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Lecture 6
Moment-generating functions

6.1 Definition and first properties

We use many different functions to describe probability distribution (pdfs,
pmfs, cdfs, quantile functions, survival functions, hazard functions, etc.)
Moment-generating functions are just another way of describing distribu-
tions, but they do require getting used as they lack the intuitive appeal of
pdfs or pmfs.

Definition 6.1.1. The moment-generating function (mgf) of the (dis-
tribution of the) random variable Y is the function mY of a real param-
eter t defined by

mY(t) = E[etY],

for all t ∈ R for which the expectation E[etY] is well defined.

It is hard to give a direct intuition behind this definition, or to explain at
why it is useful, at this point. It is related to the notions of Fourier transform
and generating functions. It will be only through examples in this and later
lectures that a deeper understanding will emerge.

The first order of business is to compute the mgf for some of the more im-
portant (named) random variables. In the case of a continuous distribution,
the main tool is the fundamental theorem which we use with the function
g(y) = exp(ty) - we think of t as fixed, so that

mY(t) = E[exp(tY)] = E[g(Y)] =
∫ ∞

−∞
g(y) fY(y) dy =

∫ ∞

−∞
ety fY(y) dy.

Example 6.1.2.

1. Uniform distribution. Let Y ∼ U(0, 1), so that fY(y) = 1{0≤y≤1}.
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Then

mY(t) =
∫ ∞

−∞
ety fY(y) dy =

∫ 1

0
ety dy = 1

t (e
t − 1).

2. Exponential distribution. Let us compute the mgf of the exponen-
tial distribution Y ∼ E(τ) with parameter τ > 0:

mY(t) =
∫ ∞

0
ety 1

τ e−y/τ dy = 1
τ

∫ ∞

0
e−y( 1

τ−t) dy = 1
τ

1
1
τ−t

= 1
1−τt .

3. Normal distribution. Let Y ∼ N(0, 1). As above,

mY(t) =
∫ ∞

−∞
ety 1√

2π
e−

1
2 y2

dy.

This integral looks hard to evaluate, but there is a simple trick. We
collect the exponential terms and complete the square:

etye−
1
2 y2

= e−
1
2 (y−t)2

e
1
2 t2

.

If we plug this into the expression above and pull out e
1
2 t2

which is
constant, as far as the variable of integration is concerned, we get

mY(t) = e
1
2 t2
∫ ∞

−∞

1√
2π

e−
1
2 (y−t)2

dy.

This does not look like a big improvement at first, but it is. The
expression inside the integral is the pdf of a normal distribution
with mean t and variance 1. Therefore, it must integrate to 1, as
does any pdf. It follows that

mY(t) = e
1
2 t2

.

As you can see from the first part of this example, the moment generating
function does not have to be defined for all t. Indeed, the mfg of the expo-
nential function is defined only for t < 1

τ . We will not worry too much for
about this, and simply treat mgfs as expressions in t, but this fact is good to
keep in mind when one goes deeper into the theory.

The fundamental formula for continuous distributions becomes a sum in
the discrete case. When Y is discrete with support SY and pmf pY, the mgf
can be computed as follows, where, as above, g(y) = exp(ty):

mY(t) = E[etY] = E[g(Y)] = ∑
y∈SY

exp(ty)pY(y).
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Here are some examples:

Example 6.1.3.

• Bernoulli distribution. For Y ∼ B(p), we have

mY(t) = et×0 pY(0) + et×1 pY(1) = q + pet,

where q = 1− p.

• Geometric distribution. If Y ∼ g(p), then P[Y = y] = qy p and
so

mY(t) =
∞

∑
y=0

ety pqy = p
∞

∑
y=0

(qet)y = p
1−qet ,

where the last equality uses the familiar expression for the sum
of a geometric series. We note that this only works for qet < 1,
so that, like the exponential distribution, the geometric distri-
bution comes with a mgf defined only for some values of t.

• Poisson distribution. Let Y have the Poisson distribution P(λ)
with parameter λ > 0, so that SY = {0, 1, 2, 3, . . . } and pY(y) =
e−λ λy

y! . Then

mY(t) = E[exp(tY)] = E[g(Y)] = ∑
y∈SY

g(y)pY(y)

=
∞

∑
y=0

exp(ty) exp(−λ) λy

y! = e−λ
∞

∑
y=0

(etλ)y

y!

The last sum on the right is nothing else by the Taylor formula
for the exponential function at x = etλ. Therefore,

mY(t) = eλ(et−1).

