distributed on the unit disc, i.e., the joint pdf
is given by

fY1,Y2(y1, y2) =
1
π 1{y2

1+y2
2≤1} =

{
1
π , y2

1 + y2
2 ≤ 1

0, otherwise.

1. Do you expect the random variables Y1 and Y2 to be independent? Explain
why or why not (do not do any calculations).

2. Find the marginal pdfs of Y1 and Y2. Are Y1 and Y2 independent?

3. Compute P[Y1 ≥ Y2].

4. In a simplified game of darts, the score S associated with the dart falling
at the point (Y1, Y2) is S = 1− (Y2

1 + Y2
2 ), i.e., one minus the square of

the distance to the origin (bull’s eye). Compute the expected score of our
player. (Note: In order not to make this a problem on integration, you can
use the fact that

∫ 1
−1(1− y2

1)
3/2 dy1 = 3π

8 .)

Problem 5.6.8. Two random numbers, Y1 and Y2 are chosen independently
of each other, according to the uniform distribution U(−1, 2) on [−1, 2]. The
probability that their product is positive is

(a) 1/3 (b) 2/3 (c) 1/9 (d) 5/9 (e) none of the above

Problem 5.6.9. Let (Y1, Y2) have the joint pdf given by

fY1,Y2(y1, y2) = cy1y21{0≤y1≤1,y1≤y2≤2y1}

1. What is the value of c?
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2. What are the expected values of Y1 and Y2?

3. What is the expected value of the product Y1Y2?

4. What is the covariance between Y1 and Y2? Are they independent?

Problem 5.6.10. Let Y1 and Y2 be two independent exponential distributions
with parameter τ = 1. Find the pdfs of the following random variables:

1. Y1 + Y2.

2. Y2/Y1
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