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AN ADAPTABLE DISCONTINUOUS GALERKIN SCHEME FOR

THE WIGNER-FOKKER-PLANCK EQUATION∗
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Abstrat. Reent analyti progress has inreased demand for numerial approahes to the
Wigner-Fokker-Plank (WFP) equation. We present a Disontinuous Galerkin sheme for the WFP
equation with a general potential. Estimates showing onvergene and stability of the sheme are
provided. The sheme is adaptable, and may use both polynomial and non-polynomial basis fun-
tions.
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1. Introdution

We propose a Disontinuous Galerkin (DG) method in order to numerially ap-

proximate the solution to the initial value problem for the time dependent Wigner-

Fokker-Plank (WFP) equation given a general smooth potential V (x), posed for

(x,k)∈R
2d, t∈R

+

wt +k ·∇xw+Θ~[V ](w)=Q
~,F P

(w) . (1.1)

The right hand side Q
~,F P

(w) models the averaged environmental interations with

the system and is referred to as the Quantum Fokker-Plank operator. The operator

Θ[V ] is a pseudo-di�erential operator and takes into aount the nonloal ation of

the potential V .
In this paper we propose a Disontinuous Galerkin approximation for the above

problem. The omputation applies to a wide range of approximation spaes and does

not rely on a basis of polynomials. We present also estimates showing onvergene and

stability of the sheme. The Disontinuous Galerkin (DG) approah proposed here

provides several opportunities to optimize the approximation spae. In partiular, the

use of non-polynomial basis funtions, as proposed by Yuan and Shu in [28℄, allows for

improvement over mesh re�nement, inreased polynomial order, and global or loal

basis set adjustments. The method is suitable to be adjusted to unstrutured grids

in spae and time. The basis set may be a priori or adaptively optimized, depending

on the spei� irumstanes of the alulation. Taken to the extreme, this allows the

method to transition from a traditional DG solver to an essentially spetral solver. For

example, to study perturbations of the harmoni potential one ould use the known

eigenfuntions of the harmoni ase.

1.1. The model and related analytial results. Equation (1.1) is a

kineti quantum model for harge transport, used, for example, in the desription of

quantum Brownian motion, quantum optis, and plasma physis [12, 14, 13℄. The

funtion w(x,k,t) is the Wigner transform of the density matrix ρ(x,y,t) [27℄. It is
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636 A DG METHOD FOR WIGNER-FOKKER-PLANCK

a quasi-probability funtion, whih may take on negative values, and its zeroth and

�rst moments with respet to k produe, respetively, the nonnegative harge and

�ux densities assoiated with ρ(x,t),

ρ(x,t)=

ˆ

Rd

w(x,k,t)dk,

j(x,t)=

ˆ

Rd

kw(x,k,t)dk.

The Quantum Fokker-Plank term is a di�usion operator de�ned by

Q
~,F P

(w)=Dqq∆xw+2γdivk (kw)+2
Dpq

m
divx (∇kw)+

Dpp

m2
∆kw. (1.2)

The non-loal pseudo-di�erential operator Θ[V ] is de�ned as

Θ[V ](w)=− i

~(2π)
d

ˆ

R2d

δ~V (x,η)w(x,k′)eiη·(k−k′)dk′dη, (1.3)

with

δ~V (x,η)=V

(

x+
~

m

η

2

)

−V

(

x− ~

m

η

2

)

. (1.4)

The oe�ients Dqq, γ, Dpq, and Dpp are onstants that depend on several phys-

ial quantities. Spei�ally,

Dqq =
λ~

2

12m2kBT
γ =

λ

2m
Dpq =

λΩ~
2

12πmkBT
Dpp =λkBT,

where ~ is Plank's onstant, m is partile mass, and kB is Boltzmann's onstant.

The operator is derived from a heat bath of harmoni osillators, where T is its

temperature, λ is the oupling onstant, and Ω is the ut-o� frequeny. The onstants

satisfy the Lindblad ondition: DqqDpp−D2
pq ≥~

2γ2/4, or equivalently Ω≤kbT/~.

These onditions guarantee the quantum mehanially orret evolution of the system

and onvergene to the lassial Fokker-Plank dynamis from stohasti alulus as

~→0. The reader is referred to [6, 12, 21, 25℄ for more details. In the following

setions we atually work with the dimensionless version of the problem, although

we use physial onstants for the numerial simulations (spei� values are noted in

Setion 4).

One may interpret the WFP equation as a quantum Liouville equation equated

to an interation operator Q
~,F P

of Fokker-Plank type. When Q
~,F P

:=0, (1.1) de-
termines the time evolution of an isolated quantum system under the in�uene of a

potential V (x). This is equivalent to solving Shrödinger's equation, but the solution

is a funtion of the 2d-dimensional phase spae of the original problem. Despite in-

reasing the dimensionality of the problem, the WFP equation o�ers the advantage

of oupling the quantum system to its environment through Q
~,F P

. Spei�ally, (1.2)

models the environmental interation as a heat bath of harmoni osillators [6℄.

It is known that in the semi-lassial limit, ~→0, the interation operator formally

onverges to Q0,FP =∆kw+divk(kw), while the pseudo-di�erential operator simpli-

�es to Θ~[V ](w)→−∇xV ·∇kw. In partiular, this limit yields the lassial Vlasov-

Fokker-Plank equation with degenerate di�usion. Moreover, in the speial ase of the
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harmoni potential, V (x)= 1
2 |x−a|2 with a onstant, the pseudo-di�erential operator

of (1.3) has the same form as the lassial aeleration term and an be rewritten,

Θ[V ](w)=−(x−a) ·∇kw for all ~>0. (1.5)

This provides a basis for omparison between the full WFP dynamis and known

properties of the lassial di�usion equation whih was analyzed in [25℄. This om-

parison results from balaning the lassial transport operator for linear aeleration

with the quantum orreted di�usion operator Q
~,F P

de�ned in (1.2).

Numerous analytial results onerning the existene of loal or global in time

solutions to (1.1) are available, in the linear and nonlinear ases [2, 3, 4, 6, 8, 10℄.

In the mean �eld approximation, when (1.1) is oupled to Poisson's equation for the

eletrostati potential

∆xV (x,t)=−
ˆ

Rd

w(x,k,t)dk,

the nonlinear initial value problem has a lassial solution for all time t>0, [1, 3, 4℄.
Existene of global in time solutions assoiated to initial and boundary value

problem in one spae dimension for the Wigner-Poisson system (Q
~,F P

=0) has been
shown in [22℄, where the authors prove well-posedness in C([0,∞),L2(Ωx×Rk;(1+
k2)dxdk)), with in�ow boundary onditions for the bounded spatial domain Ωx.

In addition to the loal or global existene of solutions, there is the outstanding

question of the existene of stationary states. For a harmoni potential V (x)= 1
2 |x−

a|2, existene of a smooth stationary solution to (1.1) in any spae dimension is

shown in [25℄. The authors expliitly omputed the unique stationary state µ(x,k) of
(1.1) for V (x)= |x|2/2. Moreover it was shown in [25℄ that the orresponding time

dependent solution, w(x,k,t), to (1.1) with V (x)= |x|2/2 and general initial data wI

exponentially deays in time toward the steady-state µ.
Existene of stationary solutions to (1.1) for perturbations of harmoni potentials

V (x)=
|x|2
2

+V0(x),

is a subjet of urrent investigation. A very reent result shows the existene, unique-

ness, and onvergene to a unique steady state, when the Lindblad ondition holds,

for sub-quadrati perturbations to the potential [5℄. Current investigation also fouses

on the ase when V0 (x) is a smooth regular funtion with ontrol in its spetral norm.

There it is supposed that there exists a unique steady-state, and the solution of the

orresponding time-dependent problem onverges exponentially to this steady-state,

with the deay rate depending on the perturbation V0(x).
Although there has been reent theoretial progress on the WFP equation as

ontained in the previous referenes, few numerial simulations are available in ases

where the interation operator (1.2) is not inluded. Some of these approahes in-

lude splitting methods for the Wigner-Poisson problem [7, 26℄ and a �nite di�erene

approah to Wigner's equation [20℄. Also, [19℄ developed onvergene and spetral

auray analysis of a semidisrete version of the Wigner equation by means of a

spetral method of a periodi approximation to the solution of the problem.

One reent tehnique for the omplete Wigner-Fokker-Plank model (1.1)-(1.2) has

been the use of ontinued-fration methods by Garia-Palaios and Zueo [17, 16℄.

The solution is approximated by expanding the Wigner funtion in a basis of Her-

mite polynomials of the momentum variable. Then a series of oupled equations for
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the evolution of the time and spae dependent oe�ients is derived. By design, the

system of equations is suh that individual equations are only oupled to their �neigh-

bors,� and the system may be solved by straightforward iteration. A di�ulty arises

in the treatment of arbitrary potentials whih may ompliate the struture of these

equations and inrease the number whih need to be solved. Sharp potentials, suh

as a step potential, may be espeially di�ult to realize.

