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Lecture 11
Likelihood, MLE and sufficiency

11.1 Likelihood - definition and examples

As we have seen many times before, the statistical inference based on a ran-
dom sample depends heavily on the model we assume for the data. We
would estimate the unknown parameter (say, the mean of the distribution)
in vastly different ways when the data are normal, compared to the case of
uniformly distributed data. The information about the assumed model is
captured in the joint pdf (or pmf) of our data and its dependence on the pa-
rameters. In a huge number of situations, this joint pdf/pmf has a simple
explicit form and, as we will see below, many important conclusions can be
reached by looking at it in a right way.

Definition 11.1.1. Given a random sample Y1, . . . , Yn from a discrete
distribution D with an unknown parameter θ, we define the likeli-
hood (function) by

L(θ; y1, . . . , yn) = pθ
Y1,...,Yn

(y1, . . . , yn) = pθ(y1)pθ(y2) . . . pθ(yn),

where pθ is the pmf of (each) Yi.

If Y1, . . . , Yn come from a continuous distribution, we set

L(θ; y1, . . . , yn) = f θ
Y1,...,Yn

(y1, . . . , yn) = f θ(y1) f θ(y2) . . . f θ(yn),

where f θ is the pdf of (each) Yi.

Simply put, the likelihood is the same as the joint pdf (pmf), but with the
emphasis placed on the dependence on the parameter. When considering
likelihoods, we think of y1, . . . , yn as fixed and of L(θ; y1, . . . , yn) as the “like-
lihood” of it being the parameter θ that actually produced y1, . . . , yn. This
should not be confused with a probability - as a function of θ, the likelihood
L(θ; y1, . . . , yn) is not a pdf (or a pmf) of a probability distribution. In order to
be able to interpret likelihood as a probability, we need a completely different
paradigm, namely Bayesian statistics.
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In these notes, Y1, . . . , Yn are always independent, and, so the likelihood
can be written as a product of individual pdfs (by the factorization criterion).
In general, when Y1, . . . , Yn are dependent random variables, the notion of a
likelihood can still be used if the joint distribution (pmf or pdf) of Y1, . . . , Yn
is specified. Almost everything we cover below will apply to this case, as
well.

Example 11.1.2. Here are the likelihood functions for random samples
from some of our favorite distributions:

1. Bernoulli. Suppose that Y1, . . . , Yn and independent and Yi ∼ B(p).
The pmf of Yi can be written as

p(y) = P[Yi = y] =

{
p, y = 1
(1− p), y = 0

}
= py(1− p)1−y for y = 0, 1.

While it may look strange at first, the right-most expression py(1−
p)1−y happens to be very useful. For example, it allows us to write
the full likelihood in a very compact form

L(p; y1, . . . , yn) = py1(1− p)1−y1 × · · · × pyn(1− p)1−yn

= p∑i yi × (1− p)n−∑i yi .

2. Normal. For a random sample Y1, . . . , Yn from a normal N(µ, σ)-
distribution, we have

f (y) = 1
σ
√

2π
e−

(y−µ)2

2σ2 ,

and, so,

L(µ, σ; y1, . . . , yn) =
1

(2πσ2)n/2

n

∏
i=1

e−
(yi−µ)2

2σ2 = 1
(2πσ2)n/2 e−

∑n
i=1(yi−µ)2

2σ2 .

We can go a step further and try to isolate the parameters µ and σ
by expanding each square (yi − µ)2:

L(µ, σ, y1, . . . , yn) =
1

σ2(2π)n/2 e−
1

2σ2 ∑n
i=1 y2

i +
µ

σ2 ∑n
i=1 yi−n

µ2

2σ2

3. Uniform. Let Y1, . . . , Yn be a random sample from a uniform dis-
tribution U(0, θ), with an unknown θ > 0. The pdf of a single Yi
is

f (y) = 1
θ 1{0≤y≤θ},
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and, so

L(θ; y1, . . . , yn) =
1
θn 1{0≤y1≤θ} × · · · × 1{0≤yn≤θ}

= 1
θn 1{0≤y1,...,yn≤θ}.

