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Abstract. We are concerned with the uniqueness of weak solution to the spatially homo-
geneous Landau equation with Coulomb interactions under the assumption that the solution
is bounded in the space L∞(0, T, Lp(R3)) for some p > 3/2. The proof uses a weighted
Poincaré-Sobolev inequality recently introduced in [10].

1. Introduction

The Landau equation was introduced in 1936 by Lev Landau as a correction of the Boltz-
mann equation to describe collision of particles interacting under a potential of Coulomb type.
Collisions of such kind are predominant in hot plasma. In its homogeneous form the Landau
equation reads as

∂tf = Q(f, f),(1)

where f = f(v, t) for v ∈ R3, t > 0 is a nonnegative function describing the evolution of the
particle density and

Q(f, f) :=
1

8π
div

(∫
R3

1

|v − w|
(Π(v − w)(f(w)∇vf(v)− f(v)∇wf(w)) dw

)
,(2)

with Π(z) the projection onto the orthogonal subspace of z,

Π(z) := I− z ⊗ z
|z|2

, z 6= 0.

Equation (1)-(2) has been extensively studied in the literature but the main question whether
or not after a certain time solutions could become unbounded is still open. The possible
blow-up in the L∞-norm could be caused by the quadratic nonlinearity in (2): assuming that
f is smooth enough, one can rewrite (2) as

Q(f, f) = div (A[f ]∇f − f∇a[f ]),

where A[f ] is the diffusion matrix defined as

A[f ](v, t) = {ai,j}i,j :=
1

8π

∫
R3

1

|w|

(
I− w ⊗ w

|w|2

)
f(v − w, t) dw,

and
a[f ](v, t) := tr(A[f ]) = (−∆)−1f,

or in non-divergence form

Q(f, f) = tr(A[f ]D2(f)) + f2.
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2 Uniqueness of smooth solutions to Landau-Coulomb

In the last formulation the quadratic nonlinearity is explicit.
Before we state the main result of this manuscript we briefly review the literature for (1)-(2),

omitting the rather large literature on non-Coulomb potentials and spatially inhomogeneous
case. Existing literature for (1)-(2) includes results on (i) local in time well-posedness of
solutions, (ii) global in time existence and uniqueness of smooth solution for initial data close
to equilibrium [12], (iii) global in time existence of (very) weak solutions [1, 5, 17] , and
(iv) convergence of weak solutions towards the equilibrium function (Maxwellian) in the L1-
norm [2]. Very recently the second author and collaborators studied the partial regularity of
weak solutions to (1)-(2) and showed in [7] that the Hausdorff measure of the set of singular
times (i.e. times at which the function could be unbounded) is at most 1

2 . We also mention
an important result from [9]; there the authors study an isotropic version of the Landau
equation, previously introduced by Krieger and Strain in [13],

∂tf = div (a[f ]∇f − f∇a[f ]),(3)

and show that (3) with spherically symmetric and radially decreasing initial data (but not
small neither near equilibrium!) has smooth solutions which remain bounded for all times.

Since the main question of global well-posedness for general initial data for (1)-(2) is still
open, in the most recent years there have been several conditional proofs of existence of
bounded solutions and their regularity. In this directions we mention [15, 9, 10, 8].

In the current manuscript we are concerned with uniqueness of weak solutions in the class of
higher integrable solutions, namely we assume that weak solutions belong to L∞(0, T, Lp(R3))
for some p > 3

2 and have high enough bounded moments. Conditional uniqueness of bounded
weak solutions for Landau-Coulomb has been previously studied in [6]; via a probabilistic
approach using a stochastic representation of (1)-(2) the author shows uniqueness in the class
of solutions L1(0, T, L∞(R3)). A similar approach was recently used in [16] for the relativistic
Landau-Coulomb equation.

Here is our main result:

Theorem 1. The homogeneous Landau-Coulomb equation with initial data such that

fin ≥ 0,

∫
R3

f2in(1 + |v|)5 dv ≤ C,
∫
R3

fin(1 + |v|)q dv ≤ C,(4)

for q = 46(p−1)
p−3/2 , has at most one solution in the time interval [0, T ], T > 0, in the class of

functions

f ∈ L∞(0, T, Lp(R3)), p > 3/2.(5)

The proof of Theorem 1 differs from the one in [6] in several aspects. We only require our
solution to belong to some Lp(R3) space with p > 3/2, uniformly in time. Our method uses
the weak representation of (1)-(2) provided in [11] and a new weighted Poincaré inequality
(10) recently introduced in [10]. This inequality is shown to be valid for any solution f to the
Landau equation that is uniformly in time Lp(R3)-integrable, for some p > 3/2 (and has high
enough bounded moments). The question whether (10) holds without the extra integrability
assumption is still open and very interesting. In [10] the authors showed that (10) nearly
holds if we only assume uniformly in time L1(R3)- integrability for f ; this means that the
diffusion div(A[f ]∇f) and the reaction f2 are of the same order. In this regard we should
think of (1)-(2) as a critical equation.

The rest of the manuscript is organized as follows: in Section 2 we recall some useful well-
known results, in Section 3 we present the weighted Poincaré inequality. In Section 4 we
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show integrability and weighted estimates for the gradient. Section 5 contains the proof of
Theorem 1.

2. Well-known results

The following quantities will be frequently used throughout the paper. We respectively
define the mass, momentum and entropy of a nonnegative function h(v) the quantities∫

R3

h(v) dv,

∫
R3

h(v)|v|2 dv,
∫
R3

h(v) lnh(v) dv.