For omparison to the available analytial results, we work with the dimensionless

version of the problem. To this end we set the terms γ = 1
2 and Dpq =0 in (1.2), and

the orresponding dimensionless initial value problem in R
2d×R

+ beomes

{

∂tw+k ·∇xw+Θ[V ]w=∆kw+divk (kw)+∆xw

w
∣

∣

t=0
=wI (x,k) ,

Θ[V ](w)=− i

(2π)
d

ˆ

R2d

δV (x,η)w(x,k′)eiη·(k−k′)dk′dη, (1.6)

δV (x,η)=V
(

x+
η

2

)

−V
(

x− η

2

)

.

These inlude the expliit formulas and assoiated deay rates analytially alulated

in [25℄. We brie�y reall that the unique stationary state of (1.6) for V (x)= |x|2/2
reads as

µ(x,k)=
1

2
√

5π
e−A(x,k), A(x,k)=

(

1

5
|x|2 +

1

5
x ·k+

3

10
|k|2
)

, (x,k)∈R
2d, (1.7)

and the exponential deay in time of the orresponding time dependent solution,

w(x,k,t), to (1.6) with V (x)= |x|2/2 and general initial data wI is given in the fol-

lowing norm,

∥

∥

∥

∥

w−µ√
µ

∥

∥

∥

∥

L2(R2d)

≤e−σt

∥

∥

∥

∥

wI −µ√
µ

∥

∥

∥

∥

L2(R2d)

. (1.8)

The value σ is the largest positive onstant suh that Hess(A)−σI≥0.
We have implemented the DG method using polynomial and non-polynomial ap-

proximation spaes in order to test its auray and e�ieny. The method is based

on a standard Non-symmetri Interior Penalty Galerkin (NIPG) treatment, but the

pseudo-di�erential operator Θ[V ](w) requires speial attention. The form presented

in (1.3) is ill-suited for numerial implementation. Pratial representations of the

operator are given, and the hoie of whih representation to use depends on the form

of the potential. The various representations allow the method to aommodate a

wide range of potential funtions. Harmoni and sinusoidal potentials have ompat

exat representations whih may be e�iently implemented. Also, methods for a few

basi forms of the potential are quikly extended to linear ombinations of the forms.

The pseudo-di�erential operator Θ[V ] has been the main obstale to both ana-

lyti and numerial studies of Wigner's equation. We implement three methods for

evaluating Θ[V ](w) in simulations. One is a general method, and the other two are

e�ient methods for spei� forms of the potential V . It is di�ult to work diretly

with the representation (1.3) in the DG framework beause it doubles the degree of

integration and although the overall integral is real valued, this is brought about by

osillatory anellations (of ourse one need not expliitly evaluate the imaginary part,
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however, the real part is required and su�ers the same osillations). The e�ieny and

auray of the method an be greatly improved by �nding alternate representations

for Θ[V ](w).
Of partiular interest are perturbations of the harmoni potential,

V (x)=
|x−a|2

2
+V0(x).

To treat non-harmoni potentials (i.e., the perturbation V0), we use alternate

representations of Θ[V ]. The basi approah is to take advantage of the well known

properties of the Fourier transform to rewrite the pseudo-di�erential operator in on-

volution form,

Θ[V ](w)=− i

(2π)
d

ˆ

Rn

δV (x,η)F [w](x,η,t)exp[iη ·k]dη

=−ℑ
(

F−1 [δV ](x,·)
)

∗w(x,·,t), (1.9)

where we denote the Fourier transform in the variables k′ and η by

F [ϕ](η) :=

ˆ

Rd

ϕ(k′)e−ik′·ηdk′

and the imaginary part of a value z with ℑ(z). The funtion δV is a real valued

odd funtion in η, thus the real part of F−1 [δV ] is zero. The expression is linear

in w, real valued, and the degree of integration has been redued. Given F−1 [δV ],
numerial evaluation of the onvolution formula is pratial. This is a method used

for evaluating non-harmoni potentials. The �nal method is for the speial ase that

the potential onsists of a linear ombination of sinusoidal funtions. The inverse

Fourier transform produes delta funtions whih simplify the onvolution formula.

This method is quite useful not just for potentials whih are in Fourier series form,

but also for potentials whih an be loally approximated with sinusoidal funtions

(this inludes polynomials). These methods allow us to treat many forms of potential

funtions, and several examples appear in Setion 4.

The paper is organized as follows. Setion 2 introdues the DG method for a

general approximation spae and our implementation for the WFP equation. Setion 3

then presents estimates related to the onvergene and stability of the method. These

provide a basis to evaluate the resulting numerial method. Setion 4 ontains several

numerial results whih demonstrate agreement with known results from analysis, and

additional results whih go beyond the lass of problems found in urrent analyti

work. Setion 5 ontains onluding remarks, inluding an indiation of how the

availability of numerial simulations an and is being used to assist analyti progress.

2. Implementation of the DG method

The analyti results to whih we would ompare our numerial simulations are

derived in all of R
2d, but we must ompute on a �nite domain. Numerially we will

ompute the solution of the WFP equation in a bounded domain with zero Dirihlet

boundary onditions for both the x and k variables.

In this setion we would like to justify the hoie of the boundary onditions,

showing that if the omputational domain is large enough, the di�erene (in a ertain

norm spei�ed later) between the solution of the boundary value problem and the

one in the whole spae does not inrease with time, but stays small for all times.
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We proeed following the same approah presented in [15℄ for the analysis of the DG

method for the linear Boltzmann equation.

First note that if the WFP in the whole spae admits a stationary solution, µ(x,k)
(e.g. (1.7) for the harmoni potential), whih is integrable in R

2d and normalized to

unity, then

‖µ‖
L2

µ(Ω)
=‖µ‖1/2

L1(Ω)
, (2.1)

for any arbitrary set Ω, where

‖f‖2

L2
µ(Ω)

:=

ˆ

Ω

f2

µ
dx.

For arbitrary ǫ>0, let Ωǫ ⊂R
2d be a set suh that

ˆ

R2d\Ωǫ

|µ|<ǫ. (2.2)

Essentially, the set Ωǫ is not �very big,� beause w∈L2
µ means that w2 deays quikly

and is still integrable when multiplied by µ−1(x,k).
We remark that, in addition to the harmoni ase where (1.8) holds, the estimates

in this setion an be arried over for other potentials V (x) under the assumption that

there exists a unique stationary state µ∈L1(R2d) and the following inequality holds

‖w(x,k,t)−µ‖
L2

µ(R2d)
≤g(t)‖wI −µ‖

L2
µ(R2d)

, (2.3)

for any initial state wI , where g(t) is a positive and bounded funtion suh that

limt→∞g(t)=0 .

Now we estimate the solution w in the ut-o� domain Ωǫ. Sine the solution

w(x,k,t) of (1.2) is uniformly ontrolled in time and stable with respet to wI (see

(2.3)), we an estimate the L2
µ(Ωǫ)-norm of the solution as follows:

‖w‖
L2

µ(Ωǫ)
≤g(t)‖wI −µ‖

L2
µ(R2d)

+‖µ‖L2
µ(Ωǫ) ≤K,

where the onstant K is uniform in time. Similarly,

‖w‖L2
µ(R2d\Ωǫ)≤g(t)‖wI −µ‖

L2
µ(R2d)

+‖µ‖L2
µ(R2d\Ωǫ) =Cg(t)+ǫ1/2 ,

uniformly in time, where C =‖wI −µ‖
L2

µ(R2d)
, and ‖µ‖

L2
µ(R2d\Ωǫ)

≤ ǫ1/2.

Sine limt→∞g(t)=0, there exists a time T ∗ suh that Cg(T ∗)=O(ǫ1/2). The value
T ∗ depends on the distane, in the L2

µ-norm, between the initial and stationary states,

and on the deay rate g(t). Consequently, for all t>T ∗ it holds that

‖w‖L2
µ(R2d\Ωǫ)≤O(ǫ1/2).

Thus by hoosing the domain Ωǫ big enough, whih means Ωǫ ontains almost

all of the total mass of the initial datum wI and of the stationary states µ, then
(at least omputationally, well beyond mahine auray) the solution of the Cauhy

problem w at the boundary of Ωǫ will be zero, with zero derivatives, and the assoiated

evolution problem will essentially be on�ned to the domain Ωǫ.
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To the best of our knowledge, there is no available analytial result at the present

time to rigorously justify this last statement, whih is an assumption for the initial

boundary value problem under onsideration and the orresponding one in all spae.

We remind the reader that the above estimates do not provide a pointwise ontrol

of the solution to (1.2) outside the domain Ωǫ, but give a nie estimate in the L2-

norm.

It is important to note that this approah is intended to heuristially justify the

seletion of the omputational domain. However, the alulation of error estimates in

the following setions are with respet to the solution of the initial value problem in

the bounded domain.