The condition 0 ≤ y1, . . . , yn ≤ θ is equivalent to the two conditions
0 ≤ min(y1, . . . , yn) and max(y1, . . . , yn) ≤ θ. Therefore, we can
write

L(θ; y1, . . . , yn) =
1
θn 1{min(y1,...,yn)≥0}1{max(y1,...,yn)≤θ}.

11.2 Maximum-likelihood estimation

We mentioned that the word “likelihood” in the likelihood function refers to
the parameter, but that we cannot think of it as probability without changing
our entire worldview. What we can do is compare likelihoods for different
values of the parameter and think of the parameters with the higher value of
the likelihood as “more likely” to have produced the observations y1, . . . , yn.

Example 11.2.1. Three buses (of unknown sizes, and not necessarily
the same) carrying football fans arrive at a game between the Green
team and the Orange team. Suppose that 90% of the people in the first
bus are fans of the Green team, and 10% fans of the Orange team. The
composition of the second bus is almost exactly opposite: 15% Green
team fans, and 85% Orange team fans. The third bus carries the same
number of Green-team and Orange-team fans. Once the buses arrive
at the game, the two populations mix (say as they enter the stadium)
and a person is randomly selected from the crowd. It turns out she is
a fan of the Green team. What is your best guess of the bus she came
to the game in?

The situation can be modeled as follows; the (unknown) parameter
θ corresponding to the bus our fan came from - can take only three
values 1, 2 or 3. The observation Y can take only two values G (for the
Green team fans) and O (for the Orange team fans). The likelihood
function L(θ, y) is given by

L(θ; G) =


0.9, θ = 1
0.15, θ = 2
0.5, θ = 3

and L(θ; O) =


0.1, θ = 1
0.85, θ = 2
0.5, θ = 3

.

Since the randomly picked person was a fan of the Green team, we
focus on L(θ; G). The three values it can take, namely 0.9, and 0.15
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and 0.5 cannot be interpreted as probabilities, as they do not add up
to 1. We can still say that, in this case, θ = 1 is much more likely than
θ = 2, and we should probably guess that our fan came in the first bus
(the one that carried mostly the Green-team fans).

The thinking we used to formulate our guess in the above example was
simple: pick the value of the parameter which yields the highest likelihood,
given the observed data. If we follow this procedure systematically, we arrive
at one of the most important classes of estimators:

Definition 11.2.2. An estimator θ̂ = θ̂(y1, . . . , yn) is called the
maximum-likelihood estimator (MLE) if it has the property that for
any other estimator θ̂′ = θ̂′(y1, . . . , yn) we have

L(θ̂; y1, . . . , yn) ≥ L(θ̂′; y1, . . . , yn), for all y1, . . . , yn.

Maximum-likelihood are often easy to find whenever explicit expressions
for the likelihood functions are available. Unlike in Example 11.2.1 above,
the unknown parameters often vary continuously and we can use calculus
to find the values that maximize the likelihood. A very useful trick is to
maximize the log-likelihood log L(θ; y1, . . . , yn) instead of the likelihood L.
We get the same maximizers (as x 7→ log(x) is an increasing function), but
the expressions involved are often much simpler.

Example 11.2.3.

1. Normal (with a known variance). Let Y1, . . . , Yn be a random sam-
ple from a normal model with an unknown mean µ and the known
variance σ = 1. Thanks to Example 11.1.2 above, we have the fol-
lowing expression for the likelihood function

L(µ; y1, . . . , yn) =
1

(2π)n/2 e−
1
2 ∑n

i=1(yi−µ)2
.

To find the MLE µ̂ for µ, we need to find the value of µ (depending
on y1, . . . , yn) which maximizes L(µ; y1, . . . , yn). We could use the
standard technique and differentiate L(µ; y1, . . . , yn) in µ, set the
obtained value to 0 and solve for µ. The log-likelihood

log L(µ; y1, . . . , yn) = − n
2 log(2π)− 1

2

n

∑
i=1

(yi − µ)2
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is much easier to differentiate:

∂

∂µ
log L(µ; y1, . . . , yn) = − 1

2

n

∑
i=1

∂

∂µ
(yi − µ)2

= − 1
2

n

∑
i=1

2(yi − µ) = nµ−
n

∑
i=1

yi.