Here is how to compute the moment generating function of a linear trans-
formation of a random variable. The formula follows from the simple fact
that E[exp(t(aY + b))] = etbE[e(at)Y]:

Proposition 6.1.4. Suppose that the random variable Y has the mgf mY(t).
Then mgf of the random variable W = aY + b, where a and b are constants,
is given by

mW(t) = etbmY(at).
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Example 6.1.5.

1. Uniform distribution. Let W ∼ U(l, r). We can represent W as
W = aY+ b where Y ∼ U(0, 1), a = (r− l) and b = l. We computed
the mgf of Y in Example 6.1.2 above - mY(t) = 1

t (e
t− 1). Therefore,

by Proposition 6.1.4

mW(t) = etl 1
(r−l)t (e

(r−l)t − 1) = etr−eta

t(r−l) .

2. Normal distribution. If W ∼ N(µ, σ), then W has the same distri-
bution as µ + σZ, where Z ∼ N(0, 1). Using the expression from
Example 6.1.2 for the mgf of a unit normal distribution Z ∼ N(0, 1),
we have

mW(t) = eµte
1
2 σ2t2

= eµt+ 1
2 σ2t2

.

6.2 Sums of independent random variables

One of the most important properties of the moment-generating functions is
that they turn sums of independent random variables into products:

Proposition 6.2.1. Let Y1, Y2, . . . , Yn be independent random variables with
mgfs mY1(t), mY2(t), . . . , mYn(t). Then the mgf of their sum Y = Y1 +Y2 +
· · ·+ Yn is given by

mY(t) = mY1(t)×mY2(t)× · · · ×mYn(t).

This proposition is true for all random variables, but here is a sketch of
the argument in the continuous case. It is a consequence of the factoriza-
tion theorem (Theorem ??) and the fundamental formula (Theorem ??). For
simplicity, let us assume that n = 2:

mY1+Y2(t) = E[et(Y1+Y2)] = E[g(Y1, Y2)],

where g(y1, y2) = et(y1+y2). The factorization criterion says that fY1,Y2(y1, y2) =
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fY1(y1) fY2(y2), and, so

mY1+Y2(y) =
∫ ∞

−∞

∫ ∞

−∞
et(y1+y2) fY1,Y2(y1, y2) dy2 dy1

=
∫ ∞

−∞

∫ ∞

−∞
ety1 ety2 fY1(y1) fY2(y2) dy2 dy1

=
∫ ∞

−∞
ety1 fY1(y1)

( ∫ ∞

−∞
ety2 fY2(y2) dy2

)
dy1

=
∫ ∞

−∞
ety1 fY1(y1)mY2(t) dy2 = mY2(t)

∫ ∞

−∞
ety2 fY2(y2) dy2

= mY2(t)mY1(t).

Example 6.2.2. Binomial distribution. Let Y ∼ b(n, p). We know that
Y counts the number of successes in n independent Bernoulli trials, so
we can represent (in distribution) as Y = Y1 + · · ·+ Yn, where each Yi
is a B(p)-random variable. We know from Example 6.1.3 that the mgf
mYi (t) of each Yi is q + pet. Therefore

mY(t) = mY1(t)×mY2(t)× · · · ×mYn(t) = (q + pet)n.

We could have obtained the same formula without the factorization
criterion, but the calculation is trickier:

mY(t) =
n

∑
y=0

ety pY(y) =
n

∑
y=0

ety
(

n
y

)
pyqn−y =

n

∑
y=0

(
n
y

)
(pet)yqn−y

= (pet + q)n,

where the last inequality follows from the binomial formula

(a + b)n =
n

∑
y=0

(
n
y

)
aybn−y.

6.3 Why “moment-generating”?

The terminology “moment generating function” comes from the following
nice fact:

Proposition 6.3.1. Suppose that the moment-generating function mY(t) of
a random variable Y admits an expansion into a power series. Then the
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coefficients are related to the moments of Y in the following way:

mY(t) =
∞

∑
k=0

µk
k! tk, (6.3.1)

where µk = E[Yk] is the k-th moment of Y.

A fully rigorous argument of this proposition is beyond the scope of these
notes, but we can see why it works is we do the following formal computation
based on the Taylor expansion of the exponential function

ex =
∞

∑
k=0

xk

k! .

We plug in x = tY and then take the expectation to get

mY(t) = E[etY] = E[
∞

∑
k=0

(tY)k

k! ] =
∞

∑
k=0

tk 1
k! E[Yk] =

∞

∑
k=0

µk
k! tk.

Formula (6.3.1) suggests the following approach to the computation of mo-
ments of a random variable:

1. Compute the mgf mY(t).

2. Expand it in a power series in t, i.e., write

mY(t) =
∞

∑
k=0

aktk.