Our aim is to produe a disrete approximation to the solution of the initial

value problem (1.6) in Ω×R
+, for a bounded domain Ω with homogeneous Dirihlet

boundary onditions. The numerial simulations presented in setion 4 use d=1,
but neither the onstrution of the method nor its analysis depend on this partiular

hoie. The omputational domain Ω⊂R2 is the following: onsider Ω=Ωx×Ωk ⊂R
2,

where Ωx := [0,L]⊂R and Ωk := [−K,K]⊂R. The boundaries of Ω are de�ned by

∂Ωx :={(x,−K) | ∀x∈Ωx}∪{(x,K) | ∀x∈Ωx} ,

∂Ωk :=∂Ω0∪∂ΩL :=
{

(0,k) | ∀k∈Ωk
}

∪
{

(L,k) | ∀k∈Ωk
}

,

and are depited in �gure 2.1. The homogeneous Dirihlet boundary onditions on

∂Ωx and ∂Ωk for the assoiated boundary value problem to (1.6) are de�ned by

w(x,K,t)=w(x,−K,t)=0 on ∂Ωx

w(0,k,t)=w(L,k,t)=0 on ∂Ωk.

2.1. Notation. The domain Ω is partitioned into mutually disjoint open

subsets (or ells) Ωj =Ωx
j ×Ωk

j , where the point (x,k)∈Ω, x∈Ωx
j and k∈Ωk

j . Let

hj be the diameter of Ωj , and let h be the maximum diameter over the ells in

this nondegenerate subdivision of the domain ΩN
h ={Ωj}N

j=1. Moreover, let Ej =

{e(j,ζ)}Fj

ζ=1 be the set of faes belonging to ∂Ωj , the boundary of Ωj . If Ej ∩∂Ω 6=∅,
then any fae e(j,ζ)∈Ej ∩∂Ω is an exterior fae, whih will be indiated by writing

∂e(j,ζ). Moreover, let Ee =∪jEj \∂Ω be the set of all internal faes, thus partitioning

the set of all faes, Eh =Ee∪∂Ω, Ee∩∂Ω=∅. To eah fae e(j,ζ) we assoiate an

outward faing unit normal vetor ν(j,ζ) suh that ν(j,ζ) oinides with ν on ∂Ω.
Note that any internal fae orresponds to two ells Ωj and Ωj′ , so for some pairs

(j′,ζ ′), e(j,ζ) =e(j′,ζ′). Summation of faes over the double index would ount eah

fae twie, so sometimes it is more onvenient to use a single index to identify a

partiular fae, ei ∈E, without referene to a spei� ell. The normal vetors are

indexed similarly, however, fae ζ of ell j has a unique outward pointing normal, ν(j,ζ),

whih is antiparallel to the orresponding ν(j′,ζ′). Thus, e(j,ζ) and e(j′,ζ′) may not be

simply interhangeable in expressions whih depend on the normal vetors. This is the

ase (impliitly) in the following de�nitions for jump and average operators: for any

interior fae e(1,ζ)∈∂Ω1∩∂Ω2 we de�ne the jump, [·], and average, {·}, of a funtion

f aross the edge,

[f ] :=f |Ω1
−f |Ω2

,

{f} :=
f |Ω1

+f |Ω2

2
.
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!
x

k

+K

-K

L

Figure 2.1. A shemati of the domain for d=1.

The following identity is used frequently,

[fg]= [f ]{g}+{f} [g]. (2.4)

Another notation used at ell boundaries denotes the upwind value of a funtion f ,

f↑ =f |Ω1
χ[α·νk>0] +f |Ω2

χ[α·νk<0],

where χ[·] is the harateristi funtion and sign(α ·ν) determines the upwind dire-

tion.

The disrete approximation wh is an element of some approximation spae V.
The approximation spaes used in this work are produed by basis funtions φ(x,k),
whih are themselves produts of primitive basis funtions ϕ(x) and ψ(k). Eah basis

funtion is ompatly supported on a single ell, and all primitive basis funtions

(and therefore their produts) are mutually orthogonal. The orthogonality of the

basis funtions is a purely pratial onsideration, and not a requirement of the DG

approah. The approximation spaes used in the simulations presented in Setion 4

(where d=1) are,

Vp
P := span

{

φ(j,m)(x,k)=ϕ(x)ψ(k)
∣

∣ϕ,ψ∈Pp
Ωj

}

,

VT := span
{

φ(j,m)(x,k)=ϕ(x)ψ(k)
∣

∣ϕ,ψ∈{1,sin(ω(s−δ)),cos(σ(s−δ))}
}

,

Vp
H := span

{

φ(j,m)(x,k)=ϕ(x)ψ(k)
∣

∣ϕ,ψ∈Hp
Ωj

}

.

The double index (j,m) identi�es the ell whih supports the basis funtion, Ωj ,

and the mth basis funtion on that ell. As with ell faes, sometimes it will be
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more appropriate to identify basis funtions with a single index, φn, that does not

spei�ally identify a partiular ell. The funtions Pp
Ωj

are Legendre polynomials,

up to degree p, whih have been shifted and saled so that their typial orthogonality

relation holds on eah ell, i.e.,
�

Ωx
j

ϕ(j,m)(x)ϕ(j,m′)(x)dx= δm,m′ , and similarly for

ψ(k) over Ωk
j . In VT the frequenies ω and σ are hosen so that the width of the

ell is an integer multiple of the wavelength of the funtion. Finally, the funtions in

Hp
Ωj

are Hermite funtions, up to degree p, whih have been restrited (not resaled)

to ell Ωj and then loally orthogonalized using the Gram-Shmidt proedure. With

respet to any approximation spae, we write w∗
A to denote the ontinuous interpolant

of w in VA∩C0(Ω).

2.2. Implementation. The funtion wh approximates w and is a linear

ombination of the elements of VA. The omputational task is to alulate the time

evolution of the expansion oe�ients, cn(t),

w(x,k,t)≈wh(x,k,t)=
∑

n

cn(t)φn(x,k).

We rewrite (1.1) as

wt =F (w).

The problem of �nding the semi-disrete disontinuous Galerkin approximation to

(2.6) in a bounded domain Ω is: seek wh(x,k,t)∈R
+
t ×VA suh that,

wh(·,·,t)=0, on∂Ω, wh(x,k,0)=PVA
wI(x,k), (2.5)

and, for all t>0, it holds that

(wht,ψh)Ω =(F (wh),ψh)Ω , ∀ψh ∈VA, (2.6)

where (·,·)Ω denotes the standard salar produt in L2(Ω) and PVA
the projetion on

the approximated spae VA.

The weak formulation beomes,

∑

n

d

dt
cn(t)(φn,ψh)Ω =

(

F

(

∑

n

cn(t)φn

)

,ψh

)

Ω

.

Choosing ψh =φp, a deoupled system of ODEs for the time dependent oe�ients

cp(t) is produed (revealing the pratial reason for using mutually orthogonal basis

funtions),

d

dt
cp(t)=

(F (
∑

n cn(t)φn) ,φp)Ω
(φp,φp)Ω

= F̃p(c(t)), ∀k.

A standard third-order total variation diminishing Runge-Kutta method is used to

solve this system [11, 18, 24℄,

c(1) = ct +∆tF̃ (ct),

c(2) =
3

4
ct +

1

4
c(1) +

1

4
∆tF̃ (c(1)),

ct+∆t =
1

3
ct +

2

3
c(2) +

2

3
∆tF̃ (c(2)).
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The right hand side, F̃ (c(t)), is disretized as follows: let V (x)= 1
2 |x|2 +V0(x), where

V0(x)∈W 1
∞(Rd). Equation (2.6) an be rewritten as

ˆ

Ω

∂twhψh dx+(Θ[V0](wh),ψh)L2(Ω) =(Lwh,ψh)L2(Ω), (2.7)

where L is the linear operator

Lw :=−k ·∇xw+x ·∇kw+2divk(kw)+∆xw+∆kw.

The alert reader will reognize (1.6), but with a fator of two in front of the divergene

term. In the analysis we use the fator of 2 to be onsistent with previous works, but

in the numerial simulations we hange this value to 1. The analyti stationary state

reported in setion 1 oinides with the value 1, and is the stationary state whih will

be used for omparison in the numerial setion. In this and the next setion we will

use the value 2. The bilinear expression for Lw and the test funtion is

(Lw,ψ)L2(Ω) =
∑

Ωj∈ΩN
h

(w,α ·∇ψ)Ωj
−
∑

ei∈Ee

〈w↑[ψ],α ·νi〉ei

−〈wψ,α ·ν〉∂Ω−
∑

Ωj∈ΩN
h

(∇ψ,∇w)Ωj

+
∑

ei∈Ee

〈[ψ],{∇w ·νi}〉ei
−
∑

ei∈Ee

〈[w],{∇ψ ·νi}〉ei

+〈ψ,∇w ·ν〉∂Ω−
∑

ei∈Ee

1

|ei|
〈[w],[ψ]〉ei

,

with α := (k,−x−2k), ∇ :=
(

∇x

∇k

)

, and |ei| denotes the length of the fae ei. The

pseudo-di�erential term is

(Θ[V0](w),ψ)L2(Ωh)

=− i

(2π)d

ˆ

Ωh

ψ(x,k,t)

(
ˆ

R2d

δV0(x,η)w(x,k′,t)eiη·(k−k′)dk′dη

)

dxdk.

