KNOTS

Cameron McA. Gordon

UT Math Club
October 29, 2019

A knot is a closed loop in space.

A knot is a closed loop in space.

$c(K)=$ crossing number of $K=$ minimum number of crossings in any diagram of K.
$c(K)=$ crossing number of $K=$ minimum number of crossings in any diagram of K.

73

7_{5}

7_{6}

Vortex Atoms
 (Lord Kelvin, 1867)

$c(K)=$ order of knottiness of K

Peter Guthrie Tait (1831-1901)

$c(K)$	\# of knots
3	1
4	1
5	2
6	3
7	7
8	21
9	49
10	165

$c(K)$	\# of knots
11	552
12	2,176
13	9,988
14	46,972
15	253,293
16	$1,388,705$
17	$8,053,378$

$c(K)$	\# of knots
3	1
4	1
5	2
6	3
7	7
8	21
9	49
10	165

$c(K)$	\# of knots
11	552
12	2,176
13	9,988
14	46,972
15	253,293
16	$1,388,705$
17	$8,053,378$

$9,755,313$ prime knots with $c(K) \leq 17$.

How can you prove that two knots are different?

How can you prove that two knots are different?

How can you prove that two knots are different?

How can you determine whether a given knot is the unknot or not?

There are many knot invariants that help with these questions.

There are many knot invariants that help with these questions.
Example. Alexander polynomial (1928)

There are many knot invariants that help with these questions.
Example. Alexander polynomial (1928)
Can associate to K a polynomial $\Delta(t)=\Delta_{K}(t)$.

There are many knot invariants that help with these questions.
Example. Alexander polynomial (1928)
Can associate to K a polynomial $\Delta(t)=\Delta_{K}(t)$.

$$
\Delta(t)=1-3 t+t^{2}
$$

James Waddell Alexander (1888-1971)

If $\Delta_{K}(t) \neq \Delta_{K^{\prime}}(t)$ then $K \neq K^{\prime}$.

If $\Delta_{K}(t) \neq \Delta_{K^{\prime}}(t)$ then $K \neq K^{\prime}$.
But if $=$, can't conclude anything.

If $\Delta_{K}(t) \neq \Delta_{K^{\prime}}(t)$ then $K \neq K^{\prime}$.
But if $=$, can't conclude anything.
E.g.

$$
\Delta(t)=1
$$

But $K \neq$ unknot

Is there an algorithm (systematic procedure, computer program,
Turing machine, ...) to decide whether or not any given knot is the unknot?

Is there an algorithm (systematic procedure, computer program, Turing machine, ...) to decide whether or not any given knot is the unknot?

Fundamental dichotomy in mathematics:

> solvable/decidable unsolvable/undecidable

Is there an algorithm (systematic procedure, computer program, Turing machine, ...) to decide whether or not any given knot is the unknot?

Fundamental dichotomy in mathematics:

solvable/decidable unsolvable/undecidable

Example 1

Given words W_{1}, W_{2} in A, B, can you get from W_{1} to W_{2} using the substitution rule $A B=B A$?

Is there an algorithm (systematic procedure, computer program,
Turing machine, ...) to decide whether or not any given knot is the unknot?

Fundamental dichotomy in mathematics:

solvable/decidable unsolvable/undecidable

Example 1

Given words W_{1}, W_{2} in A, B, can you get from W_{1} to W_{2} using the substitution rule $A B=B A$?
E.g. $A B A A B \longleftrightarrow A A B A B \longleftrightarrow A A B B A$, etc.

Is there an algorithm (systematic procedure, computer program,
Turing machine, ...) to decide whether or not any given knot is the unknot?

Fundamental dichotomy in mathematics:

solvable/decidable unsolvable/undecidable

Example 1

Given words W_{1}, W_{2} in A, B, can you get from W_{1} to W_{2} using the substitution rule $A B=B A$?
E.g. $A B A A B \longleftrightarrow A A B A B \longleftrightarrow A A B B A$, etc.

There is an algorithm to decide:

Is there an algorithm (systematic procedure, computer program, Turing machine, ...) to decide whether or not any given knot is the unknot?

Fundamental dichotomy in mathematics:

solvable/decidable unsolvable/undecidable

Example 1

Given words W_{1}, W_{2} in A, B, can you get from W_{1} to W_{2} using the substitution rule $A B=B A$?
E.g. $\quad A B A A B \longleftrightarrow A A B A B \longleftrightarrow A A B B A$, etc.

There is an algorithm to decide:
Yes iff W_{1} and W_{2} each have the same number of A 's and same number of B 's.

