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Instructor: Gordan Žitković

Lecture 7

The normal, χ2(n) and the Gamma distributions

7.1 The normal distribution

Definition, the pdf and the mgf of the normal distribution. First, we col-
lect the useful facts about the normal distribution. Most of them have al-
ready been mentioned in the previous lectures, but some will be new. As
you remember, the normal distribution (family) is a continuous probability
distribution, parametrized by two parameters, µ ∈ R and σ > 0, with the pdf

fY(y) = 1
σ
√

2π
e−

(y−µ)2

2σ2 .

The cdf does not have a closed form, but the mgf does:

mY(t) = eµt+ 1
2 σ2t2

.

The Central Limit Theorem and the approximation of the binomial distri-
bution. One of the reasons for the ubiquity of the normal distribution is that
it serves as an approximation to the binomial distribution. More generally, it
serves as an approximation to a (properly normalized) sum of independent
and identically distributed random variables - this result is known as the
Central Limit Theorem:

Theorem 7.1.1 (Central Limit Theorem). Let Y1, Y2, . . . , Yn, . . . be a se-
quence of independent random variables with the same distribution. If
µ = E[Yi] and σ2 = Var[Yi] < ∞, then the distribution of the normalized
sum

Sn−E[Sn ]
sd[Sn ]

where Sn = Y1 + · · ·+ Yn

converges1 towards the unit normal N(0, 1).
1this kind of convergence is called the weak convergence or convergence in distri-

bution and is very important in probability theory. We will not talk about it in this class;
the reader should simply think of (Sn −E[Sn])/ sd[Sn] for n large as being close to the
normal N(0, 1) distribution as far as any practical computation involving probabilities
or expectations is concerned.
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The Central Limit Theorem is used in many ways. One of the most impor-
tant for the foundations of statistics is the following. Let Y be a binomially
distributed random variable with parameters n and p, i.e., Y ∼ b(n, p). We
can represent the distribution of Y as a sum of n independent B(p) random
variables - let us call them Y1, Y2, . . . . Let us apply the Central Limit Theo-
rem to that sequence. Since Y = Sn, it allows us to conclude that the random
variable

Sn−E[Sn ]
sd[Sn ]

which, in this case, equals Y−np√
np(1−p)

,

is “close” to the normal N(0, 1) distribution. This is the well-known normal
approximation to the binomial distribution. The word “close” does not
mean anything, really, and one needs a more precise measure of the quality of
this approximation. There are many mathematical theorems written about it,
and the ultimate answer will depend on the level of precision your calculation
requires, but the following rule seems to work well in most applications:

A rule of thumb: the normal approximation to the binomial b(n, p)
can be used if

np > 10 and n(1− p) > 10.

What can one do when np < 10 or n(1 − p) < 10? In some cases, one
should use the Poisson approximation (coming from a different version of
the Central Limit Theorem). Here is another practical prescription (due to
Jay Devore):

Another rule of thumb: the binomial b(n, p) is well approximated by
the Poisson distribution with parameter λ = np if

n > 50 and np < 5.

This class will focus only on the cases where the normal approximation is ap-
propriate. That is not to say that the Poisson approximation is not important
in statistics, too, but we will not use it in these notes.

Example 7.1.2. A basketball player hits a free throw with probability
p = 3/4, and the outcomes of different throws can be considered in-
dependent of each other. What is the probability that she will hit at
least 160 out of 200 free throws?

The number of hits Y is binomially distributed with parameters n =
432 and p = 3/4. The probability we are interested in is P[Y ≥ 333]
and, using the pmf of a binomial distribution, it can be represented as

P[Y ≥ 333] =
432

∑
k=333

P[Y = k] =
432

∑
k=333

(
432

k

) ( 3
4
)k
(

1
4

)432−k
. (7.1.1)

This is as far as it gets, though. This sum is difficult to evaluate - it
has 41 terms, and each of them involves a binomial coefficient and
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large powers of small numbers, such as (1/4)432. Luckily, np = 324
and n(1− p) = 108, so our rule of thumb allows us to use the normal
approximation:

the distribution of Y−E[Y]
sd[Y] is approximately N(0, 1).