In order for the nonloal operator Θ[V0] to be well de�ned, the funtion wh is meant

to be extended to the whole spae in the variable k by the value zero.

The notation 〈·,·〉ei
represents the integration of boundary terms over a ell fae

following integration by parts in x or k. The Dirihlet boundary onditions (2.5)

of the problem are enfored for the boundary terms 〈wψ,α ·ν〉∂Ω and 〈ψ,∇w ·ν〉∂Ω

through the identities

〈wψ,α ·ν〉∂Ω =
1

2
〈wψ,α ·ν〉∂Ω,

and

〈ψ,∇w ·ν〉∂Ω =〈ψ,∇w ·ν〉∂Ω−〈w,∇ψ ·ν〉∂Ω.
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The weak formulation of the problem is:

(∂twh,ψh)Ω−
∑

Ωj∈ΩN
h

(wh,α ·∇ψh)Ωj
+
∑

ei∈Ee

〈w↑
h[ψh],α ·νi〉ei

+
1

2
〈whψh,α ·ν〉∂Ω

+(Θ[V0](wh),ψh)Ω

=−
∑

Ωj∈ΩN
h

(∇ψh,∇wh)Ωj
+
∑

ei∈Ee

〈[ψh],{∇wh ·νi}〉ei
−
∑

ei∈Ee

〈[wh],{∇ψh ·νi}〉ei

+〈ψh,∇wh ·ν〉∂Ω−〈wh,∇ψh ·ν〉∂Ω−
∑

ei∈Ee

1

|ei|
〈[wh],[ψh]〉ei

. (2.8)

The basi integrals, those atually omputed numerially, are determined by seleting

the elements of {φp} as test funtions. Let {φp} be a test funtion with support in

the ell Ωj , then

(wh,α ·∇φp)Ωj
=
∑

n∈Ωj

cn (φn,α ·∇φp)Ωj
,

〈w↑
h[φp],α ·νi〉ei

= δei∈∂Ωj

∑

n∈∂Ωj

cn〈(α ·ν)φ↑n,φp〉ei
,

〈[wh],{∇φp ·νi}〉ei
=
δei∈∂Ωj

2

∑

n∈∂Ωj

cn〈φn,∇φp ·ν〉ei
,

〈[φp],{∇wh ·νi}〉ei
=
δei∈∂Ωj

2

∑

n∈∂Ωj

cn〈∇φn ·ν,φp〉ei
,

(∇φp,∇wh)Ωj
=
∑

n∈Ωj

cn(∇φn,∇φp)Ωj
.

The notation n∈Ωj indiates that the sum is only over the basis funtions φn whih

have support on ell Ωj . While mutual orthogonality is no longer expeted (α depends

on k and we have di�erentiated), a pair of basis funtions still must share the same

supporting ell to produe a nonzero integral. Similarly, in the seond expression, the

funtions φn and φp must be supported on ells whih share a fae, n∈∂Ωj . The fae

in question, ei must also be one of the faes of ∂Ωj , indiated by the term δei∈∂Ωj
,

whih is 1 if this is true and 0 otherwise. In the next setion, there is also referene

to n∈Ωj(p), meaning the set of all n suh that suppφn∩suppφp 6=∅ given φp.

The WFP equation (1.1) is mass-onserving, in the sense that

ˆ

R2d

w(x,k,t)dxdk= const. ∀t≥0.

This onservation property does not hold if the problem is onsidered in a bounded

domain with zero-Dirihlet boundary onditions. The sheme presented here, for (1.1)

with homogeneous Dirihlet boundary ondition, is not mass onserving. However if

the basis funtions are pieewise onstants, one may easily hek that the above

sheme is mass onserving.

This property will be shown in the numerial simulations in Setion 4.
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2.3. The pseudo-di�erential operator. The pseudo-di�erential operator

is evaluated in one of three ways depending on the spei� form of the potential. The

simplest is the approah used for the harmoni potential. As noted in the introdution,

the form of the pseudo-di�erential operator in this ase is −(x−a) ·∇kw. In the DG

sheme this term is treated analogously to the transport term, k ·∇xw.
The seond approah is to work diretly with the onvolution form of the operator,

Θ[V ](w)=−ℑ
(

F−1 [δV ](x,·)
)

∗w(x,·,t). (2.9)

In bilinear form, using φp as the test funtion, all of the required integrals are restrited

to �nite intervals

(Θ[V ](wh),φp (x,k))Ω

=−
∑

n∈Ωx
j(p)

cn

ˆ

Ωk
j(p)

ˆ

Ωx
j(p)

ˆ

Ωk
j(n)

ℑ
(

F−1 [δV ](x,k−s)
)

φn (x,s)φp (x,k)dsdxdk.

The sum is now arried out over all n∈Ωx
j(p), whih indiates all funtions φn with

support in Ωx
j(p)×

(

∪zΩ
k
z

)

, that is, over all n suh that the spatial omponent of the

support of φn overlaps the spatial omponent of the support of φp. Thus, the integral

in s is restrited by the support of φn and the integrals in x and k are restrited

by the support of φp. Although the integrals may be osillatory due to the inverse

transform of the potential, these osillations are independent of the mesh and so ould

be eliminated by mesh re�nement.

This approah is pratial when the inverse Fourier transform of the potential

is available and easily integrated by numerial methods. Gaussian potentials provide

one useful and obvious example. Step potentials (Heaviside funtions) are also treated

in this manner. For the potential,

Va(x)=















0 x<a

1

2
x=a

1 x>a















,

the inverse Fourier transform of δV is,

F−1 [δV ](x,k)= i
cos(2(x−a)k)

πk
.

Linear ombinations of step potentials are used in setion 4 to produe numerial

examples in whih w is on�ned to a bin onstruted of square walls with �nite height

and width.

Finally, the onvolution approah an be further streamlined if there is a losed

form for the onvolution. This is possible for the important ase of sinusoidal poten-

tials. The inverse Fourier transform then produes delta funtions, and the onvo-

lution may be evaluated immediately. Suppose V (x)=
∑

avaexp[ixa2π/P ]; then the

funtion δV (x,η) is

δV (x,η)=
∑

a

va exp[iax2π/P ](exp[iηaπ/P ]−exp[−iηaπ/P ])

=
∑

a

2va exp

[

i

(

2πax

P
+
π

2

)]

sin(πaη/P ).
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Applying the inverse Fourier transform, one arrives at the expression

−ℑ
(

F−1 [δV ](x,k)
)

=
∑

a

ṽa(x)(δ (k−aπ/P )−δ (k+aπ/P )),

where the real valued oe�ients ṽa(x) are

ṽa(x)=2π (ℑ(va)cos(2πax/P )+ℜ(va)sin(2πax/P )).

Applying onvolution,

Θ[V ](w(x,k,t))=−ℑ
(

F−1 [δV ](x,·)
)

∗w(x,·,t)
=
∑

a

ṽa(x)((δ(k−aπ/P )−δ(k+aπ/P ))∗w(x,·,t))

=
∑

a

ṽa(x)(w(x,k−aπ/P,t)−w(x,k+aπ/P,t)). (2.10)

Replaing w with wh and seleting basis funtion φp(x,k) as the test funtion, the

basi integrals to be omputed are

(Θ[V ](wh),φp)=
∑

n∈Ωj(p)

cn

(

∑

a

ṽa (x)φn (x,k±aπ/P ) ,φp (x,k)

)

Ωj

.

Note that the nonloal nature of the operator means that the support of φn does not

need to be the same as the support of φp to produe a nonzero result. No boundary

terms arise, but integration is nonloal, and one must alulate the oe�ients ṽa (x).
The auray of the representation depends on the �nite number of terms that one

is able to a�ord to ompute. Fortunately, many useful potentials may be aurately,

even exatly represented with just a few terms. Primus inter pares:

V (x)=αsin(x+θ)+γ,

where α, θ, and γ, are onstants. For this family of potentials, Θ[V ](w) has exat,

two term Fourier representations. However, even for funtions whih require more

Fourier terms, there is only a linearly growing omputational ost. No additional

theoretial development is needed (as would have been the ase for the di�erential

representation).

A wide range of potentials in the form of (1.5) may be treated by ombining

the two representations of Θ[V ]. Even polynomials suh as x2 may be approximated

loally using a ombination of sinusoidal terms. This example provides a useful test

for verifying the numerial implementation, and is inluded in the results in setion 4.

Between the speial method for harmoni potentials, the onvolution method, and the

sinusoidal method, a wide range of potential funtions, and any linear ombination

thereof, is available.

