L-spaces and left-orderability

Cameron McA. Gordon

(joint with Steve Boyer and Liam Watson)

Geometry and Topology Down Under

Melbourne, July 2011
Left Orderability

A group $G \neq 1$ is \textit{left-orderable} (LO) if \exists strict total order $<$ on G such that $g < h \Rightarrow fg < fh \ \forall \ f \in G$

- \mathbb{R} is LO
- G LO, $1 \neq H < G \Rightarrow H$ LO
- $G \ni g$ ($\neq 1$) finite order $\Rightarrow G$ not LO
- G locally indicable $\Rightarrow G$ LO
- G, H LO $\Rightarrow G \ast H$ LO (Vinogradov, 1949)
- G (countable) LO $\iff \exists$ embedding $G \subset \text{Homeo}_+(\mathbb{R})$
- braid group B_n is LO (Dehornoy, 1994)
• M compact, orientable, prime 3-manifold (poss. with boundary)

Then $\pi_1(M)$ is LO \iff $\pi_1(M)$ has an LO quotient

(Boyer-Rolfsen-Wiest, 2005)

Hence $\beta_1(M) > 0 \Rightarrow \pi_1(M)$ LO

So interesting case is when

M is a \mathbb{Q}-homology 3-sphere (QHS)
Suppose M has a co-orientable taut foliation \mathcal{F}

$\pi_1(M)$ acts on leaf space \mathcal{L} of universal covering of M

If $\mathcal{L} \cong \mathbb{R}$ (\mathcal{F} is \mathbb{R}-covered) then we get non-trivial homomorphism

$\pi_1(M) \to \text{Homeo}_+(\mathbb{R})$ \quad \therefore \quad \pi_1(M)$ is LO

Theorem (BRW, 2005)

M a Seifert fibered QHS. Then $\pi_1(M)$ is LO \iff M has base orbifold $S^2(a_1, \ldots, a_n)$ and admits a horizontal foliation.
Theorem (Calegari-Dunfield, 2003)

\[M \text{ a prime, atoroidal QHS with a co-orientable taut foliation, } \tilde{M} \text{ the universal abelian cover of } M. \text{ Then } \pi_1(\tilde{M}) \text{ is LO.} \]

Thurston’s universal circle construction gives

\[\rho : \pi_1(M) \subset \text{Homeo}_+(S^1) \]

Central extension

\[1 \to \mathbb{Z} \to \text{Homeo}_+(S^1) \to \text{Homeo}_+(S^1) \to 1 \]

Restriction of \(\rho \) to \(\pi_1(\tilde{M}) \) lifts to \(\text{Homeo}_+(S^1) \subset \text{Homeo}_+(\mathbb{R}) \)
Heegaard Floer Homology (Ozsváth-Szabó)

M a QHS

$\widehat{HF}(M)$: finite dimensional \mathbb{Z}_2-vector space

$$\dim \widehat{HF}(M) \geq |H_1(M)|$$

M is an **L-space** if equality holds

E.g. lens spaces are L-spaces

Is there a “topological” characterization of L-spaces?

Conjecture

M a prime QHS. Then

M is an L-space $\iff \pi_1(M)$ is not LO
E.g.

\[\pi_1(M) \text{ finite} \quad \overset{\longrightarrow}{\iff} \quad \pi_1(M) \text{ not LO} \]

\[M \text{ is an } L\text{-space} \]

Theorem (OS, 2004)

If M is an L-space then M does not admit a co-orientable taut foliation.

So Conjecture \Rightarrow : if M has a co-orientable taut foliation then

$\pi_1(M)$ is LO \hspace{1cm} (virtually true by Calegari-Dunfield)

M ZHS graph manifold admits a taut foliation, horizontal in each Seifert piece. Hence M not an L-space, $\pi_1(M)$ LO

(Boileau-Boyer, 2011)
(A) Seifert manifolds

Theorem

The Conjecture is true if M is Seifert fibered.