Since E[Y] = 432× 3/4 = 324 and sd[Y] = 9, the probability P[Y ≥
333] is the same as the probability

P[Y−324
9 ≥ 333−324

9 ] = P[Y−324
9 ≥ 1].

Since Y−324
9 is well approximation by a normal N(0, 1)-distribution,

this probability is well approximated by the probability

P[Z ≥ 1],

where Z ∼ N(0, 1). At this point, one needs to use software (or dis-
tribution tables) to find out that P[Z ≥ 1] ≈ 0.1586. If we compute
the sum from (7.1.1) exactly, we get 0.1727. This is not bad, but it is
not great either. It can be improved significantly using the so-called
continuity correction1, but we will not need it in this class.

1With the continuity correction, we would get 0.1724 instead of 0.1586 in this case.
That would decrease the relative error from about 8% to 0.1% !

Just to get a flavor of how a Poisson approximation might work, here is
another example

Example 7.1.3. A new addition of Kafka’s "Metamorphosis" has 72

pages. The printing press often malfunctions and introduces typos.
The probability that a word will contain a typo is p = 10−4, and we
can assume there are 250 words per page. A printed book gets thrown
away if it contains more than 5 typos. What is the probability that a
book will get thrown away?

We are talking about a random variable Y with the binomial distri-
bution with parameters n = 72× 250 = 18, 000 words and p = 10−4.
The book will get thrown away if Y > 5. Since np = 1.8, the normal
approximation might not be the best idea. On the other hand, n > 50
and np < 5, so we can use the Poisson approximation. More precisely,
the probability P[Y > 20] is well approximated by the probability
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P[W > 20], where W ∼ P(λ) for λ = np = 1.8. Then,

P[W > 5] = 1− (P[W = 0] + P[W = 1] + P[W = 2] + P[W = 3]+
+ P[W = 4] + P[W = 5])

= 1− e−1.8
(

1 + 1.8
1 + (1.8)2

2! + (1.8)3

3! + (1.8)4

4! + (1.8)5

5!

)
≈ 1− 0.1653× 5.9869 = 0.01037.

Therefore, about 1% of the books will get thrown away.

Sums of independent normals. Let Z1, Z2, . . . , Zn be independent and nor-
mally distributed, but with possibly different parameters, µ1, . . . , µn, and
σ1, . . . , σn. The sum

Z = Z1 + Z2 + · · ·+ Zn

appears in statistics very often. In the section on the moment-generating
functions we stated that the mgf of the sum of independent random variables
is the product of individual mgfs. The conclusion of Example ?? of that
section - which used the fact that mZi (t) = exp(µit + 1

2 σ2
i t2) - was that

mZ(t) = exp
(
(µ1 + · · ·+ µn)t + 1

2 (σ
2
1 + · · ·+ σ2

n)t
2
)

,

which can be readily recognized as the mgf of the normal distribution with

mean µ = µ1 + · · ·+ µn and σ =
√

σ2
1 + · · ·+ σ2

n . This fact is so important
that we restate it as a proposition:

Proposition 7.1.4. Let Z1, Z2, . . . , Zn be independent random variables,
with Zi ∼ N(µi, σi). Then their sum Z = Z1 + · · ·+ Zn is also normally

distributed, with parameters µ = µ1 + · · ·+ µn and σ =
√

σ2
1 + · · ·+ σ2

n .

Proposition 7.1.4 above did not need to tell us what µ and σ are. Simply
knowing that Z is normally distributed, we can recover the parameters µ and
σ as its mean E[Z] and its standard deviation sd[Z] so that

µ = E[Z] = E[Z1 + · · ·+ Zn] = E[Z1] + · · ·+ E[Zn] = µ1 + µ2 + · · ·+ µn,

and
σ2 = Var[Z] = Var[Z1] + · · ·+ Var[Zn] = σ2

1 + · · ·+ σ2
n .

