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Lecture 8
The statistical setup and basic notions

In these notes we adopt a simple model (the “statistical setup”) of how
statistics is used, and then build a mathematical theory that explains some of
the choices made by statisticians.

8.1 Populations and samples.

In our model, statisticians draw conclusions about a population by examining
a sample from it. A population is sometimes defined as “the pool from
which observations are drawn”, ”the set of all observations that can be made”
or even “any complete group with at least one characteristic in common”.
While somewhat descriptive, these do not exactly define a concept, and we
will not try to do that here either (with the hope that the examples will tell
the rest of the story). A sample, on the other hand, is easy to define - it
is simply a subset of the population. Not every subset of the population
is valuable to a statistician; we are going to be interested in representative
samples, i.e., those samples that are representative of the entire population
(what that means in mathematical terms will be explained below). How to
choose such a sample is a difficult question which we happily ignore in these
notes by assuming that someone else has already done that for us. In reality,
sampling is an extremely important and extremely hard-to-get-right element
of statistical practice.

Example 8.1.1. A national election is held, and the voters have to de-
cide between two candidates, let us call them A and B. Each voter
(there are about 240 million of them in the US) has a preferred can-
didate, and the quantity of interest is the proportion p of the voters
who prefer candidate A. Indeed, if p < 0.5, candidate B wins, and if
p > 0.5, candidate A wins. We cannot access p directly (it would re-
quire no less than an actual election), but we can interview a subset of
voters and ask them about their preferences. To make the situation a
bit less abstract, suppose that we interviewed 1000 votes, randomly se-
lected from the population, and asked them about the candidate they
prefer.

In this example, we can easily identify the population and the sample:
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population the registered voters in the US (all 240 million of them)

sample the 1000 voters we interviewed.

Even though it may appear to be simple, the notion of the population
turns out to be quite elusive, as the following example shows:

Example 8.1.2. Astronomers are interested in the distance to Proxima
Centauri, the second closest star to Earth. Each in its own lab, 10

different teams of scientists measure this distance using essentially
the same methodology, but independently of each other. They do not
communicate to each other and simply report their final results - 10

different numbers - to a single statistician.

What exactly should be called the population is much less clear than in
Example 8.1.1 above. Here is one possibility:

population all possible measurements of the distance to Proxima Cen-
tauri by the methodology used by the labs. In this case, the pop-
ulation is infinite, and very abstract. In fact, the very notion of
the population is not very useful beyond its conceptual role.

sample the actual measurements performed by the 10 labs.

8.2 Random samples and probabilistic modeling

Once we have a sample1 in our hands, we try to use it to draw conclusions
about the population. Here is where the assumption that the sample is rep-
resentative comes in. We interpret that to mean that the sample is random,
in that it is chosen randomly from the entire population, with no system-
atic preference for particular individuals or groups. Mathematically, we may
think of the sample as an outcome of repeated independent draws from an
unknown distribution which describes that whole population2. In the lan-
guage of probability theory, we have the following definition:

1For simplicity, we will not make a distinction between the sample (a subset of the popula-
tion) and the measurements associated with this sample (candidate preferences, e.g.).

2Technically speaking, this corresponds to the notion of a simple random sample with replace-
ment; there are many other sampling methods and types of samples. Just to scratch the surface,
think of a data set contaminated by two sources of error. One is the simple measurement error
whose magnitude is random and independent across readings. The other, however, could be
systematic and have something to do with the way these measurements are transmitted to the
user. This, latter, error will effect all measurements in the same way and destroy their indepen-
dence in the process. We do not treat such samples in these notes, even though we will have to
revisit some of our assumptions when we start talking about linear models.
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Definition 8.2.1. A random sample of size n from distribution D is a
random vector

(Y1, Y2, . . . , Yn),

such that

1. Y1, Y2, . . . , Yn are independent, and

2. each Yi has the distribution D.

The distribution D in the definition above is typically unknown; the entire
goal of statistical analysis is to make educated guesses (inferences) about
D, based on the observed values of Y1, . . . , Yn. To make our lives simpler,
we subscribe to the parametric paradigm in these notes, i.e., we make the
assumption that the overall shape of this (unknown) distribution is known,
and that the only thing to be determined are the values of a small number
of numerical parameters. How to choose the overall shape of D falls under
the purview of probabilistic modeling. It requires the knowledge of the
subject-matter and an experience with similar situations in the past: results
of measurements are often normally distributed and light bulb lifetimes are
exponential, but the values of parameters (µ, σ) and τ for the population of
interest need to be inferred from the sample.

Let us illustrate these concepts on the two examples presented above:

Example 8.2.2. In the setting of the “elections” Example 8.1.1, let us
encode the preference of each interviewed voter by 1, if they prefer
candidate A, and 0 if they prefer candidate B. Giving each intervie-
wee a number from 1 to 1000, we can denote their answers with ran-
dom variables Y1, Y2, . . . , Y1000. Assuming that the sample is random,
Y1, . . . , Y1000 are independent and each has the same distribution D.
In this example, we do not have much choice when it comes to prob-
abilistic modeling - each Yi can take only two values, 0 or 1. So we
are (logically) forced to use the Bernoulli distribution. The only thing
left to figure out is the parameter p ∈ (0, 1), which corresponds to
the (true) proportion of the voters in the entire population who prefer
candidate A. We usually write this as

(Y1, . . . , Y1000) is a random sample from B(p).