Base orbifold is either

$S^2(a_1, \ldots, a_n)$:

M an L-space \Leftrightarrow M does not admit a horizontal foliation

(Lisca-Stipsicz, 2007)

\Leftrightarrow $\pi_1(M)$ not LO (BRW, 2005)

(also observed by Peters)

$P^2(a_1, \ldots, a_n)$: $\pi_1(M)$ not LO (BRW, 2005)
Show M is an L-space by inductive surgery argument using:

N compact, orientable 3-manifold, ∂N a torus; $\alpha, \beta \subset \partial N$, $\alpha \cdot \beta = 1$, such that

$$|H_1(N(\alpha + \beta))| = |H_1(N(\alpha))| + |H_1(N(\beta))|$$

Then $N(\alpha), N(\beta)$ L-spaces $\Rightarrow N(\alpha + \beta)$ L-space \hspace{1cm} (\ast)

(OS, 2005)

(uses \widehat{HF} surgery exact sequence of a triad)
(B) Sol manifolds

$N = \text{twisted } I\text{-bundle/Klein bottle}$

N has two Seifert structures:

- base Möbius band; fiber φ_0
- base $D^2(2, 2)$; fiber φ_1

$\varphi_0 \cdot \varphi_1 = 1$ on ∂N

$f : \partial N \rightarrow \partial N$ homeomorphism, $M = N \cup_f N$

Assume M a QHS \quad $(f(\varphi_0) \neq \pm \varphi_0)$

M Seifert $\Leftrightarrow f(\varphi_i) = \pm \varphi_j$ (some $i, j \in \{0, 1\}$)

Otherwise, M is a Sol manifold
\[\pi_1(M) \text{ is not LO} \quad (\text{BRW, 2005}) \]

Theorem

\(M\) is an L-space

\[f_* = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad (c \neq 0) \text{ with respect to basis } \varphi_0, \varphi_1 \]

(1) True if \[f_* = \begin{bmatrix} a & 1 \\ 1 & 0 \end{bmatrix} \]

\[f(\varphi_1) = \varphi_0, \text{ so } M \text{ Seifert} \]

(2) True if \[f_* = \begin{bmatrix} a & b \\ 1 & d \end{bmatrix} = \begin{bmatrix} a & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & d \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a & 1 \\ 1 & 0 \end{bmatrix} (t_0)^d \]

where \(t_0 : \partial N \to \partial N\) is Dehn twist along \(\varphi_0\)
Write \(W(f) = N \cup_f N \)

Bordered \(\widehat{HF} \) calculation shows \(\widehat{HF}(W(f)) \cong \widehat{HF}(W(f \circ t_0)) \)

So reduced to case (1)

\((3)\) In general, induct on \(|c|\) : do surgery on suitable simple closed curves \(\subset \partial N \) and use \((*)\)
(C) Dehn surgery

Theorem (OS, 2005)

K a hyperbolic alternating knot. Then $K(r)$ is not an L-space $\forall \; r \in \mathbb{Q}$

Theorem (Roberts, 1995)

K an alternating knot.

(1) If K is not special alternating then $K(r)$ has a taut foliation $\forall \; r \in \mathbb{Q}$.

(2) If K is special alternating then $K(r)$ has a taut foliation either $\forall \; r > 0$ or $\forall \; r < 0$.
$K(1/q)$ is a ZHS .: foliation is co-orientable

$K(1/q)$ atoroidal .: $\pi_1(K(1/q)) \subset \text{Homeo}_+(S^1)$

$H^2(\pi_1(K(1/q))) = 0$; so lifts to $\pi_1(K(1/q)) \subset \text{Homeo}_+(\mathbb{R})$

.: $\pi_1(K(1/q))$ is LO (\forall q \neq 0 \text{ in (1)}, \forall q > 0 \text{ or } \forall q < 0 \text{ in (2))}

Theorem

Let K be the figure eight knot. Then $\pi_1(K(r))$ is LO for $-4 < r < 4$.