3. Analysis of the numerial sheme

3.1. Interpolation and approximation results. We brie�y reall some

approximation results that will be useful:
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Lemma 3.1. Let Ωh be a simply onneted subset of Ω⊂R
d with h=diam (Ωh) and e

be a fae of Ωh with normal vetor ν. If ph is a �nite polynomial on Ωh there exists

a onstant c, not depending on Ωh, suh that

‖ph‖2,e ≤
c√
h
‖ph‖2,Ωh

, (3.1)

‖∇ph ·ν‖2,e ≤
c√
h
‖∇ph‖2,Ωh

, (3.2)

‖ph‖H1(Ωh)≤
c

h
‖ph‖2,Ωh

. (3.3)

Proof. See [23℄.

Furthermore, for eah f(x,t)∈H2(Ω) and its ontinuous interpolant f∗P (x,t)∈
VP ∩C0(Ω), the following approximation properties hold for all t>0 for q=0, 1, 2:

‖f(·,t)−f∗P (·,t)‖Hq(Ωh)≤ chp+1−q‖f(·,t)‖Hp+1(Ωh), (3.4)

‖∂tf(·,t)−∂tf
∗
P (·,t)‖2,Ωh

≤ chp‖∂tf(·,t)‖Hp(Ωh). (3.5)

We de�ne the element spae

VP :={ϕ |ϕ|Ωj
polynomial of total degree less than or equal to p}, (3.6)

and denote with w∗
P the ontinuous interpolant of w in VP ∩C0(Ω) (note that VP is

distint from the orthogonalized version Vp
P mentioned in Setion 2).

3.2. Stability, onsisteny and L2-error estimates. Let V (x)= 1
2 |x|2 +

V0(x), where V0(x)∈W 1
∞(Rd). Again, the weak formulation of the problem is

(∂twh,ψh)Ω−
∑

Ωh

(wh,α ·∇ψh)Ωh
+
∑

ei∈Ee

〈w↑
h[ψh],α ·νi〉ei

+
1

2
〈whψh,α ·ν〉∂Ω

+(Θ[V0](wh),ψh)Ω

=−
∑

Ωh

(∇ψh,∇wh)Ωh
+
∑

ei∈Ee

〈[ψh],{∇wh ·νi}〉ei
−
∑

ei∈Ee

〈[wh],{∇ψh ·νi}〉ei

+〈ψh,∇wh ·ν〉∂Ω−〈wh,∇ψh ·ν〉∂Ω−
∑

ei∈Ee

1

|ei|
〈[wh],[ψh]〉ei

, (3.7)

with Ω⊂R
2d and where summation over Ωj ∈ΩN

h is now summation over Ωh for

onsisteny with Lemma 3.1, and re�eting the signi�ane of h. In this setion we

will make use of the following identities: for all funtions f ∈VP , we have

1

2
〈[f2],α ·ν〉e−〈f↑[f ],α ·νi〉e =−1

2
〈[f ]2,|α ·ν|〉e, (3.8)

where e denotes a general fae, and the integration by parts formula is

∑

Ωh

(f,α ·∇f)Ωh
=
d

2

∑

Ωh

‖f‖2
2,Ωh

+
1

2

∑

ei∈Ee

〈[f2],α ·ν〉ei
+

1

2
〈f2,α ·ν〉∂Ω. (3.9)

For the estimates below, we need the following Lemma:



I.M. GAMBA, M.P. GUALDANI AND R.W. SHARP 649

Lemma 3.2. Let wh, ψ∈VP be suh that wh =ψ=0 outside the bounded domain Ω,

and V0(x)∈L∞
(

R
d
)

. We have

(Θ[V0](wh),ψ)Ω≤ c‖wh‖2
2,Ω +‖ψ‖2

2,Ω,

where c depends on V0.

Proof. Sine the potential V0 is bounded, we have (see [22℄ and referenes therein)

ˆ

Ω

Θ[V0](wh)ψdxdk≤‖Θ[V0](wh)‖2
L2(Ω) +‖ψ‖2

L2(Ω)

≤ c||V0||L∞(Rd)||wh||L2(R2d) +‖ψ‖2
L2(Ω)

≤ c‖wh‖2
2,Ω +‖ψ‖2

2,Ω.

The onsisteny and stability of the sheme are proved in the following theorem:

Theorem 3.1. Let wh(t) be the semi-disrete solution on VP to (3.7). For all T >0
we have

‖wh(T )‖2
2,Ω +2

∑

Ωh

ˆ T

0

‖∇wh‖2
2,Ωh

dt+2
∑

ei∈Ee

1

|ei|

ˆ T

0

‖[wh]‖2
2,ei

dt

+
∑

ei∈Ee

ˆ T

0

‖[wh]|α ·ν|1/2‖2
2,ei

dt≤‖wh(0)‖2
2,Ωe

dT .

Proof. Use ψh =wh as the test funtion in (3.7). Using (3.9) we obtain

1

2

d

dt
‖wh‖2

2,Ω− d

2

∑

Ωh

‖wh‖2
2,Ωh

− 1

2

∑

ei∈Ee

〈[w2
h],α ·ν〉ei

+
∑

ei∈Ee

〈w↑
h[wh],α ·νi〉ei

+(Θ[V0](wh),wh)Ω +
∑

Ωh

‖∇wh‖2
2,Ωh

+
∑

ei∈Ee

1

|ei|
‖[wh]‖2

2,ei
=0.

The operator Θ[V0] is skew-symmetri, whih implies (Θ[V0](wh),wh)Ω =0.

Identity (3.8) applied to the boundary terms on the interior edges leads to

−1

2

∑

ei∈Ee

〈[w2
h],α ·ν〉ei

+
∑

ei∈Ee

〈w↑
h[wh],α ·νi〉ei

=
1

2

∑

ei∈Ee

〈[wh]2,|α ·ν|〉ei
.

The identity above implies that

d

dt

1

2
‖wh‖2

2,Ω +
∑

Ωh

‖∇wh‖2
2,Ωh

+
∑

ei∈Ee

1

|ei|
‖[wh]‖2

2,ei

+
1

2

∑

ei∈Ee

‖[wh]|α ·ν|1/2‖2
2,ei

≤ d

2
‖wh‖2

2,Ω.

The thesis follows from Gronwall's lemma.
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Theorem 3.2. Let wh(t) be the semi-disrete solution in VP to (3.7) for t≥0, and
assume that wI ∈Hp+1(Ω), w(t)∈C∞(Ω) for t>0. Then,

‖(w−wh)(T )‖2
2,Ω +

1

2

∑

Ωh

ˆ T

0

‖∇(w−wh)‖2
2,Ωh

dt+
∑

ei∈Ee

1

2|ei|

ˆ T

0

‖[w−wh]‖2
2,ei

dt

+
1

4

∑

ei∈Ee

ˆ T

0

‖[w−wh]|α ·ν|1/2‖2
2,ei

dt

≤ceT

(

‖(w−wh)(0)‖2
2,Ω +h

2p−2

ˆ T

0

(‖w‖2
Hp+1(Ω) +‖∂tw‖2

Hp(Ω))dt

)

.

Proof. We onsider the di�erene in the weak formulation for the funtions w and

wh, after deomposing the error w−wh into w−wh =η−ξ with η :=wh−w∗
P and

ξ=w−w∗
P , where w

∗
P is the interpolant of w in VP . We have that

(∂tη,ψ)Ω−
∑

Ωh

(η,α ·∇ψ)Ωh
+
∑

ei∈Ee

〈η↑[ψ],α ·νi〉ei

+
1

2
〈ηψ,α ·ν〉∂Ω +(Θ[V0](η),ψ)Ω

=(∂tξ,ψ)Ω−
∑

Ωh

(ξ,α ·∇ψ)Ωh
+
∑

ei∈Ee

〈ξ↑[ψ],α ·νi〉ei
+

1

2
〈ξψ,α ·ν〉∂Ω

+(Θ[V0](ξ),ψ)Ω−
∑

Ωh

(∇ψ,∇η)Ωh
+
∑

ei∈Ee

〈[ψ],{∇η ·νi}〉ei

−
∑

ei∈Ee

〈[η],{∇ψ ·νi}〉ei
+〈ψ,∇η ·ν〉∂Ω−〈η,∇ψ ·ν〉∂Ω

−
∑

ei∈Ee

1

|ei|
〈[η],[ψ]〉ei

+
∑

Ωh

(∇ψ,∇ξ)Ωh
−
∑

ei∈Ee

〈[ψ],{∇ξ ·νi}〉ei

+
∑

ei∈Ee

〈[ξ],{∇ψ ·νi}〉ei
−〈ψ,∇ξ ·ν〉∂Ω +〈ξ,∇ψ ·ν〉∂Ω

+
∑

ei∈Ee

1

|ei|
〈[ξ],[ψ]〉ei

=A1 + ...+A17.