Example 2

Same, but with words in A, B, C, D, E, and substitution rules

$$
\begin{gathered}
A B=B A, \quad A D=D A, \quad C B=B C, \quad C D=D C \\
D A E=E D, \quad B C E=E B, \quad D B A D=E D B D
\end{gathered}
$$

Example 2

Same, but with words in A, B, C, D, E, and substitution rules

$$
\begin{gathered}
A B=B A, \quad A D=D A, \quad C B=B C, \quad C D=D C \\
D A E=E D, \quad B C E=E B, \quad D B A D=E D B D
\end{gathered}
$$

E.g DABCDADE $\longleftrightarrow E D B D C E D$

Example 2

Same, but with words in A, B, C, D, E, and substitution rules

$$
\begin{gathered}
A B=B A, \quad A D=D A, \quad C B=B C, \quad C D=D C \\
D A E=E D, \quad B C E=E B, \quad D B A D=E D B D
\end{gathered}
$$

E.g

DABCDADE $\longleftrightarrow E D B D C E D$
$(D A B C D A D E \longleftrightarrow D B A C D A D E \longleftrightarrow D B A D C A D E$
$E D B D C A D E \longleftrightarrow E D B D C D A E \longleftrightarrow E D B D C E D)$

Example 2

Same, but with words in A, B, C, D, E, and substitution rules

$$
\begin{gathered}
A B=B A, \quad A D=D A, \quad C B=B C, \quad C D=D C \\
D A E=E D, \quad B C E=E B, \quad D B A D=E D B D
\end{gathered}
$$

E.g
$D A B C D A D E \longleftrightarrow E D B D C E D$
$(D A B C D A D E \longleftrightarrow D B A C D A D E \longleftrightarrow D B A D C A D E$
$E D B D C A D E \longleftrightarrow E D B D C D A E \longleftrightarrow E D B D C E D)$
$D A B A B C D \longleftrightarrow A B C D E D$

Example 2

Same, but with words in A, B, C, D, E, and substitution rules

$$
\begin{gathered}
A B=B A, \quad A D=D A, \quad C B=B C, \quad C D=D C \\
D A E=E D, \quad B C E=E B, \quad D B A D=E D B D
\end{gathered}
$$

E.g | $D A B C D A D E$ | $\longleftrightarrow E D B D C E D$ |
| ---: | :--- |
| $(D A B C D A D E$ | $\longleftrightarrow D B A C D A D E \longleftrightarrow D B A D C A D E$ |
| $E D B D C A D E$ | $\longleftrightarrow E D B D C D A E \longleftrightarrow E D B D C E D)$ |
| $D A B A B C D$ | $\longleftrightarrow A B C D E D$ |

There is no algorithm to decide.
"... A similar problem which might well be unsolvable is the one concerning knots ..."
(Turing, 1954)

Alan Turing (1912-1954)

There is an algorithm to decide whether or not a given knot is the unknot.
(Haken, 1957)

Used 3-dimensional topology.

There are now other proofs.
Wolfgang Haken (1928-)

There is an algorithm to decide whether or not a given knot is the unknot.
(Haken, 1957)

Used 3-dimensional topology.

There are now other proofs.
Wolfgang Haken (1928-)

There is an algorithm to decide whether or not two given knots are the same.

Every knot can be unknotted if it is allowed to pass through itself

Every knot can be unknotted if it is allowed to pass through itself

Every knot can be unknotted if it is allowed to pass through itself

The unknotting number of $K, u(K)$, is the minimum number of such pass moves needed to unknot K.

The unknotting number of $K, u(K)$, is the minimum number of such pass moves needed to unknot K.
"In what follows the term Beknottedness will be used to signify the peculiar property in which knots, even when of the same order of knottiness, may thus differ: and we may define it, at least provisionally, as the smallest number of changes of sign which will render all the crossings in a given scheme nugatory. The question is, as we shall soon see, a delicate and difficult one."
(Tait, 1877)
$42 \quad u(K)=0$ iff K is the unknot

${ }^{43} \quad u(K)=0$ iff K is the unknot

$44 \quad u(K)=0$ iff K is the unknot

Sum of knots:

$$
K_{1}+K_{2}=K_{1}
$$

Sum of knots:

$$
K_{1}+K_{2}=K_{1}
$$

Is $u\left(K_{1}+K_{2}\right)=u\left(K_{1}\right)+u\left(K_{2}\right)$?
$($ Certainly \leq)

Sum of knots:

$$
K_{1}+K_{2}=K_{1}
$$

Is $u\left(K_{1}+K_{2}\right)=u\left(K_{1}\right)+u\left(K_{2}\right)$?
(Certainly \leq)
Example:

Sum of knots:

$$
K_{1}+K_{2}=K_{1}
$$

Is $u\left(K_{1}+K_{2}\right)=u\left(K_{1}\right)+u\left(K_{2}\right)$?
(Certainly \leq)
Example:

$$
u\left(K_{1}\right)=1, u\left(K_{2}\right)=2, \text { so } u(K) \leq 3
$$

Sum of knots:

$$
K_{1}+K_{2}=K_{1}
$$

Is $u\left(K_{1}+K_{2}\right)=u\left(K_{1}\right)+u\left(K_{2}\right)$?
(Certainly \leq)
Example:

$$
u\left(K_{1}\right)=1, u\left(K_{2}\right)=2, \text { so } u(K) \leq 3
$$

Also, $\quad u(K)>1$ (hard!)