In other cases modeling plays a bigger role:

Example 8.2.3. Continuing Example (8.1.2), we denote the ten mea-
surements of the distance to Proxima Centauri, performed by the ten
labs, by Y1, . . . , Y10. Assuming, as above, that the sample is random,
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Y1, . . . , Yn will be independent random variables, all drawn from the
same distribution D. Unlike in the previous example, we have lots
of choices for the distribution D. It could be uniform or exponential
or gamma or . . . . To choose the appropriate one, we need to rely on
experience; it tells us that measurement errors are usually normally
distributed and centered around the true value. This is an empirical
fact, and it is not always applicable, but we assume it does in this
particular case. If we were astronomers, we would know better.

Therefore, we assume that Y1, Y2, . . . , Y10 is a random sample from the
normal distribution with the unknown mean µ. What about the other
parameter, σ? As you know, it measures the “spread” of the distribu-
tion, and, in the current example, it corresponds to the accuracy of the
measurement methodology used. We are assuming that all labs use
the same methodology, so we have no reason not to assume that they
all have the same σ (we would not have a random sample otherwise).
We still have a choice to make. Should σ be considered “known”, just
like the fact that the distribution of the error is normal is “known”, or
should it, too, be estimated from the data. The answer to this will de-
pend on how well we understand the measurement technology used.
If it has been around for a long time and we have plenty of data to sup-
port a particular value of σ (say σ = 0.1 light years), we will consider
σ to be known and make it a part of our model. In other cases, where
we are quite certain that the error will be normally distributed, but
have less information about its magnitude, we make σ unknown. In
the first case, the unknown parameter is µ, which we usually express
as

Y1, . . . , Y10 is a random sample from N(µ, 0.1),

while in the second case, it is the pair (µ, σ), and we write

Y1, . . . , Y10 is a random sample from N(µ, σ),

8.3 Statistical inference

As mentioned above, the goal of statistical analysis is to make an educated
guess about the value of the unknown parameter(s), based on the observa-
tions from the sample. It is intuitively clear that a guess about the distance
to Proxima Centaury based on a single measurement is less accurate than a
guess based on 10 (or 100) independent measurements. The second element
of statistical inference is, therefore, to quantify the accuracy of our parame-
ter estimates. In words, we need to be able to say just “how educated” our
educated guess is. This information can be expressed in various ways, and
we only scratch the surface in these notes. The most important concepts are
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those of (point and interval) estimators:

Definition 8.3.1. A (point) estimator (or statistic) is any function
(rule, formula) of the sample (Y1, . . . , Yn) or other known constants.
It is not allowed to depend on the (unknown) parameters!

An interval estimator is a pair of estimators.

An estimator (point or interval) is usually an estimator of something. There-
fore we usually talk about an estimator for (or of) the unknown parameter
θ, and this is usually denoted by adding a “hat” on θ, as in θ̂. The subtle
point is that - at least in theory - the same estimator could be used to esti-
mate different parameters. We therefore, do not include the “for θ” part in
the definition of an estimator, but use it often.

It is useful to think of an estimator as a piece of computer code, which
takes Y1, . . . , Yn as inputs and returns a value. It is typically written before the
data are gathered, and certainly before the values of the unknown parameters
are discovered. Therefore, it needs to be able to run on all conceivable inputs,
produced under any conceivable value of the parameters. Instead of a single
value, interval estimators return a range of plausible values of the parameter
so as to give not only an estimate of the parameter value, but also an idea
about its accuracy.

Example 8.3.2. Let (Y1, . . . , Yn) be a random sample from N(µ, 1),
where µ is unknown. The following are point estimators

µ̂ = Y1+···+Yn
n (the sample

mean, also denoted by Ȳ)
a) µ̂ = Y1,b)

µ̂ =“the sample median”c) µ̂ = Yn
3 ,d)

µ̂ = cos(Y2 −Yn)e) µ̂ = 19.f)

the following are interval estimators:

(µ̂L, µ̂R), where µ̂L = min(Y1, . . . , Yn) and µ̂R = max(Y1, . . . , Yn)a)

(µ̂L, µ̂R), where µ̂L = Ȳ− 1√
n and µ̂R = Ȳ + 1√

n .b)

and the following are not estimators:

µ̂ = µ,a) µ̂ = Ȳ+µ
2 .b)

As you can see from the previous example, almost anything (as long as
it does not use “illegal” quantities) qualifies for an estimator. Our intuition
tells us, however, that most of these are quite useless (declaring that µ =
19, without even looking at the data is clearly not sound statistics). The
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goal of statistical inference is to construct good estimators (and other related
quantities), in the sense that they use as much of the information contained in
the sample and convert it into an estimate of the parameter of interest which
is “close to the true value of the parameter as often as possible”. What that
means, and how to accomplish that is the subject matter of the rest of these
notes.
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