3. Set µk = k!ak.

Example 6.3.2.

1. Moments of the exponential distribution. We know from Exam-
ple 6.1.2 that the mgf mY(t) of the exponential E(τ)-distribution is

1
1−τt . It is not hard to expand this into a power series because 1

1−τt
is nothing by the sum of a geometric series

1
1−τt =

∞

∑
k=0

τktk.

It follows immediately that

µk = k!τk.
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2. Moments of the uniform distribution. The same example as above
tells us that the mgf of the uniform distribution U(l, r) is

mY(t) = etr−etl

t(r−l) .

We expand this into a series, buy expanding the numerator, first:

etr − etl =
∞

∑
k=0

1
k! (tr)

k −
∞

∑
k=0

1
k! (tl)

k =
∞

∑
k=0

rk−lk

k! tk.

Then we divide by the denominator t(r− l) to get

mY(t) =
∞

∑
k=0

rk−lk

k!(r−l) tk−1 = 1 + r2−l2

2!(r−l) t + r3−l3

3!(r−l) t2 + . . . .

It follows that
µk =

rk+1−lk+1

(k+1)(r−l) .

3. Normal distribution. Let Y be a unit normal random variable, i.e.,
Y ∼ N(0, 1). We have computed its mgf et2/2 above and we expand
it using the Taylor formula for the exponential function:

et2/2 =
∞

∑
k=0

1
k! (t

2/2)k =
∞

∑
k=0

1
2kk!

t2k.

The odd powers of t are all 0 so

µk = 0 if k is odd.

For a moment of an even order 2k, we get

µ2k =
(2k)!
2kk!

.

In all examples above we managed to expand the mfg into a power series
without using Taylor’s theorem, i.e., without derivatives. Sometimes, the eas-
iest approach is to differentiate (the notation in (6.3.2) means “take k deriva-
tives in t, and then set t = 0”):

Proposition 6.3.3. The k-th moment µk of a random variable with the
moment-generating function mY(t) is given by

µk =
dk

dtk mY(0)|t=0, (6.3.2)

as long as mY is defined for t in some neighborhood of 0.
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Example 6.3.4. Let Y be the Poisson random variable so that

mY(t) = eλ(et−1).

The first derivative m′Y(t) is given by eλ(et−1)λet and, so

µ1 = E[Y] = m′Y(t)|t=0 = eλ(e0−1)λe0 = λ.

We can differentiate again to obtain

m′′Y(t) = λ(1 + etλ)et+λ(et−1),

which yields µ2 = λ(1 + λ). One can continue and compute higher
moments

µ3 = λ(1 + 3λ + λ2), µ4 = λ(1 + 7λ + 6λ2 + λ3), etc.

There is no simple formula for the general term µk.

6.4 Recognizing the distribution

It is clear that different distributions come with different pdfs (pmf) and cdfs.
It is also true for mgfs, but it is far from obvious and the proof is way outside
the scope of these notes:

Theorem 6.4.1 (Uniqueness theorem). If two random variables Y1 and Y2
have the same moment generating functions, i.e., if

mY1(t) = mY2(t) for all t,

then the have the same distribution. In particular,

1. if Y1 is discrete, then so is Y2, and Y1 and Y2 have the same support and
the pmf, i.e.,

SY1 = SY2 and pY1(y) = pY2(y) for all y.

2. If Y1 is continuous, then so is Y2, and Y1 and Y2 have the same pdf, i.e.,

fY1(y) = fY2(y), for all y.

The way we use this result is straightforward:
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1. Find an expression for the mgf of the random variable Y whose distri-
bution you don’t know (most often, in this class, using a combination of
Propositions 6.1.4 and 6.2.1, but also see Problem 6.5.8).

2. Look it up in a table of mgfs to identify it.

Of course, for this to work you need to able to compute the mgf, and once
you do, it has to be of the form you can recognize. When it works, it works
very well, as the next example shows:

Example 6.4.2. Let Y1 and Y2 be independent normal variables with
means µ1 and µ2, and standard deviations σ1 and σ2. We have com-
puted mgf of normal random variables (with general parameters) in
Example 6.1.5:

mY1(t) = eµ1t+ 1
2 σ2

1 t2
and mY2(t) = eµ2t+ 1

2 σ2
2 t2

.

Since Y1 and Y2 are assumed to be independent, the mgf of their sum
is the product of the individual mgfs, i.e.,

mY1+Y2(t) = eµ1t+ 1
2 σ2

1 t2
× eµ2t+ 1

2 σ2
2 t2

= e(µ1+µ2)t+
1
2 (σ

2
1+σ2

2 )t
2
.