We hoose the test funtion ψ=η, and employ the same alulations as in the previous

lemma. Also, due to the ontinuity of ξ, [ξ]=0, simplifying several terms,

A6 =−
∑

Ωh

‖∇η‖2
2,Ωh

, A7 +A8 =0, A9 +A10 =0,

A11 =−
∑

ei∈Ee

1

|ei|
‖[η]‖2

2,ei
, A14, A17 =0.

The ombined result is,

d

dt
‖η‖2

2,Ω +
1

2

∑

ei∈Ee

‖[η]|α ·ν|1/2‖2
2,ei

− d

2
‖η‖2

2,Ωh

+
∑

Ωh

‖∇η‖2
2,Ωh

+
∑

ei∈Ee

1

|ei|
‖[η]‖2

2,ei
=A1 + ...+A5 +A12 +A13 +A15 +A16.



I.M. GAMBA, M.P. GUALDANI AND R.W. SHARP 651

In the following estimates, we draw the reader's attention to the dependene on mesh

size h by using a bold faed h.

Cauhy-Shwarz and the inverse inequality (3.3) produe the following estimates:

A1≤ ch2p‖∂tw‖2
Hp(Ω) +‖η‖2

2,Ω,

A2≤
1

h2
‖ξ‖2

2,Ω‖α‖2
∞,Ω +

∑

Ωh

‖η‖2
2,Ωh

≤ c|Ω|h
2p‖w‖2

Hp+1(Ω) +‖η‖2
2,Ω.

Inequality (3.1) leads to:

A3≤
∑

ei∈Ee

‖α‖∞,ei
‖ξ↑‖2

2,ei
+

1

4

∑

ei∈Ee

‖[η]|α ·νi|1/2‖2
2,ei

,

≤c|Ω|h
2p+1‖w‖2

Hp+1(Ω) +
1

4

∑

ei∈Ee

‖[η]|α ·νi|1/2‖2
2,ei

,

A4≤
1

2
h‖η‖2

2,∂Ω +
1

2h
‖ξα ·ν‖2

2,∂Ω≤ 1

2
‖η‖2

2,Ω +c|Ω|h
2p‖w‖2

Hp+1(Ω)

A5≤‖η‖2
2,Ω +ch2p+2‖w‖2

Hp+1(Ω),

A12≤
1

4

∑

Ωh

‖∇η‖2
2,Ωh

+
∑

Ωh

‖∇ξ‖2
2,Ωh

,

≤1

4

∑

Ωh

‖∇η‖2
2,Ωh

+ch2p‖w‖2
Hp+1(Ω),

A13≤
∑

ei∈Ee

(

1

4h
‖[η]‖2

2,ei
+h‖{∇ξ ·νi}‖2

2,ei

)

≤ 1

4h

∑

ei∈Ee

‖[η]‖2
2,ei

+ch2p‖w‖2
Hp+1(Ω).

Finally, using (3.2) gives,

A15≤h‖η‖2
2,∂Ω +

1

h
‖∇ξ ·ν‖2

2,∂Ω

≤c‖η‖2
2,Ω +ch2p−2‖w‖2

Hp+1(Ω),

A16 =〈ξ,∇η ·ν〉∂Ω≤ 1

h
‖ξ2‖2,∂Ω +

h

4
‖∇η ·ν‖2

2,∂Ω

≤h
2p‖w‖2

Hp+1(Ω) +
1

4
‖∇η‖2

2,Ω.

Altogether, we have,

d

dt
‖η‖2

2,Ω +
1

4

∑

ei∈Ee

‖[η]|α ·ν|1/2‖2
2,ei

+
1

4
‖[η]|α ·ν|1/2‖2

2,∂Ω0
+

1

2

∑

Ωh

‖∇η‖2
2,Ωh

+
∑

ei∈Ee

1

2|ei|
‖[η]‖2

2,ei
≤ c‖η‖2

2,Ω +c|Ω|h
2p−2(‖w‖2

Hp+1(Ω) +‖∂tw‖2
Hp(Ω)).

The thesis then follows from Gronwall's lemma.
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3.3. On the spetrum of the WFP operator in the harmoni ase.

Some knowledge of the spetrum of the WFP operator provides a way to test the

onvergene rate of the DG method. When V (x)=x2/2 and d=1 equation (1.6)

reads,

wt =xwk−kwx +wxx +kwk +w+wkk =Lw, (x,k)∈ R
2.

The �rst eigenfuntion of L, with eigenvalue 0, is µ,

µ=
(

1/
(

2
√

5π
))

exp[−
(

x2/5+xk/5+3k2/10
)

]. (3.10)

Additional eigenfuntions an be produed by applying L to Ps(x,k)µ(x,k), where
Ps is an undetermined polynomial of degree s in x and k. The result is Qs(x,k)µ(x,k),
where Qs is a new polynomial. By solving the eigenvalue problem Ps(x,k)=λQs(x,k)
for the unknown oe�ients of Ps, one determines new eigenvalues and eigenfuntions

of L. Setting s=1 produes a onjugate pair of eigenvalues and eigenfuntions,

λ±1 =−1

2
±

√
3

2
i,

µ±1 =

((

3

14
∓ 5

√
3

14
i

)

x+k

)

µ(x,k).

We are only interested in real valued solutions of the WFP problem and onsider the

initial ondition given by the sum

µ1 =µ+1 +µ−1 =

(

3

7
x+2k

)

µ(x,k). (3.11)

Note that µ1 has zero mass. If wI =µ1, the solution to the WFP equation will onverge

to the trivial steady state, 0, at the rate exp[−t/2].
When s=2, three new eigenvalues are produed. One of the eigenvalues is real,

λ2 =−1, µ2 =

(

x2 +xk+
7

3
k2− 20

3

)

µ. (3.12)

The two remaining eigenvalues are a onjugate pair with real part also equal to -1.

Real ombinations of all three eigenfuntions deay at rate exp[−t].
Another expeted rate of onvergene was desribed in equation (1.8). The

weighted di�erene, ‖w−µ‖L2
µ(Ω), will always deay at least as fast as e−σt, where σ

is the largest value suh that Hess(A)−σI≥0. Numerial results exhibiting these

onvergene rates an be found in Setion 4.1.

4. Numerial Results

The DG method desribed here has been implemented for d=1. The domain

was partitioned into a regular retangular mesh. The struture of the domain,

Ω=Ωx×Ωk, makes this the natural hoie, though in higher dimensions a more elab-

orate struture may be appropriate. To verify the numerial implementation, several

tests were onduted using various potentials and di�erent approximation spaes. In

addition to on�rming several known properties of the WFP equation, numerial tests

were also performed whih go beyond the sope of ontemporary analysis.

For our numerial simulations we use the equation with the physial parameters,

like in (1.2)�(1.4). We hoose ~=m=1 and Ω=0.
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N L1 abs deviation L1 L2
µ abs deviation L2

µ

slope = -1.781 slope = -1.698

50 1.600e-02 3.284e-03 3.404e-02 3.894e-03

72 8.480e-03 3.079e-03 1.865e-02 3.616e-03

94 5.276e-03 3.247e-03 1.187e-02 3.867e-03

116 3.605e-03 0.499e-03 8.242e-03 0.663e-03

138 2.621e-03 3.535e-03 6.068e-03 4.255e-03

Table 4.1. Convergene to the analyti steady state of the harmoni potential with respet
to mesh re�nement. A regular N ×N grid was used in eah ase. The log of ‖µh−µ‖L1(Ω) and
‖µh−µ‖L2

µ(Ω) are reported in olumns two and four. These values derease linearly with the log of

N . The deviation between eah datum and a best �t linear relationship is reported in olumns three
and �ve under "abs deviation." The slope of the best �t trend is reported in the respetive olumn
header.

4.1. Veri�ation. The �rst and most basi tests showed that a number of

subproblems ontained within the WFP equation are orretly solved. Two of the

tests hek for onvergene of the numerial solution to the time dependent solutions

of the transport and heat equations with respet to mesh and basis set order. These

tests were suessful, ahieving the expeted onvergene and rates.

Those initial tests were trivial in that they did not involve the pseudo-di�erential

operator. To test the implementation of Θ[V ], we veri�ed that simulations onverge at

the proper rate to the known stationary state of the WFP problem using a harmoni

potential, V (x)=x2/2. The tests in this Setion (4.1) were arried out under the

following onditions: all onstants were set equal to unity, as in equation (1.6); the

omputational domain and time-step used were Ω=[−10,10]× [−10,10] and dt=0.001
respetively; in order to measure the rate of onvergene to the steady state, the initial

state is a Gaussian funtion, normalized and entered at the origin,

wI =(2/π)exp[−2
(

x2 +k2
)

]. (4.1)

The amount of mass not ontained in Ω is approximately 7.8×10−9 for µ, and less

than 10−10 for wI . These values are muh smaller than other soures of numerial

error (see the introdution for a disussion of the onsequenes of working in a ut-o�

domain).