The beautiful conclusion of the Central Limit Theorem is that the sum Y =
Y1 + · · ·+ Yn is still approximately normal, even if Y1, Y2, . . . Yn are not nor-
mally distributed themselves. They can have (practically) any distribution they
want, as long as they are independent, and their means µi = E[Yi] and stan-
dard deviations σi = sd[Yi] are finite for each i. This is one of the main
reasons why statistics works so well!
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7.2 The χ2(n)-distribution

When we talked about functions of random variables in Lecture 4 before, one
of the examples involved computing the pdf of the square W = Y2, where
Y ∼ N(0, 1). Even though the h-method could not have been used, the cdf-
method made it possible to derive the following pdf for W:

fW(w) = 1√
2πw

e−w/21{w>0}. (7.2.1)

We also remarked that the distribution with that particular pdf is called the
χ2-distribution. Problem 7.6.8 of Lecture 6 lead us through the computation
of its mgf:

mW(t) = (1− 2t)−1/2.

It went on to identify the distribution of the sum Z2
1 + Z2

2 of squares of two
independent unit normals. We can continue adding more terms:

Definition 7.2.1. The χ2-distribution with n degrees of freedom is the
distribution of a sum

W = Z2
1 + Z2

2 + · · ·+ Z2
n

of squares of n independent, unit normal (N(0, 1)) random variables
Zi. We denote this by W ∼ χ2(n).

We know already that χ2(1) is the χ2-distribution with pdf given by
(7.2.1). It is shown in Problem 7.6.8 that χ2(2) is nothing but the exponential
E(2) distribution. Unfortunately, no such nice identification can be made for
larger n (at least not in the family of the named distributions we talked about
in this class). Since the mgf of χ2(1) is (1− 2t)−1/2, it follows immediately
from the definition that the mgf of a χ2(n) distribution is

mW(t) = (1− 2t)−1/2 × (1− 2t)−1/2 × · · · × (1− 2t)−1/2 = (1− 2t)−n/2.

It is interesting to note that we could derive the mgf of W without ever
mentioning its pdf, cdf, or any other characteristic. In fact, we do not at this
point even know whether it is discrete, continuous or neither. In turns out
(but we do not prove it here) that W is a continuous random variable and
that its pdf is given by a (relatively) simple formula, but we will not need it
in these notes (see Problem 7.6.11 below if you are dying to know what the
pdf is).

The knowledge of the mgf gives us plenty of information about W. If we
differentiate its mgf several times and plug in t = 0 we obtain

µ′k = E[Wk] = n(n + 2)(n + 4) . . . (n + 2k).

In particular,
E[W] = n and Var[W] = 2n.
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The terminology degrees of freedom comes from statistics (linear regression). It
refers, loosely, to the number of independent normals used to build W, and
we will have more to say about it in a few lectures.

7.3 The gamma distribution

The χ2-distribution comes with a single parameter n - the number of degrees
of freedom, but does not allow for scaling: if Y ∼ χ2(n), then 5Y is not
χ2(m)-distributed for any m. In order to remedy this situation we can add
another parameter to the χ2-family, and, while we are at it, we cal also allow
for the number of degrees of freedom n to take any positive (possibly non-
integer) value. The easiest way to accomplish this is to use the fact that
maY(t) = mY(at) and use it with the mgf of the χ2-distribution:

Definition 7.3.1. A random variable Y is said to have the gamma dis-
tribution with parameters k > 0 and τ > 0 - denoted by Γ(k, τ) - if its
moment-generating function is given by

mY(t) = (1− τt)−k.

The parameter k is usually called the shape parameter and τ is the scale
parameter. Like the χ2-distributions, the gamma distribution takes only non-
negative values. By a simple differentiation of its mgf, we obtain the follow-
ing values for the mean and the variance of the Γ(k, τ)-distribution:

E[Y] = kτ and Var[Y] = kτ2.