We set the obtained expression to 0 and solve for µ, obtaining

µ̂ = 1
n

n

∑
i=1

Yi.

It can be show that this µ̂ is indeed the maximum of L(µ; y1, . . . , yn)
(and not a minimum or an inflection point). It should not be too
surprising that we obtained the sample mean - it has already been
shown to be the best estimator for µ is the mean-squared-error
sense.

2. Exponential. The likelihood function for a random sample from
the exponential distribution with parameter τ is given by

L(τ; y1, . . . , yn) =
1

τn e−
1
τ ∑n

i=1 yi for y1, . . . , yn > 0.

As above, the log-likelihood is going to be easier to differentiate:

∂

∂τ
log L(τ; y1, . . . , yn) =

∂

∂τ

(
− n log(τ)− 1

τ ∑i yi

)
= −n/τ + τ−2 ∑i yi.

Setting this derivative to 0, we obtain the equation 0 = −n/τ +
τ−2 ∑i yi, with the solution

τ̂ =
∑i yi

n
= ȳ.

3. Uniform. We have derived in Example 11.1.2 above that the like-
lihood function for a random sample from a uniform U(0, θ)-
distribution is given by

L(θ; y1, . . . , yn) =
1
θn 1{max(y1,...,yn)≤θ},

when y1, . . . , yn ≥ 0 (which we can safely assume). As a function
of θ it looks like this:
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m
θ

0.02

0.04

0.06

Figure 1. The likelihood function for a sample from U(0, θ), as a function
of θ where m = max(y1, . . . , yn).

It is clear from the picture above that L attains its maximal value for
θ = max(y1, . . . , yn), but this fact cannot be obtained by differenti-
ation. Indeed, as a function of θ the likelihood is not differentiable
(or even continuous). Nevertheless, the MLE is well-defined and
equals

θ̂ = max(Y1, . . . , Yn).

11.3 Sufficient statistics

Consider three pollsters each of whom collects candidate preference data
from a sample of n = 1000 voters (as always, the candidates are A and B, and
each voter prefers one to the other). The first pollster reports her findings as
follows:

Voter 1: A, Voter 2: B, Voter 3: B, . . . , Voter 1000: A.

The second pollster decides that it is not important which particular voters
prefer A and which prefer B. For him, it is enough to report the data in the
following format:

Number of voters who prefer A to B: 550.

The third pollster argues that that is an overkill, too. She simply reports

The majority prefers: A.

The first pollster reports every detail of his data set, while the other two
summarize it to different degrees. Intuitively, however, we feel that there is
no real difference between what the first and the second pollster reported, but
that the third pollster left out some important information. Indeed, whether
the number of votes for A is 501 or 1000, and the report of the third pollster
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look exactly the same. In the former case, we would not be wrong to say that
the race is in “dead heat”, while, in the later, we could be practically sure
that A would win.

The notion of an estimator we introduced some time ago will come in
handy to give a mathematical explanation of what is going on here. Remem-
ber that an estimator is any function of the data Y1, . . . , Yn. In the present
context where there is no specific parameter singled out, we also use the
word statistic as a synonym. Therefore, if Y1, . . . , Yn denote the voters pref-
erences encoded by A 7→ 1 and B 7→ 0, the quantities reported by the three
pollsters are

1. T1 = (Y1, . . . , Yn),

2. T2 = Y1 + · · ·+ Yn, and

3. T3 = 1
{Y1+···+Yn>

1
2 n}

.

It is clear that T2 is a function of T1, i.e., that if we know T1, we can easily
compute T2. Similarly, T3 is a function of T2. It does not work the other way
around. If someone tells us the value of T2, i.e., the number of voters in the
sample who prefer A, there is no way for us to work out the exact preference
of the first sampled voter, the second sampled voter, etc. Similarly, if all we
know is that the majority of voters prefer A, we cannot tell what that majority
actually is.

