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A knot is a closed loop in space.



3

A knot is a closed loop in space.

unknot



4

c(K) = crossing number of K = minimum number of crossings in

any diagram of K.
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Peter Guthrie Tait (1831-1901)

Vortex Atoms

(Lord Kelvin, 1867)

c(K) = order of

knottiness of K
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c(K) # of knots

3 1

4 1

5 2

6 3

7 7

8 21

9 49

10 165

c(K) # of knots

11 552

12 2, 176

13 9, 988

14 46, 972

15 253, 293

16 1, 388, 705

17 8, 053, 378
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c(K) # of knots

3 1

4 1

5 2

6 3

7 7

8 21

9 49

10 165

c(K) # of knots

11 552

12 2, 176

13 9, 988

14 46, 972

15 253, 293

16 1, 388, 705

17 8, 053, 378

9, 755, 313 prime knots with c(K) ≤ 17.
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How can you prove that two knots are different?
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How can you prove that two knots are different?

The Perko Pair
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How can you prove that two knots are different?

The Perko Pair

How can you determine whether a given knot is the unknot or not?
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18 There are many knot invariants that help with these questions.

Example. Alexander polynomial (1928)

Can associate to K a polynomial ∆(t) = ∆K(t).

James Waddell Alexander

(1888-1971)
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If ∆K(t) 6= ∆K′(t) then K 6= K′.
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If ∆K(t) 6= ∆K′(t) then K 6= K′.

But if = , can’t conclude anything.

E.g.

∆(t) = 1

But K 6= unknot
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Is there an algorithm (systematic procedure, computer program,

Turing machine, . . . ) to decide whether or not any given knot is the

unknot?
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Is there an algorithm (systematic procedure, computer program,

Turing machine, . . . ) to decide whether or not any given knot is the

unknot?

Fundamental dichotomy in mathematics:

solvable/decidable unsolvable/undecidable

Example 1

Given words W1,W2 in A,B, can you get from W1 to W2 using the

substitution rule AB = BA?

E.g. ABAAB←→ AABAB←→ AABBA, etc.

There is an algorithm to decide:

Yes iff W1 and W2 each have the same number of A’s and same

number of B’s.
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Example 2

Same, but with words in A,B,C,D,E, and substitution rules

AB = BA, AD = DA, CB = BC, CD = DC

DAE = ED, BCE = EB, DBAD = EDBD
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Example 2

Same, but with words in A,B,C,D,E, and substitution rules

AB = BA, AD = DA, CB = BC, CD = DC

DAE = ED, BCE = EB, DBAD = EDBD

E.g DABCDADE EDBDCED

(DABCDADE DBACDADE DBADCADE

EDBDCADE EDBDCDAE EDBDCED)

DABABCD ABCDED
/

There is no algorithm to decide.
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“. . . A similar problem

which might well be

unsolvable is the one

concerning knots . . . ”

(Turing, 1954)

Alan Turing (1912-1954)



34

Wolfgang Haken (1928-)

There is an algorithm to decide

whether or not a given knot is the

unknot.

(Haken, 1957)

Used 3-dimensional topology.

There are now other proofs.
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Wolfgang Haken (1928-)

There is an algorithm to decide

whether or not a given knot is the

unknot.

(Haken, 1957)

Used 3-dimensional topology.

There are now other proofs.

There is an algorithm to decide whether or not two given knots are the

same.
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Every knot can be unknotted if it is allowed to pass through itself
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Every knot can be unknotted if it is allowed to pass through itself



39

The unknotting number of K, u(K), is the minimum number of such

pass moves needed to unknot K.
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The unknotting number of K, u(K), is the minimum number of such

pass moves needed to unknot K.

“In what follows the term Beknottedness will be used to signify the

peculiar property in which knots, even when of the same order of knot-

tiness, may thus differ: and we may define it, at least provisionally, as

the smallest number of changes of sign which will render all the cross-

ings in a given scheme nugatory. The question is, as we shall soon see,

a delicate and difficult one.”

(Tait, 1877)
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Sum of knots:

Is u(K1 + K2) = u(K1) + u(K2)?

(Certainly ≤)

Example:

u(K1) = 1, u(K2) = 2, so u(K) ≤ 3

Also, u(K) > 1 (hard!)

Is u(K) = 2 or 3?
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Is there an algorithm to compute u(K)?
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Is there an algorithm to compute u(K)?

Is there an algorithm to decide whether or not u(K) = 1?

(Haken’s theorem says there is an algorithm to decide whether or not

u(K) = 0!)

Is c(K1 + K2) = c(K1) + c(K2)?

(Certainly ≤)
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Felix Klein (1849-1925)

Every knot can be unknotted in 4

dimensions.

Analog in 3 dimensions.
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So u(K) = minimum # of “jumps” into the 4th dimension needed to

unknot K.
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lying on torus
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So u(K) = minimum # of “jumps” into the 4th dimension needed to

unknot K.

Consequently, 4-dimensional topological methods give information

about u(K).

p, q coprime integers

Tp,q = (p, q)-torus knot,

lying on torus

←−−−−−−−−−

u(Tp,q) =
(p−1)(q−1)

2
(Milnor Conjecture; proved in 1993)
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My soul’s an amphicheiral knot

Upon a liquid vortex wrought

By Intellect in the Unseen residing,

While thou dost like a convict sit

With marlinspike untwisting it

Only to find my knottiness abiding,

Since all the tools for my untying

In four-dimensioned space are lying,

Where playful fancy intersperces,

Whole avenues of universes;

Where Klein and Clifford fill the void

With one unbounded, finite homaloid,

Whereby the Infinite is hopelessly

destroyed. James Clerk Maxwell

(1831-1879)
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Henry Slade (1835-1905)
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Johann Zöllner (1834-1882)
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“If a single cord has its ends

tied together and sealed, an

intelligent being, having the

power voluntarily to produce

on this cord four-dimensional

bendings and movements,

must be able, without loosen-

ing the seal, to tie one or more

knots in this endless cord.”

(Zöllner, 1879)
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“There must be some very simple method of determining the amount

of beknottedness for any given knot; but I have not hit upon it.”

(Tait, 1877)