We recognize this as the mgf of a normal random variable, with mean

µ = µ1 + µ2 and the standard deviation σ =
√

σ2
1 + σ2

2 .

6.5 Problems

Problem 6.5.1. The distribution family of the random variable Y with mo-
ment generating function

mY(t) = 0.1 et + 0.2 e2t + 0.3 e3t + 0.4 e4t,

is

(a) binomial (b) geometric (c) Poisson (d) uniform (e) none of the
above

Problem 6.5.2. Identify the distributions with the following mgfs:

2
2−t .1. e2et−2,2. et(t−2),3. (3− 2et)−1

4.

1
9 +

4
9 et + 4

9 e2t.5. 1
t (1− e−t).6. 1

4 (e
4t + 3e−t)7.

If the distribution has a name, give the name and the parameters. If it
does not, give the pdf or the pmf (table).
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Problem 6.5.3. The standard deviation of the random variable Y whose mgf
is given by mY(t) = 1√

1−2t
is:

(a) 2 (b)
√

2 (c) 4
3 (d)

√
3

2 (e) none of the above

Problem 6.5.4. Compute the standard deviation of the random variable Y
whose mgf is given by mY(t) = 1

(2−et)3 .

Problem 6.5.5. Let Y1, . . . , Yn be independent random variables with distri-
bution N(µ, σ). Then the mgf of 1

n (Y1 + · · ·+ Yn) is

(a) e
µ
n t+ 1

2 σ2t2

(b) eµt+ 1
2 nσ2t2

(c) eµt+ 1
2n σ2t2

(d) enµt+ 1
2 σ2t2

(e) none of the above

Problem 6.5.6. What is the distribution of the sum S = Y1 + Y2 + · · ·+ Yk, if
Y1, . . . , Yk are independent and, for i = 1, . . . , k,

1. Yi ∼ B(p), with p ∈ (0, 1),

2. Yi ∼ b(ni, p), with n1, . . . , nk ∈ N, p ∈ (0, 1),

3. Yi ∼ P(λi), with λ1, . . . , λk > 0,

Problem 6.5.7 (The mgf of the χ2 distribution). We learned in class that the
distribution of the random variable Y = Z2, where Z is a standard normal, is
called the χ2-distribution. We also computed its pdf using the cdf method.
The goal of this exercise is to compute its mgf.

1. Compute
∫ ∞
−∞

1√
2π

e−βx2
dx, where β > 0 is a constant. (Hint: Use the fact

that
∫ ∞
−∞

1
σ
√

2π
e−

1
2 (y−µ)2/σ2

dy = 1, as the expression inside the integral is
the pdf of N(µ, σ). Plug in µ = 0 and an appropriate value of σ.)

2. Compute the mgf of a χ2-distributed random variable by computing E[etZ2
],

where Z is a standard normal, i.e., Z ∼ N(0, 1). (Hint: Compute this
expectation by integrating the function g(z) = etz2

against the standard
normal density, and not the function g(y) = ety against the density of Y,
which we derived in class. It is easier this way.)
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3. Let Z1 and Z2 be two independent standard normal random variables.
Compute the mgf of W = Z2

1 + Z2
2 , and then look through the notes for

a (named) distribution which has the same mgf. What is it? What are its
parameter(s)? (Note: If Z1 and Z2 are independent, then so are Z2

1 and
Z2

2 .)

Problem 6.5.8. (*) Let Y1, Y2, . . . , Yn be independent random variables each
with the Bernoulli B(p) distribution, for some p ∈ (0, 1).

1. Show that the mgf mWn(t) of the random variable

Wn = Y1+Y2+···+Yn−np√
np(1−p)

,

can be written in the form

mWn(t) = (pe
t√
n α

+ (1− p)e
− t√

n α−1

)n, (6.5.1)

for some α and find its value.

2. Write down the Taylor approximations in t around 0 for the functions
exp( t√

n α) and exp(− t√
n α−1), up to and including the term involving t2.

Then, substitute those approximations in (6.5.1) above. What to you get?
When n is large, t√

n α and t√
n α−1 are close to 0 and it can be shown that

the expression you got is the limit of mWn(t), as n→ ∞.

3. What distribution is that limit the mgf of?

(Note: Convergence of mgfs corresponds to a very important mode of conver-
gence, called the weak convergence. We will not talk about it in this class, but it
is exactly the kind of convergence that appears in the central limit theorem,
which is, in turn, behind the effectiveness of the normal approximation to
binomial random variables. In fact, what you just did is a fundamental part
of the proof of the central limit theorem.)
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