There is, however, a big difference between our inability to recover T1
from T2 and our inability to recover T2 from T3. In the first case, the missing
information is irrelevant for the parameter of interest (i.e., p, the propor-
tion of A voters in the entire population). Indeed, once the proportion T2 is
known, any arrangement of 1000 voters in a sequence (while making sure
that the total number of A voters is exactly T2) is equally likely no matter
what the value of p is. In fact, for all we know, the first pollster also recorded
only the number of A voters and deleted all the data about the preferences
of particular voters. He might then have been told by his boss to report ev-
ery detail of his sample, and, fearing for his job, cooked up a fictitious data
set by randomly selecting 5800 different numbers between 1 and 10000 and
claiming that the voters with those numbers prefer A, while all other voters
preferred B. If he in fact did that, there would be no way of proving that he
cheated, even if the true value of p were revealed.

In the second case, the information contained in T3 is not sufficient to fake
the value of T2, let alone the value of T1. If the third pollster found herself
in the same situation as the second pollster above, she would not be able to
come up with a plausible value of T2. Indeed, the number of A voters could
have been anywhere between 501 and 10000, and the knowledge of the true
value of p would be very helpful to make a good guess.

If we translate the above discussion into mathematics, the two scenarios
differ in one significant way:
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1. the conditional distribution of T1 = (Y1, . . . , Yn), given T2 = Y1 + · · ·+ Yn
does not depend on p, while

2. the conditional distribution of T1 = (Y1, . . . , Yn) given T3 = 1
{Y1+···+Yn>

1
2 n}

does.

Let us recall the mathematical definition of the conditional probability and
conditional distributions. The basic definition, known from a basic probabil-
ity class is the following:

P[A|B] = P[A ∩ B]/P[B] when P[B] > 0.

We usually interpret P[A|B] as the probability that (the event) A will happen,
if we already know that B happened. More generally, if Y and T are discrete
random variables, we talk about the conditional distribution of a random
variable Y, given T = t, as the collection of probabilities P[Y = y|T = t], as
y “runs” through the support of Y, i.e., through the set of all possible values
of Y.

In order to define the notion of sufficiency, we will need a similar concept,
but with a single random variable Y replaced by an entire random vector
(Y1, . . . , Yn). Starting with the discrete case, we remember that the pmf of
discrete random vector (Y1, . . . , Yn, T) is the function of y1, . . . , yn and t, given
by

pY1,...,Yn ,T(y1, . . . , yn, t) = P[Y1 = y1, Y2 = y2, . . . , Yn = yn, T = t].

Definition 11.3.1. Let Y1, . . . , Yn, T be a discrete random vector with
the pmf pY1,...,Yn ,T . When P[T = t] > 0, we define the conditional pmf
of Y1, . . . , Y2 given T = t by

pY1,...,Yn |T(y1, . . . , yn|t) := P[Y1 = y1, Y2 = y2, . . . , Yn = yn|T = t]

Using the definition of the conditional probability, we see that

pY1,...,Yn |T(y1, . . . , yn|t) := P[Y1=y1,Y2=y2,...,Yn=yn ,T=t]
P[T=t] =

pY1,...,Yn ,T(y1,...,yn ,t)
pT(t)

To give a definition for the continuous case, we replace all pmfs by pdfs:

Definition 11.3.2. Let Y1, . . . , Yn, T be a random vector with a contin-
uous distribution and the joint pdf fY1,...,Yn ,T(y1, . . . , yn, t). The condi-
tional pdf of Y1, . . . , Yn given T = t, with fT(t) > 0 is given by

fY1,...,Yn |T(y1, . . . , yn|r) =
fY1,...,Yn ,T(y1, . . . , yn, t)

fT(t)
,
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where fT is the marginal pdf of T.

We can now give a mathematical definition of the notion of a sufficient
statistic:

Definition 11.3.3. A statistic (estimator) T in the random sample
Y1, . . . , Yn is said to be sufficient for the unknown parameter θ if the
conditional distribution of (Y1, . . . , Yn), given T = t, does not depend
of θ (for all t for which it is defined).