The numerial implementation uses one of three di�erent approahes to evaluate

the pseudo-di�erential operator depending on the form of the potential. The �rst

method examined was the �lassial� approah, that replaes the pseudo-di�erential

with (1.5) beause the potential is harmoni.

Table 4.1 shows onvergene to (3.10) with respet to mesh re�nement. The

simulations were arried out using V1
P , pieewise linear funtions. Eah simulation was

evolved until a numerial steady state, µh, was (approximately) reahed. The table

lists L1(Ω), L2
µ(Ω), and orresponding �abs deviation� values. The �abs deviation�

olumns indiate the absolute value of the di�erene between the data in olumns two

and four and a best �t linear relationship between the funtions log(N) and log(err).
The slope of these linear relationships is listed at the top of eah olumn. The small

values in these olumns indiate linear behavior, that is, exponential onvergene to

the analyti steady state as the mesh is re�ned.

In the ase of the harmoni potential, the steady state is unique, so we repeated

some of the alulations above with di�erent initial data. One example is a ombina-
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Figure 4.1. Density plot of the onvergene of a three entered initial state to the unique
steady state of WFP equation with a harmoni potential. The numerial solution is essentially zero
in the white regions.

tion of three Gaussians entered about the origin,

wI =
2

3π

(

exp[−2
(

(x−4)2 +(k−0)2
)

]+exp
[

−2
(

(x+2)2 +(k−2
√

3)2
)]

+exp
[

−2
(

(x+2)2 +(k+2
√

3)2
)])

. (4.2)

Convergene is depited in �gure 4.1, a plot of harge density, ρ(x,t)=
�

w(x,k,t)dk,
as a funtion of x and t. Sine density is a projetion of the solution onto x and t, wI

initially appears to have only two enters due to a symmetry, whih is immediately

broken as the three enters spiral around the origin. The steady state ahieved in

this alulation is µ, whih is shown in �gure 4.2 (using a 64×64 grid), labelled

�three Gaussians�. The rate of onvergene to µ is ontrolled by the spetrum of

the WFP operator. Some of its eigenvalues were derived, for the harmoni ase, in

setion 3.3, and a bound on these values, is known: −σ≈−0.276. �gure 4.2 is a plot

of log‖wh−µ‖L2
µh

(Ω) as a funtion of time for several di�erent initial onditions. The

grid used is 64×64, the approximation spae is V1
P , and the remaining parameters are

those stated at the beginning of this setion. Both panels show the same data, but the

�rst is plotted on a shorter time-sale to highlight the initial onvergene behavior.

The rate is alulated with respet to the numerial steady state, µh, as determined

by the alulation. If the analyti steady state is used instead, approximation error

obsures the long term behavior. Convergene rate is the primary objet of interest,

so eah urve in 4.2 has been translated to interset the origin. Results are shown

for �ve di�erent initial onditions: �asymmetri,� wI =xµ+µ, whih initially deays

at the slowest possible rate, −σ; ��rst eigenfuntion,� µ1 +µ, from equation (3.11),

whih initially deays with rate -1/2; �seond eigenfuntion,� µ2 +µ, from equation

(3.12), whih initially deays at rate -1; �one Gaussian,� equation (4.1); and �three

Gaussians,� equation (4.2). The steady state µ was added to the �rst and seond

eigenfuntions so that the solution would have unit mass and therefore onverge to µ
rather than the trivial steady state, 0, whih annot be used to produe the weighted
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L2 norm. The traes in the �gure osillate, but reveal several distint slopes, revealing

information about the spetrum of the WFP operator. To further test the �lassial"

Figure 4.2. The L2
µh

onvergene of the solution to the unique steady state (equation 3.10)
of the harmoni potential. The two �gures show the same data on di�erent time sales. The �gure
on the left highlights the initial deay rates using various initial onditions, as desribed in the text.
To simplify omparison between urves, they have all been shifted to interset the origin. The rate
of onvergene an be no slower than exp(−σt) where σ =(1−1/

√
5)/2≈0.276. Lines with slopes

-1/2, -1, and −σ are drawn, orresponding to two eigenvalues of the WFP operator and the bound
on the deay rate.

implementation of the pseudo-di�erential operator, several runs were performed using

eah of the di�erent approximation spaes. The same parameters were used, but

the mesh size and approximation spae were varied. The results are listed in Table

4.2. The variable m is the number of primitive basis funtions used to onstrut
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the approximation spae on eah ell in the mesh, onsequently, there are m2 basis

funtions on eah ell. For the polynomial and Hermite bases, m is equal to p+1.
For the trigonometri ase, the sets of primitive basis funtions for m = 1, 2, and 3

are {1}, {1,cos}, and {1,cos,sin} respetively (no m=4 trigonometri approximation

spae was implemented). The period of eah primitive trigonometri basis funtion

was equal to the width of its ell, in the respetive oordinate, x or k. The restrited
Hermite approximation spaes have more struture, and they are desribed in detail

below.

The purpose of these tests was to show the advantages and disadvantages of

various approximation spaes, so the meshes are relatively oarse in order to magnify

di�erenes. The polynomial basis is in fat optimal as N beomes large, but sub-grid

resolution an be exploited on oarse meshes to boost e�ieny. As a onsequene of

equation (3.7), mass is onserved when the approximation spae is pieewise onstant.

This was observed, up to mahine preision, and furthermore, in all polynomial and

trigonometri ases, the total mass was preserved to at least 0.1%. However, the

Hermite approximation spae does not inlude pieewise onstant solutions. Hermite

funtions are produts of Hermite polynomials and a Gaussian funtion. In these

ases onservation of mass was obtained through the following proedure: a parameter

ontrolling the width of the Gaussian part of the Hermite funtions was adjusted until

mass was onserved to better than 0.1% after 10,000 timesteps. This parameter is

very similar to the αj , whih appear in equation (3.1) of [28℄. Shu has indiated to

the authors that there is not a general approah for seleting this parameter in suh

a way as to preserve mass. That is, the approximation spae was optimized by hand

to give good subgrid resolution on very oarse meshes.

Column one shows the error, ‖µh−µ‖L1(Ω), and olumn two shows the log (base

10) of the weighted L2
µ norm. Essentially, olumn one gives the absolute error, and

olumn two measures the quality of the solution in a relative sense. There is a lear

trend of improvement as the mesh and basis set are re�ned for the polynomial ap-

proximation spaes, with one exeption. In the pieewise onstant ase, the N =16
grid is best. A pieewise onstant basis is atually unsuitable for this problem, for

example, beause the ontribution from the seond order terms in the Fokker-Plank

operator are eliminated, and the solution fails to onverge to µ, beoming tightly

peaked around the origin. The trigonometri approximation spaes also fare poorly.

Qualitatively, they produe a peak whih is too �at and broad.

Hermite funtions are the eigenfuntions of the quantized Hamiltonian with a

harmoni potential (see for example [9℄), and are very similar to the eigenfuntions

of the WFP equation (see the disussion of �gure 4.2). That is, the approximation

spae is made of funtions very similar to the desired solution. The result is a good

solution even on the N =2 mesh. As more Hermite funtions are added and the mesh

beomes oarser, the method is nearly a spetral solver in a ut-o� domain.

4.2. Calulations for perturbations of the harmoni potential. The

next hallenge is to verify the implementation of the onvolution based methods for

evaluating the pseudo-di�erential operator ating on the perturbation potential, where

the only (non-trivial) analyti solution is for the harmoni potential. There is already

a good approah for harmoni potentials, and beause the inverse Fourier transform

of the harmoni potential is a distribution, it is not possible to simply insert it into

the onvolution based numerial alulations used to evaluate Θ[V ](w). However, the
harmoni potential an be approximated loally, i.e., everywhere within the ut-o�

domain, by a simple ombination of sinusoidal funtions. In all subsequent alula-
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‖µh−µ‖L1 log10

(

‖µh−µ‖L2
µ

)

Vp
P m Vp

P m

N 1 2 3 4 N 1 2 3 4

2 2

4 1.485 0.484 0.278 0.198 4 11.866 10.357 9.002 8.547

8 0.970 0.178 0.109 0.023 8 10.435 6.465 4.536 3.029

16 0.356 0.106 0.044 0.003 16 7.125 0.939 -0.927 -2.186

32 0.812 0.035 0.018 0.000 32 0.275 -1.140 -1.550 -3.523

VT m VT m

N 1 2 3 4 N 1 2 3 4

2 2

4 1.486 1.920 1.318 4 11.866 11.344 11.609

8 0.970 1.263 1.102 8 10.435 11.625 10.572

16 0.356 0.419 0.916 16 7.125 9.433 8.529

32 0.812 0.772 0.748 32 0.275 3.166 6.212

Vp
H m Vp

H m

N 1 2 3 4 N 1 2 3 4

2 0.321 0.124 2 -0.301 -0.470

4 0.320 4 -0.303

8 8

16 16

32 32

Table 4.2. A alulation on relatively oarse grids shows the e�et of various approximations
spaes. The left olumn reports the L1 error between the numerial and analyti steady states
(absolute error), and right olumn gives the logarithm (base 10) of the weighted L2 error (roughly,
the relative error). The value m is the number of primitive basis funtions used to onstrut eah
approximation spae.

tions the basis used is V1
P , the pieewise linear polynomial basis. We stress that we

have found this is the most e�ient one to use for �ner meshes.