As we already mentioned, the gamma family contains all exponential and
χ2(n)-distributions:

Exponential distribution E(τ) Γ(1, τ)
χ2 distribution χ2(n) Γ( n

2 , 2)

It is also clear from the form of the mgf of the gamma distribution is that if
Y1 ∼ Γ(k1, τ) and Y2 ∼ Γ(k2, τ) (note, τ must be the same!) and Y1 and Y2
are independent then

Y1 + Y2 ∼ Γ(k1 + k2, τ). (7.3.1)

Example 7.3.2. The time between two successive cars passing a given
point on a highway can be modeled by an exponential distribution
with mean τ = 2 (seconds). Assuming that the times between cars are
independent, what is the distribution of the time it takes for exactly
100 cars to pass?
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Let Y1 be the time between the start of the experiment and the moment
car 1 passes the point, Y2 between the cars 1 and 2, etc. We are looking
for the distribution of Y = Y1 + · · ·+ Y100. Each Y1 is an E(2) random
variable, which is also a gamma distribution with parameters k = 1
and τ = 2. Thanks to (7.3.1), the sum, Y, has the Γ(100, 2) distribution.

Like in the case of the χ2(n)-distribution, we never mentioned the pdf
(or the cdf, or . . . ) of a Gamma distribution. The reason is that we do not
really need it, and it involves the so-called Gamma function which is not
familiar to most students. Those who are curious should try problem 7.6.11.
Also, here are some plots of the gamma pdf for representative values of the
shape parameter k (we keep τ = 1; to vary τ, simply stretch or compress the
horizontal axes by the factor of τ, and do the opposite to the vertical axes):

0.5 1.0 1.5 2.0 2.5 3.0 3.5
y

0.2

0.4

0.6

0.8

1.0

1.2

1.4

k=0.5, τ=1

k=1, τ=1

k=1.5, τ=1

k=3,τ =1

Figure 1. Pdf of the gamma distribution with τ = 1 and k = 0.5, 1, 1.5 and k = 3.

7.4 Computations

We introduced the gamma distribution without specifying what its pdf is,
and mentioned that it did not really matter. But how do we compute the
probabilities of expectations then? If we had the pdf, we would simply inte-
grate it to get the result, but no such a procedure is available using only the
mgf. The truth is that, even with the access to pdfs these integrals cannot be
evaluated explicitly, and we need to resort to various numerical procedures.
We do not discuss these procedures at all, other than saying that they are
built on interesting mathematics, and are mostly very quick and accurate.
We do give a short list of R (S-Plus) commands corresponding to some of the
most important distributions and some of the most important probabilities.
These commands as well as the arguments are composed of two part. The
first one - called the root - is a single letter and it stands for the kind of output
one is interested in
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initial letter output first argument

p cdf (y,
d pdf or pmf (y,
q quantile (q,

The second part of the command - called the tag - describes the distribu-
tion and the rest of the arguments describe the parameters of the distribution:

tag distribution other arguments note

binom binomial n,p)

chisq χ2 n)
exp exponential r) r = 1/τ
gamma gamma k,r) r = 1/τ
norm normal µ, σ)
pois poisson λ)
unif uniform l,r)

Example 7.4.1. Suppose that we want to know the probability P[Y ≤
20], where Y is a normal random variable with µ = 0.2 and σ = 13.
We would then construct the appropriate command by combining the
root p (because we need the cdf), with the tag norm; the arguments
would be (20, 0.2, 13). In a real-life R-session it looks like this

Figure 2. An R session in which we compute the probability P[Y ≤ 20], where
Y ∼ N(0.2, 13).
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Therefore, P[Y ≤ 20] ≈ 0.936.