In words, T is sufficient if the distribution of the “extra randomness” in
the sample (Y1, . . . , Yn), in addition to that already contained in T, does not
depend on the parameter. This is why the second pollster could cook up the
data in a convincing way and the third one could not.

Example 11.3.4. Let us analyze the statistics T2 and T3 introduced
above in the light of Definition 11.3.3. Remember that n = 1000,
T2 = Y1 + · · ·+Y1000 is the total number of votes of for A, and T3 is the
indicator of the event in which A wins, i.e., that Y1 + · · ·+Y1000 > 500.

- T2 is sufficient for p. We start from the definition of the conditional
pdf of (Y1, . . . , Yn), given T2 = t:

pY1,...,Yn |T(y1, . . . , yn|t) = P[Y1 = y1, . . . , Yn = yn, T2 = t]/P[T2 = t]

To make progress, let us differentiate between two cases, depending
on the value of t:

1. y1 + · · ·+ yn 6= t. In this case P[Y1 = y1, . . . , Yn = yn, T = t] = 0
since it is impossible to have all these equalities hold at the same time.

2. y1 + · · · + yn = t. In this case we have T = t, as soon as Y1 =
y1, . . . , Yn = yn, so that

P[Y1 = y1, . . . , Yn = yn, T = t] = P[Y1 = y1, . . . , yn = y1]

= p∑i yi (1− p)n−∑i yi

= pt(1− p)n−t.

The random variable T2 is binomially distributed with parameters n
and p, and, so, for t = 0, 1, . . . , n, we have

P[T2 = t] =
(

n
t

)
pt(1− p)n−t.

Putting everything together, we get

P[Y1 = y1, . . . , Yn = yn|T = t] =

{
0, ∑i yi 6= t
(n

t)
−1, ∑i yi = t.
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Since expression does not feature p anywhere, we conclude that T2 is
a sufficient statistic.

- T3 is not sufficient for p. The computation here parallels that from
above, but we will not be able to get everything in closed form. It still
helps to differentiate between two cases, depending on the relationship
between (y1, . . . , yn) and t ∈ {0, 1}. Since the cases t = 0 and t = 1 are
very similar, we assume from now on that t = 1.

1. y1 + · · ·+ yn ≤ n/2. Like above, this is an impossible case and

P[Y1 = y1, . . . , Yn = yn|T3 = 1] = 0.

2. y1 + · · ·+ yn > n/2. In this case, just like above, we have

P[Y1 = y1, . . . , Yn = yn, T3 = 1] = P[Y1 = y1, . . . , yn = y1]

= p∑i yi (1− p)n−∑i yi

The random variable T3 has a Bernoulli distribution whose parameter
is

P[T3 = 1] = P[Y1 + · · ·+ Yn > n/2] = ∑
k=501

(
1000

k

)
pk(1− p)100−k.

Putting everything together, we get

P[Y1 = y1, . . . , Yn = yn|T = t] =

=

0, 1{∑i yi>n/2} 6= t
p∑i yi (1−p)n−∑i yi

∑1000
k=501 (

1000
k )pk(1−p)100−k , 1{∑i yi>n/2} = t

This expression cannot be simplified any further, but we can graph it
as a function of p (we pick ∑ yi = 600):

0.5 0.6 0.7 0.8
p

1.× 10-293

2.× 10-293

3.× 10-293

4.× 10-293

5.× 10-293

Figure 2. The conditional probability P[Y1 = y1, . . . , Yn = yn|T3 = 1] when
∑i yi = 600 as a function of the parameter p.
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The obtained graph shows a clear dependence on p (it is not a hori-
zontal line), so T3 is not a sufficient statistic for p.

The computations in the example above are tedious and, in the case of
T3, require numerical computation (graphing) to reach a conclusion. Luckily,
there is a simple criterion for sufficiency - called the Fisher-Neyman criterion
- which is much easier to apply.