4.2.1. Small sinusoidal perturbations. The method for evaluating

Θ[V ](w), where the potential onsists of sinusoidal funtions, (2.10), was therefore

tested by showing that a sequene of non-harmoni potentials onverging loally to

V (x)=x2/2 produes a sequene of stationary states whih onverge to the stationary

state of the related harmoni problem. The sequene of potentials, parameterized by

ai, is,

V (x;ai)=ai

(

1−cos

(

x√
ai

))

=
1

2
x2 +O

(

x4

a2
i

)

.

The parameters used were the same as those used to produe Table 4.1. A 94×94
mesh was used. The alulation was run to a steady state, and this steady state was

ompared to the same numerial steady state whih was used to produe the third

row of Table 4.1. The result demonstrating the desired onvergene appears in Table
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ai ‖µai
−µh‖L1(Ω) ‖µai

−µh‖L2
µh

(Ω)

10.0 6.019e-02 7.024e-01

20.0 2.776e-02 6.967e-02

30.0 1.824e-02 4.173e-02

50.0 1.094e-02 2.369e-02

100.0 5.588e-03 1.150e-02

Table 4.3. Convergene to the harmoni potential steady state for the potential, V (x;ai)=
ai(1−cos(x/

√
ai)). As the parameter ai inreases, the potential onverges loally to x2/2, and the

numerial steady state, µai , onverges to the numerial steady state of the purely harmoni problem,
µh.

4.3.

4.2.2. Partile in a box. The �nal method for evaluating the pseudo-

di�erential operator whih needs to be tested is the expliit onvolution method,

(2.9). This test was qualitative, and similar to the well known "partile in a box"

problem. Again, it onsisted of setting wI equal to a Gaussian entered at the origin

and evolving the solution. A ombination of Heaviside funtions was used to reate a

set of four potential barriers with various heights and widths. The barriers were plaed

on the intervals [−11,−10], [−4.1,−4], [4,4.1], and [10,11]. The height of the outer

barriers is ten times greater than the inner barriers. The outer barriers are essentially

impenetrable, and meant to on�ne the solution. The inner barriers restrit, but do

not ompletely ontain wh as it evolves. The di�usion onstants were Dqq =Dpp =0.1.
The domain was Ω=[−15,15]× [−4,4] and was divided into a 128×64 mesh. The

time-step was dt=0.001. The solution, after some 50,000 timesteps, is pitured in

�gure 4.3. It has not reahed a steady state, but rather is slowly leaking from the

enter box into the outer boxes. At this point, due to the relatively long time-step,

it beomes di�ult to determine whether the solution is hanging due to numerial

mass loss or a slow physial proess. The solution has learly been ontained by the

barriers in a qualitatively appropriate manner.

4.2.3. Triple well. Finally, the method was used to alulate the behavior of

an initial Gaussian in a perturbed on�ning potential. The potential used was,

V (x)=
x2

2
+30(1−cos(x)). (4.3)

The potential is pitured in the inset in �gure 4.4 and has three deep wells, at the

origin and near ±2π. In this ase, the initial state was a Gaussian onentrated about

a large positive value of x and negative value of k to give it a rapid initial motion

toward the origin. A projetion of the initial state onto the x axis is also provided in

the inset to �gure 4.4 (its width has been exaggerated for the purpose of illustration).

During the ourse of the simulation, the enter of mass (harge) �ows down the

potential wall, and a short way up the other side before beoming onentrated in

two of the wells. The main panel in �gure 4.4 shows a plot of harge density in the

x,t plane (it is analogous to �gure 4.1). The total mass is preserved to within 10−5

during the simulation. The time-step was dt=0.001, Ω=[−20,30]× [−35,15], and the

mesh measured 200×200. At any given time, the total mass ontained outside the

0.005 ontour level (the white area) is essentially zero. The vertial lines at t=33,
37, 41, and 45 orrespond the snapshots of the solution shown in �gure 4.5. The
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(a)

(b) x=2

Figure 4.3. The numerial solution to the (quasi) "partile in a box" problem after 50,000
timesteps. The potential onsists of low barriers plaed at x=±4 and high barriers at x=±10.
Most, but not all of the solution is ontained by the low barriers. When the alulation was stopped,
the solution was leaking slowly from the entral bin [−4,4] into the adjaent bins [−10,−4.1] and
[4.1,10].
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Figure 4.4. A plot of harge density in the x,t plane. The solution in the white area is
negligible. The inset shows the potential, and a projetion of the initial state (the width has been
exaggerated for illustration). The bold part of the potential indiates the loations of the enter of
mass during the alulation. The solution eventually settles into two of the three deep wells of this
potential at x=0 and x≈−2π. The four vertial lines indiate the points in time whih were used
to reate the frames in �gure 4.5.

frame at t=33 represents a moment when the solution is spilling over from the well

at x≈−2π into the well at the origin. The remaining frames show eah part of the

solution ompleting a iruit of its respetive well. As indiated by �gure 4.4, the

solution settles into these wells and in eah ase takes on an appearane very similar

to a pair of Gaussians.

A lose examination shows that at least a small but measurable portion of the

solution may be found in four wells, the three entral wells, and the well lose to 4π.
A ontour map of the solution, with ontour levels lose to zero, is shown in �gure

4.6. Numbers appear at the enter of eah well along the x axis. Also, three pairs

of horizontal lines indiate the minimum amount of lassial kineti energy required

to esape eah of the marked wells. That is, at values of k outside of the innermost

pair of lines, there is enough kineti energy to overome the potential barrier between

wells 4 and 3. The enter set of lines indiates the energy needed to move from either

well 1 or 3 into well 2. The outermost pair of lines is the amount of energy needed to

aomplish the reverse, esaping well 2. The vast majority of the solution is ontained

within wells 1 and 2. The mass ontained inside the 10−3 ontour is approximately

0.991 (out of 1.000). The mass ontained outside of the 10−6 ontour is only equal

to about 1.57×10−5. While it is doubtful that the solution has reahed a stationary

state, it is lear that it has settled into a persistent asymmetri on�guration. By the

symmetry in the equation itself, given initial data whih is symmetri with respet

to this potential, the solution will remain symmetri. This was on�rmed by further

simulations. Given that a stationary state to this linear problem does indeed exist,

the asymmetri result of the alulation is most likely a metastable state, and that the

relaxation of this state to a symmetri steady state ours on a timesale muh longer

than the interval overed by the alulation. A very reent work by Arnold, Fagnola,

and Neumann on existene, uniqueness, and onvergene in the ase of sub-quadrati

perturbations to the harmoni potential supports this observation [5℄.
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(a) t=33 (b) t=37

() t=41 (d) t=45

Figure 4.5. Snapshots of the solution to the triple well problem. These �gures show the
solution ompleting a iruit of the wells loated at x≈−2π and x=0. They orrespond to the
vertial lines in �gure 4.4.

5. Conlusion

The utility of the DG method developed here for the WFP equation has been

demonstrated through analyti estimates and numerial experiments. The stability

and onvergene of the sheme were established in Setion 3, and numerial simulation

was used to on�rm analyti properties of the WFP equation in setion 4. The main

hallenge was to produe an aurate and pratial treatment of the pseudo-di�erential

term. The methods desribed in setion 2 do this in a manner that falls neatly into

the DG formalism, and a wide range of potential funtions may be treated. Linear

ombinations of harmoni, sinusoidal, and step funtions were demonstrated, and it is

lear how to apply the method to Gaussian and other families of potential funtions.

The numerial simulations presented here demonstrated that the use of non-
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Figure 4.6. A ontour map of the state eventually reahed in the triple-well alulation. The
solution is positive, and the ontour levels are set lose to zero. More than 90% of the mass lies
within the 0.001 ontour, that is, within wells 1 and 2. Other ontours reveal small onentrations
of the solution in two additional wells. Pairs of horizontal lines, symmetri about k =0 indiate
the amount of lassial kineti energy needed to overome the energy barriers from well 4 to 3 (the
innermost pair), either well 1 or 3 to well 2 (the entral pair), or to esape well 2 (the outermost
pair).

polynomial approximation spaes is possible, but did not extensively explore the pos-

sibilities o�ered by this �exible framework. A possible improvement to the method,

also suggested in the work by Yuan and Shu, will be to adaptively improve the approx-

imation spae as a omputation proeeds. Other proposed tehnial improvements to

the implementation inlude expansion to three dimensions, and oupling the WFP

with the Poisson equation. One approah might be to use an FFT solver for the

Poisson problem, whih would produe a sinusoidal representation of the potential

ready for use in the method reported here.
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