If we wanted the 75% quantile of the exponential distribution with
τ = 2, we would use the root q, the rest exp, the first argument 0.75
and the second argument 0.5 (because R parameterizes the exponential
and gamma distributions differently). Again, in real life:

Figure 3. An R session in which we compute the 0.75-quantile of the
exponential distribution with parameter (mean) τ = 2

which makes the value of the desired quantile about 2.773. Let us try
and check if this is indeed the 0.75-th quantile, i.e., if FY(2.773) = 0.75,
where FY is the cdf of the exponential E(2). We can do it using R:

Figure 4. An R session in which we check that 2.773 is indeed the
(approximate) 0.75-quantile of the exponential distribution with parameter

(mean) τ = 2

We will not use R in this class, so the way we use the R commands described
above is as shorthands and alternatives to, by now really outdated, tables.
Here is an example:

Example 7.4.2. Let Z1, Z2 and Z3 be three independent unit normal
(N(0, 1)) random variables. If (Z1, Z2, Z3) are interpreted as the coor-
dinates of a random point in the space, what is the probability that the
distance from (Z1, Z2, Z3) to the origin is at least 2 ?

The distance R to the origin is given by

R =
√

Z2
1 + Z2

2 + Z2
3 ,

and, so, the require probability is P[R ≥ 2] = P[R2 ≥ 4]. Being a sum
of squares of three independent normals, R2 has the χ2(3) distribution,

Last Updated: September 25, 2019



Lecture 7: Normal, χ2 and Gamma 10 of 16

and, so,

P[R2 ≥ 4] = 1−P[R2 < 4] = 1− pchisq(4,3).

We don’t need to start an R-session here; leaving the answer like this is
perfectly fine as we know exactly what to do if we needed a numerical
answer.

7.5 Simulation

In addition to computations of probabilities and expected values of various
quantities related to random variables with different distributions, (statisti-
cal) software allows us to simulate these quantities, as well. Simulation from
a given distribution, roughly speaking, refers to an algorithmic production of
a sequence of numbers which “looks like” a sequence of independent draws
from that distribution would have. Instead of actually tossing an unbiased
coin 10000 times, it is much more efficient to write code that produces a se-
quence of 10000 symbols, each from the set {H, T}, that resembles an actual
sequence of coin tosses. How something like that is actually achieved, and
whether it is even possible to produce truly random numbers by algorithmic
means, is a deep subject which we do not even touch here. Instead, we focus
on the mechanics of it and the appropriate R commands.

The only thing to do, really, is to add a new root namely r, i.e., to add
another row to the table of possible roots (and keep all the already described
tags):

initial letter output first argument

r random numbers (n,

The argument n tells us how many “draws” from the distribution specified
in the tag portion we need.

Example 7.5.1. If we want to take 5 draws from the uniform distribu-
tion on the interval (2, 3), we would issue the command runif(5,2,3):

Figure 5. An R session in which we take 5 draws from the uniform
distribution U(2, 3)
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If we issued the same command again, we would get a different sam-
ple:

Figure 6. An R session in which we take another 5 draws from the uniform
distribution U(2, 3)

Here is what happens when I draw many (100) samples from the uni-
form distribution:

Figure 7. 100 draws from the uniform distribution U(2,3). The y-coordinates of
points are irrelevant - they are randomly “jittered” to avoid overlap.

Here is another run of the same R command

Figure 8. 100 more draws from the uniform distribution U(2,3).

Let us try a different distribution, say exponential with parameter 2.
The R command for 5 draws from E(2) is rexp(5,0.5) (remember, R
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uses 1/τ and not τ as the parameter):

Figure 9. An R session in which we take 5 draws from the exponential
distribution with parameter τ = 2.

100 draws from E(2), will look like this:

Figure 10. 100 draws from the exponential distribution E(2).

7.6 Problems

Problem 7.6.1. A 13-sided die is thrown 169 times (each of the numbers
1, 2, . . . , 13 is equally likely on each throw). Every time 5 or a larger number
is obtained, the player wins a candy bar. Every time she gets a 13, she gets to
pick a card from a deck of 52. If the picked card is an ace (there are 4 aces in
the deck), she gets a free-massage coupon. What is the probability that the
player will receive

1. at least 105 candy bars?