Theorem 11.3.5 (The Fisher-Neyman factorization criterion). Let
Y1, . . . , Yn be a random sample with the likelihood function L(θ; y1, . . . , yn).
The statistic T = T(Y1, . . . , Yn) is sufficient for θ if and only if L admits the
following factorization

L(θ; y1, . . . , yn) = g(θ, T(y1, . . . , yn))× h(y1, . . . , yn), (11.3.1)

where the function h does not depend on θ.

We omit the proof, but note that it is not very complicated - one simply
needs to follow the definitions and use properties of conditional probabilities.
Here are some examples, though:

Example 11.3.6.

1. Bernoulli. Example 11.1.2 gave us the following form for the like-
lihood in this case:

L(p; y1, . . . , yn) = p∑ yi (1− p)n−∑ yi .

The Fisher-Neyman criterion is easy to apply. We simply take

g(p, T) = pT(1− p)n−T and h(y1, . . . , yn) = 1,

so that
L(p; y1, . . . , yn) = g(p, ∑ yi)h(y1, . . . , yn).

In other words, the likelihood, in the form above, is already factor-
ized as it only depends on y1, . . . , yn through their sum ∑ yi.

We note that Ȳ is also a sufficient statistic for p. Indeed, we can
write

g(p, ȳ) = pnȳ(1− p)n−nȳ.

In fact, if k is any bijection (and not only k(y) = y/n) and T is a
sufficient statistic, then so is k(T).
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2. Normal (with a known standard deviation). In the normal model
with σ known to be equal to 1, the likelihood is given by

L(µ; y1, . . . , yn) =
1

(2π)n/2 exp(− 1
2

n

∑
i=1

(yi − µ)2).

We expand the squares and obtain the following, equivalent, ex-
pression:

L(µ; y1, . . . , yn) =
1

(2π)n/2 exp
(
− 1

2
(
∑ y2

i − 2µ ∑ yi + nµ2))
= 1

(2π)n/2 exp(− 1
2 ∑ y2

i )︸ ︷︷ ︸
h(y1,...,yn)

× exp(−2µ ∑ yi + nµ2)︸ ︷︷ ︸
g(µ,∑ yi)

It follows that T(Y1, . . . , Yn) = ∑i Yi is a sufficient statistic for µ. As
above, another sufficient statistic is Ȳ.

3. Uniform. For a random sample from U(0, θ), we derived the fol-
lowing form for the likelihood function in Example 11.1.2:

L(θ; y1, . . . , yn) =
1
θn 1{0≤min(y1,...,yn)}1{max(y1,...,yn)≤θ},

for y1, . . . , yn ≥ 0. This is almost in the factorized from already.
Indeed, we can take T(y1, . . . , yn) = max(y1, . . . , yn) so that

L(θ, y1, . . . , yn) = g(θ, T(y1, . . . , yn))× h(y1, . . . , yn), (11.3.2)

for

g(θ, T) = θ−n1{T≤θ} and h(y1, . . . , yn) = 1{0≤min(y1,...,yn)}.

Thus, T = max(Y1, . . . , Yn) is a sufficient statistic for θ.

11.4 (*) Some important theorems in statistics

Sufficient statistics are not only important because they point exactly where,
in the data, the information about the value of the parameter lies. They can
also help us build good estimators, among other things. In fact, some of
the deepest theorems in theoretical statistics are about sufficient statistics. To
state some of them (two, to be precise), we need three related definitions. In
all of these definitions, we assume that Y1, . . . , Yn is a random sample from a
distribution with an unknown parameter θ.
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Definition 11.4.1. A statistic T is said to be minimal sufficient if any
other sufficient statistic S has the property that S = f (T) for some
(non-random) function f .

Intuitively, a minimal sufficient statistic captures all the information about
θ more efficiently than any other statistic. It does not have “unnecessary”
parts.

Our second definition is the one of completeness. We state is without
worrying too much about various mathematical subtleties (a reader with ap-
propriate background will find a few):

Definition 11.4.2. A statistic T is said to be complete if for any func-
tion g we have

Eθ [g(T)] = 0 for all θ if and only if g(T) = 0.