Uses representations $\rho : \pi_1(S^3 \setminus K) \to PSL_2(\mathbb{R})$

(Also true for $r = \pm 4$ (Clay-Lidman-Watson, 2011))
(D) 2-fold branched covers

\[L \text{ a link in } S^3 \]

\[\Sigma(L) = 2\text{-fold branched cover of } L \]

Theorem (OS, 2005)

If \(L \) is a non-split alternating link then \(\Sigma(L) \) is an L-space.

(uses (*) ;

\[\begin{array}{ccc}
\times & \bowtie &) (\\
L & L_0 & L_\infty
\end{array} \]

\[\implies \Sigma(L), \Sigma(L_0), \Sigma(L_\infty) \text{ a surgery triad} \]

with \(\det L = \det L_0 + \det L_\infty \)

Theorem

If \(L \) is a non-split alternating link then \(\pi_1(\Sigma(L)) \) is not LO.

(Also proofs by Greene, Ito)
L a link in S^3, D a diagram of L

Define group $\pi(D)$:

- generators $a_1, \ldots, a_n \leftrightarrow$ arcs of D
- relations \leftrightarrow crossings of D

\[a_j^{-1} a_i a_j^{-1} a_k \]

Theorem (Wada, 1992)

\[\pi(D) \cong \pi_1(\Sigma(L)) \ast \mathbb{Z} \]

\[\therefore \pi(D) \text{ LO} \leftrightarrow \pi_1(\Sigma(L)) \text{ LO} \quad \text{(if } L \neq \text{ unknot)} \]
Suppose $\pi(D)$ LO

$$a_j^{-1}a_i a_j^{-1}a_k = 1 \iff a_j^{-1}a_i = a_k^{-1}a_j$$

$$a_i < a_j \iff a_j^{-1}a_i < 1$$

∴ at each crossing either

$$a_i < a_j < a_k$$

or $$a_i > a_j > a_k$$

or $$a_i = a_j = a_k$$

Shade complementary regions of D alternately Black/White

Define graph $\Gamma(D) \subset S^2$:

vertices \leftrightarrow B-regions

edges \leftrightarrow crossings
Assume D connected, alternating

We want to show $\pi_1(\Sigma(L))$ not LO

True if $L = \text{unknot}$; so assume $L \neq \text{unknot}$

Then $\pi_1(\Sigma(L)) \text{ LO } \iff \pi(D) \text{ LO}$

So assume $\pi(D) \text{ LO}$

Orient edges of $\Gamma(D)$

\[a_i < a_j < a_k \quad a_i > a_j > a_k \quad a_i = a_j = a_k \]
Γ a connected, **semi-oriented** graph ⊂ S^2

cycle sink source

where, in each case, there is at least one oriented edge
Lemma

Let $\Gamma \subset S^2$ be a connected semi-oriented graph with at least one oriented edge. Then Γ has a sink, source or cycle.

Let $\Gamma = \Gamma(D)$
cycle:

\[a_{i_1} \leq a_{i_2} \leq \cdots \leq a_{i_r} \leq a_{i_1} \]

\[\therefore \quad a_1 = a_2 = \cdots = a_r \]

a contradiction, since at least one oriented edge
sink:

\[a_{i_1} \leq a_{i_2} \leq \cdots \leq a_{i_r} \leq a_{i_1} \]

\[\therefore a_1 = a_2 = \cdots = a_r \]

a contradiction, since at least one oriented edge
Similarly for a source

\[a_{i_1} \geq a_{i_2} \geq \cdots \geq a_{i_r} \geq a_{i_1}, \text{ contradiction} \]

\[\therefore \text{ by Lemma, all edges of } \Gamma(D) \text{ are unoriented} \]

\[\therefore \text{ (since } D \text{ connected)} \quad a_1 = a_2 = \cdots = a_n \]

\[\therefore \quad \pi(D) \cong \mathbb{Z} \]

\[\therefore \quad \pi_1(\Sigma(K)) = 1 \]

\[\therefore \quad L = \text{ unknot, contradiction} \]
L quasi-alternating $\implies \Sigma(L)$ an L-space

Question

Does L quasi-alternating $\implies \pi_1(\Sigma(L))$ not LO?
HAPPY BIRTHDAY, HYAM!