2. at least one free-massage coupon. (Hint: Check the rules of thumb for the
normal and the Poisson approximations.)
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(Note: In the first part, write your answer using an appropriate R command.
If you have easy access to R, run it to see what the numerical value is. If you
don’t, just leave it.)

Problem 7.6.2. The best approximation (among the offered answers) to the
binomial distribution with n = 100 and p = 0.2 is

(a) N(0, 1) (b) P(20) (c) B(0.2) (d) N(20, 4) (e) E(20)

Problem 7.6.3. Let Y1, . . . , Y100 be independent random variables with the
Bernoulli B(p) distribution, with p = 0.2 The best approximation to Ȳ =
1
n (Y1 + · · ·+ Yn) (among the offered answers) is

(a) N(0, 1) (b) N(100, 20) (c) N(0.2, 0.04) (d) N(20, 4) (e) N(20, 20)

(Note: In our notation N(µ, σ) means normal with mean µ and standard devi-
ation σ.)

Problem 7.6.4. Let Y1, . . . , Yn be independent random variables with the N(µ, σ)-
distribution. Which of the following is the distribution of(

Y1−µ
σ

)2
+
(

Y2−µ
σ

)2
+ · · ·+

(
Yn−µ

σ

)2
?

(a) N(µ, σ) (b) N(0, 1) (c) χ2(1) (d) χ2(n) (e) none of the above

Problem 7.6.5. Let Y1, Y2 be independent random variables with distribution
N(0, σ) where σ is the standard deviation. The distribution of Y2

1 + Y2
2 is

(a) N(0, σ) (b) χ2(2) (c) χ2(2σ2) (d) E(2σ2) (e) none of the above

Problem 7.6.6. You buy a box of 25 light bulbs. Once the first one burns
you replace it with the next one, etc. If each bulb lasts an exponentially
distributed amount of time with mean τ = 1 (months), and there is no de-
pendence between the bulbs, then the distribution of the time it will take to
go through the whole box is

(a) E(25) (b) E(1/25) (c) Γ(1, 25), i.e., k = 1, τ = 25
(d) Γ(25, 1), i.e., k = 25, τ = 1 (e) χ2(25)

Problem 7.6.7. Let Y1 and Y2 be independent standard normal (N(0, 1)) ran-
dom variables. Then, in R notation, P[1 ≤ Y2

1 + Y2
2 ≤ 2] equals

(a) pchisq(2,2)-pchisq(1,2)

(b) pnorm(2,2,1)2 - pnorm(1,1,1)2

(c) dnorm(2,2,1)2 - dnorm(1,1,1)2

(d) pnorm(
√

2,2,1) - pnorm(1,2,1)
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(e) none of the above

Problem 7.6.8 (The mgf of the χ2 distribution). We learned in class that the
distribution of the random variable Y = Z2, where Z is a standard normal, is
called the χ2-distribution. We also computed its pdf using the cdf method.
The goal of this exercise is to compute its mgf.

1. Compute
∫ ∞
−∞

1√
2π

e−βx2
dx, where β > 0 is a constant. (Hint: Use the fact

that
∫ ∞
−∞

1
σ
√

2π
e−

1
2 (y−µ)2/σ2

dy = 1, as the expression inside the integral is
the pdf of N(µ, σ). Plug in µ = 0 and an appropriate value of σ.)

2. Compute the mgf of a χ2-distributed random variable by computing E[etZ2
],

where Z is a standard normal, i.e., Z ∼ N(0, 1). (Hint: Compute this
expectation by integrating the function g(z) = etz2

against the standard
normal density, and not the function g(y) = ety against the density of Y,
which we derived in class. It is easier this way.)

3. Let Z1 and Z2 be two independent standard normal random variables.
Compute the mgf of W = Z2

1 + Z2
2 , and then look through the notes for

a (named) distribution which has the same mgf. What is it? What are its
parameter(s)? (Note: If Z1 and Z2 are independent, then so are Z2

1 and
Z2

2 .)