Sum of knots:

$$
K_{1}+K_{2}=
$$

Is $u\left(K_{1}+K_{2}\right)=u\left(K_{1}\right)+u\left(K_{2}\right)$?
(Certainly \leq)
Example:

$$
u\left(K_{1}\right)=1, u\left(K_{2}\right)=2, \text { so } u(K) \leq 3
$$

Also, $\quad u(K)>1$ (hard!)
Is $u(K)=2$ or 3 ?

Is there an algorithm to compute $u(K)$?

Is there an algorithm to compute $u(K)$?

Is there an algorithm to decide whether or not $u(K)=1$?

Is there an algorithm to compute $u(K)$?

Is there an algorithm to decide whether or not $u(K)=1$?
(Haken's theorem says there is an algorithm to decide whether or not $u(K)=0$!)

Is there an algorithm to compute $u(K)$?

Is there an algorithm to decide whether or not $u(K)=1$?
(Haken's theorem says there is an algorithm to decide whether or not $u(K)=0$!)

Is $c\left(K_{1}+K_{2}\right)=c\left(K_{1}\right)+c\left(K_{2}\right)$?
(Certainly \leq)

Every knot can be unknotted in 4 dimensions.

Analog in 3 dimensions.

Felix Klein (1849-1925)

So $u(K)=$ minimum \# of "jumps" into the 4th dimension needed to unknot K.

So $u(K)=$ minimum \# of "jumps" into the 4th dimension needed to unknot K.

Consequently, 4-dimensional topological methods give information about $u(K)$.

So $u(K)=$ minimum \# of "jumps" into the 4th dimension needed to unknot K.

Consequently, 4-dimensional topological methods give information about $u(K)$.
p, q coprime integers
$T_{p, q}=(p, q)$-torus knot, lying on torus

So $u(K)=$ minimum \# of "jumps" into the 4th dimension needed to unknot K.

Consequently, 4-dimensional topological methods give information about $u(K)$.
p, q coprime integers
$T_{p, q}=(p, q)$-torus knot, lying on torus

$$
u\left(T_{p, q}\right)=\frac{(p-1)(q-1)}{2}
$$

(Milnor Conjecture; proved in 1993)

My soul's an amphicheiral knot Upon a liquid vortex wrought By Intellect in the Unseen residing, While thou dost like a convict sit With marlinspike untwisting it Only to find my knottiness abiding, Since all the tools for my untying In four-dimensioned space are lying, Where playful fancy intersperces, Whole avenues of universes; Where Klein and Clifford fill the void With one unbounded, finite homaloid, Whereby the Infinite is hopelessly destroyed.

James Clerk Maxwell
(1831-1879)

Henry Slade (1835-1905)

Alhin Cman Dish
 1918. TRANSCENDENTAL PHYSICS.

$\mathfrak{A} \mathfrak{M}$ ⿷ucount of experimental ¥nbestigations.
from the Scientific \mathbb{C} reatises

cr

JOHANN CARL FRIEDRICH ZÖLLNER,
Profeator of Phytical Astronowy at the Univertity of Leipoic Member of the Royal Saxon Society of Sciencea:
Forrign Menber of the Royal Actronomical Saciety of London.
onorary Mewber of the Phynical Ansociation at Franifort-on-the-Main
of the "Scientitit Society of Poschological Studiex," at Parit;
and of the "Britieh National Amociation of Spiritualists," at London.

Eranslated from tbe ©erman, twith a 1 Preface and Appendices, bp CHARLES CARLETON MASSEY,
of lincols's ing, bakistea-st-law.

SECOND FDITION.

LONDON:

W. H. HARRISON, 33 MUSEUM STREET, W.C. 1882.

Johann Zöllner (1834-1882)

"If a single cord has its ends tied together and sealed, an intelligent being, having the power voluntarily to produce on this cord four-dimensional bendings and movements, must be able, without loosening the seal, to tie one or more knots in this endless cord."
(Zöllner, 1879)

UNSEEN UNIVERSE du.

OR
PHYSICAL SPECULATIONS

FUTURE STATE ALif:

"There must be some very simple method of determining the amount of beknottedness for any given knot; but I have not hit upon it."
(Tait, 1877)