Finally, we need a notion somewhat opposite to that of a sufficient statis-
tic:

Definition 11.4.3. A statistic T is said to be ancillary if its distribution
does not depend on θ.

A statistic if ancillary if it contains no information about the parameter θ.
For example, a constant statistic T = 12 is always ancillary. Less trivially, if
Y1, . . . , Yn is a random sample from the normal N(µ, 1), then T = Y2 − Y1 is
an ancillary statistic. Indeed, its distribution is N(0,

√
2).

Now that we have all our terms defined, here is how to check that a given
statistic in complete and minimal sufficient. We start with a large class of
parametric families in which complete and sufficient statistics are easy to
find:

Definition 11.4.4. A family of distributions with the unknown param-
eter θ = (θ1, . . . , θm) is called an exponential family if its pdfs (or
pmfs) have the following form:

f θ(y) = exp
( m

∑
i=1

ηi(θ)Ti(y)− A(θ)
)

h(y) (11.4.1)

Proposition 11.4.5. If Y1, . . . , Yn is a random sample from the exponential
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family (11.4.1) with the following, additional, property:

if
m

∑
i=1

ηi(θ)(Ti(y)− Ti(y′)) = 0 for all θ, then T(y) = T(y′),

for all y, y′ with h(y) > 0 and h(y′) > 0. Then the statistic T(y1, . . . , yn) =
(T1(y1) + · · ·+ T1(yn), . . . , Tm(y1) + · · ·+ Tm(yn)) is complete and min-
imal sufficient.

It turns out that almost all distribution families in these notes form ex-
ponential families (try to write some of them in the form (11.4.1)). The only
exceptions are the Student’s t and the uniform.

We are ready now for our important theorems:

Theorem 11.4.6 (Basu). Let T be a complete and minimal sufficient statistic
and S an ancillary statistic. Then T and S are independent for any value of
the parameter θ.

This theorem, e.g., tells us that Ȳ and S2 are independent in the normal
model (how, exactly?).

Theorem 11.4.7 (Lehmann-Scheffé). Let S be an unbiased estimator for θ.
If it can be written as S = f (T) for some complete and sufficient statistic T,
then S is the unique UMVUE for θ.

The Lehmann-Scheffé theorem makes finding an UMVUE for θ an easy
task. It is enough to pick a complete and sufficient statistic T and then apply
a function f to is so that T = f (S) is unbiased. It will automatically be an
UMVUE.

11.5 Problems

Problem 11.5.1. Write down the likelihood functions, and then compute the
MLEs (maximum likelihood estimators) for the unknown parameter in the
following situations:

1. a random sample of size n from the Poisson distribution with parameter
θ, i.e., the distribution with the pmf

p(y) = e−θ θy

y! , y ∈N0.

2. a random sample of size n, where the pdf is given by

f (y) = 1
y
√

2π
e−

1
2 (ln y−θ)2

1{y>0}.
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(Note: This is known as the log-normal distribution.)

3. A random sample from the Γ(k, τ)-distribution (where k ∈ N is consid-
ered known, so that we are looking for the MLE of τ only). (Note: The pdf

of a Γ(k, τ) distribution for k ∈N is f (y) = yk−1e−y/τ

τk(k−1)!
1{y>0}.)

4. a random sample of size 1 (single observation) from a normal distribution
where both the mean and the standard deviation are unknown, but are
known to be equal to each other (with value θ), i.e. Y1 ∼ N(θ, θ). Is the
obtained estimator (the MLE) unbiased?