Problem 7.6.9. Let Y1, . . . , Yn be independent exponentially (E(τ))-distributed
random variables with parameter τ > 0. The distribution of 1

τ (Y1 + · · ·+Yn)
is

(a) Γ(n, 1) (b) E(n/τ) (c) E(nτ) (d) χ2(n) (e) none of the above
where, Γ(n, 1) means Γ(k, τ) with k = n and τ = 1.

Problem 7.6.10. A bottle is filled with gas. We think of it as a collection of
n particles, each moving independently of others, with velocities modeled
by random variables. The three components V(n)

1 , V(n)
2 and V(n)

3 of each

particle’s velocity V(n) = (V(n)
1 , V(n)

2 , V(n)
3 ) are also independent of each other

and normally distributed with mean 0 and standard deviation σ.

1. The kinetic energy of a particle is given by

Ek =
1
2 m
(
(V(n)

1 )2 + (V(n)
2 )2 + (V(n)

3 )2
)

,

where m is the particle’s mass (we assume that all particles are identi-
cal). What is the distribution of the kinetic energy Ek of each individual
particle?
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2. The total energy of the gas is sum of kinetic energies of individual parti-
cles, i.e.,

Et =
1
2 m

n

∑
k=1

(
(V(k)

1 )2 + (V(k)
2 )2 + (V(k)

3 )2
)

.

What is the distribution of the total energy Et of the entire gas (n particles).

Problem 7.6.11. (*) Going from the pdf to the mgf is a matter of evaluating an
integral. The opposite way is typically much harder. Thanks to the unique-
ness theorem, one possibility is to guess and verify. Based on the pdf known
in the special cases

1
τ e−y/τ1{y>0} for E(τ) = Γ(1, τ),

and
1√
2π

y−1/2e−y/21{y>0}, for χ2 = Γ( 1
2 , 2),

an educated guess about the pdf of the Γ(k, τ)-distribution would be

fY(y) = cyk−1e−y/τ1{y>0}, (7.6.1)

for some constant c which will guarantee that
∫ ∞
−∞ fY(y) dy = 1. While this

constant cannot be computed analytically for all k and τ, it helps if we intro-
duce the Gamma function

Γ(k) =
∫ ∞

0
yk−1e−y dy, k > 0.

1. Use integration by parts to compute the values Γ(1), Γ(2), Γ(3) and Γ(4).
Can you spot a pattern? Can you write Γ(n + 1) in terms of Γ(n)? What
is Γ(n) for n ∈N?

2. Express the constant c form (7.6.1) in terms of τ and Γ(k).

3. Compute the mgf of the random variable whose pdf is given by (7.6.1),
with the value of c you determined in 2. above. Was our guess correct?

Problem 7.6.12. (*) Let Y1, Y2, . . . , Yn be independent random variables each
with the Bernoulli B(p) distribution, for some p ∈ (0, 1).

1. Show that the mgf mWn(t) of the random variable

Wn = Y1+Y2+···+Yn−np√
np(1−p)

,

can be written in the form

mWn(t) = (pe
t√
n α

+ (1− p)e
− t√

n α−1

)n, (7.6.2)

for some α and find its value.
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2. Write down the Taylor approximations in t around 0 for the functions
exp( t√

n α) and exp(− t√
n α−1), up to and including the term involving t2.

Then, substitute those approximations in (7.6.2) above. What to you get?
When n is large, t√

n α and t√
n α−1 are close to 0 and it can be shown that

the expression you got is the limit of mWn(t), as n→ ∞.

3. What distribution is that limit the mgf of?

(Note: Convergence of mgfs corresponds to a very important mode of conver-
gence, called the weak convergence. We will not talk about it in this class, but it
is exactly the kind of convergence that appears in the central limit theorem,
which is, in turn, behind the effectiveness of the normal approximation to
binomial random variables. In fact, what you just did is a fundamental part
of the proof of the central limit theorem.)
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