Problem 11.5.2. Let Y1, . . . , Yn be a random sample from the geometric g(p)
distribution with the unknown parameter p ∈ (0, 1). The MLE for p is

(a) 1
n+Ȳ (b) ∏i(

Yi
1+Yi

) (c) Ȳ
n+Ȳ (d) ∑i Yi

n+∑i Yi
(e) none of the above

Problem 11.5.3. Let Y1, . . . , Yn be a random sample from the normal distribu-
tion with a known mean µ = 0 and an unknown standard deviation σ. The
MLE (maximum likelihood estimator) for σ is

(a) 1
n ∑n

i=1 Yi (b)
√

1
n ∑n

i=1 Y2
i (c)

√
1

n−1 ∑n
i=1(Yi − Ȳ)2 (d)

√
1
n ∑n

i=1(Yi − Ȳ)2

(e) none of the above

Problem 11.5.4. Let Y1, . . . , Yn be a random sample from the Poisson P(λ)
distribution with an unknown parameter λ > 0. The MLE for λ is

(a) ∑n
i=1 Yi

(b) ∑n
i=1 Y2

i

(c) ∑n
i=1 log(Yi)

(d) 1
n ∑n

i=1 log(Yi)

(e) none of the above

Problem 11.5.5. In all of the below, let (Y1, . . . , Yn) is a random sample from
the stated distribution. Show that T is a sufficient statistic for the unknown
parameters:

1. E(τ), T = Ȳ

2. g(p), T = ∑i Yi.

3. Y1, . . . , Yn are a random sample from a distribution with pdf

fY(y) = c(β)y3(1− y)β1{0<y<1},

with an unknown parameter β > 0, where c(β) is the constant chosen so
that

∫ 1
0 fY(y) dy = 1 (no need to compute it), and T = ∑ log(1−Yi).

Last Updated: September 25, 2019



Lecture 11: Likelihood, MLE and sufficiency 16 of 17

Problem 11.5.6. Let Y1, . . . , Yn be a random sample from a distribution with
pdf

f (y) = 1
2 θ3y2e−θy1{y>0},

where θ > 0 is an unknown parameter. Which one of the following is not a
sufficient statistic for θ?

(a) Ȳ (b) 1/Ȳ (c) ∏n
i=1 Y2

i (d) ∏n
i=1 eYi (e) all of the above are sufficient

Problem 11.5.7. Let Y1, . . . , Yn be a random sample from the uniform distri-
bution U(0, θ) where θ > 0 is an unknown parameter. Then

(a) Ȳ is an MLE for θ

(b) Ȳ is a sufficient statistic for θ

(c) min(Y1, . . . , Yn) is an MLE for θ

(d) max(Y1, . . . , Yn) is a sufficient statistic for θ

(e) none of the above

Problem 11.5.8. Let Y1, . . . , Yn be a random sample from a normal distribu-
tion with the known mean µ = 0 and an unknown standard deviation σ > 0.

1. Write down the likelihood function and find a sufficient statistic for σ.

2. What is the MLE σ̂ for σ?

3. Is σ̂2 (where σ̂ is as in 2.) an unbiased estimator for σ2?

Problem 11.5.9. We consider the normal model here, as in Problem 11.5.8
above, but now both µ and σ are unknown. This makes the parameter θ =
(µ, σ) two-dimensional.

1. Write down the likelihood function L(µ, σ; y1, . . . , yn), the log-likelihood
function and the equations for the MLE for (µ, σ). Solve them. (Note:
Since there are two parameters, the MLE θ̂ = (µ̂, σ̂) itself will be two-
dimensional, i.e., there are going to be two MLEs, one for µ and one for
σ. There are also going to be two equations, one obtained by differen-
tiating log L in µ and setting the result to 0 and the other, obtained by
differentiating in σ.)

2. With µ̂ and σ̂ as above, is µ̂ unbiased for µ? How about σ̂2? Is it unbiased
for σ̂2?

3. The notion of sufficiency in this case needs to be updated in a similar
way. We will need two sufficient statistics instead of the usual one to
completely summarize the information in the sample. Show that the pair
(Ȳ, S′2) is a (two-dimensional) sufficient statistic for (µ, σ). (Note: The
factorization criterion still applies. You simply need to factorize into a
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function g of µ, σ, ȳ = 1
n ∑ yi and s′2 = 1

n ∑n
i=1(yi − ȳ)2, and a function h

which does not depend on parameters.) (Hint: First show and then use
the following algebraic identity: 1

n ∑i y2
i = s′2 + ȳ2.)
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