We start by recalling the definition of weak solution [5]: given initial data fin with finite mass,
first, second moment and entropy, a weak solution to the Landau is a nonnegative function
f such that (1 + |v|2)−3/2f ∈ L1(0, T, L3(R3)), has finite mass, first, second momentum and
entropy and for all ϕ ∈ C2

c ([0, T ]× R3)

−
∫
R3

fin(v)ϕ(v, 0) dv −
∫ T

0

∫
R3

f(v, t)∂tϕ(v, t) dvdt

=
1

2

3∑
i=1

3∑
j=1

∫ T

0

∫
R3

∫
R3

f(v, t)f(w, t)aij(v − w) (∂ijϕ(v, t) + ∂ijϕ(w, t)) dvdwdt(6)

+
3∑
i=1

∫ T

0

∫
R3

∫
R3

f(v, t)f(w, t)(divvA[f ])i(v − w) (∂iϕ(v, t)− ∂jϕ(w, t)) dvdwdt.

Recently the authors in [11] improved the regularity of the weak solutions: let f be a
weak solution to the Landau equation as in (6); then A[f ] ∈ L∞(0, T ;L3

loc(R3)), ∇a[f ] ∈
L∞(0, T ;L

3/2
loc (R3)), and for all φ ∈ L∞(0, T ;W 1,∞

c (R3)) the function f satisfies∫ T

0
〈∂tf , φ 〉dt+

∫ T

0

∫
R3

(A[f ]∇f − f∇a[f ]) · ∇φdvdt = 0.(7)

Next we recall some well-known results used later in the manuscript. The first one concerns
lower bounds for a[f ] and A[f ].

Lemma 1. (Bound from below) There is a constant c only determined by the mass, energy,
and entropy of f , such that for all v ∈ R3

a[f ](v) ≥ c〈v〉−1,
A[f ](v) ≥ a∗(v)I ≥ c〈v〉−3I,

where 〈v〉 := (1 + |v|2)1/2 and a∗(v) is the smallest eigenvalue of A[f ] defined as

a∗(v) = inf
e∈S2

(A[f ](v)e, e).

Lemma 2. (Propagation of moments, [5] Proposition 4.) Let f be a weak solution to the
Landau equation with initial datum fin. Assume also that f satisfies the conservation of
mass, momentum and energy. For all k ≥ 0 such that∫

R3

fin(1 + |v|2)k dv < +∞,

we have that

sup
[0,T ]

∫
R3

f(1 + |v|2)k dv ≤ C(1 + T ),
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where C depends on the energy, mass, entropy and k-moments of the initial data.

We also recall the Boltzmann H-Theorem: let ρin denote the Maxwellian with same mass,
center of mass, and energy as fin. We have∫ T

0

∫
R3

4(A[f ]∇f1/2,∇f1/2)− f2 dvdt ≤ H(fin)−H(ρin).(8)

3. The ε-Poincaré inequality

In this section we present a weighted Poincaré inequality; this inequality plays a key role
in the proof of Theorem 1. It is an adaptation of another inequality proven in [10] and is
based on the general weighted Poincaré-Sobolev inequality shown in [14].

Theorem 2. Let N ≥ 1 and assume there exist s > 1, a nonnegative function f and a
modulus of continuity η(·) such that for any cube Q ⊂ R3 with side length r ∈ (0, 1) the
following inequality holds:

|Q|
1
3

(
1

|Q|

∫
Q

(1 + |v|)Ns/2fs dv
) 1

2s
(

1

|Q|

∫
Q

(1 + |v|)3s dv
) 1

2s

≤ η(r).(9)

Then, given any ε ∈ (0, 1), for any smooth functions φ we have the the following ε-Poincaré
inequality: ∫

R3

(1 + |v|)N/2fφ2 dv ≤ ε
∫
R3

(1 + |v|)−3|∇φ|2 dv + η̃(ε)

∫
R3

φ2 dv,(10)

where η̃ : (0, 1) 7→ R is a decreasing function with η̃(0+) =∞ determined by η.

Proof. The proof can be found in Theorem 2.7 in [10]. �

The validity of (10) depends on certain properties of the function f ; most importantly, the
value ε depends on the modulus of continuity η(·) in (9). The next proposition shows that
(9) is satisfied if f ∈ L∞(0, T, Lp ∩ L1(R3)) for some p > 3

2 and has high enough moments.

Proposition 1. Let f be a nonnegative function with f ∈ L∞(0, T, Lp ∩ L1(R3)) for some

p > 3
2 . Assume also that f has bounded moments of order (N+6)(p−1)

p−3/2 . Then there exists a

number s ≤ 2 with 3
2 < s < p and a modulus of continuity η(r) such that for any Q cube in

R3 with length r inequality (9) holds.

Proof. Let Q a cube of length r and center v0. Hölder inequality yields∫
Q

(1 + |v|)Ns/2fs dv ≤
(∫

Q
(1 + |v|)Nsα/2f dv

) 1
α
(∫

Q
f (s−1/α)α

′
dv

) 1
α′

≤ ‖f‖α
′p
Lp

(∫
Q

(1 + |v|)Nsα/2f dv
) 1
α

,

by choosing α = p−1
p−s , p > s, so that

(s− 1/α)α′ = p.

Then

|Q|
1
3

(
1

|Q|

∫
Q

(1 + |v|)Ns/2fs dv
) 1

2s
(

1

|Q|

∫
Q

(1 + |v|)3s dv
) 1

2s
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≤ C(‖f‖Lp)|Q|
1
3
− 1

2s (1 + |v0|)3/2
(∫

Q
(1 + |v|)Nsα/2f dv

) 1
2sα

≤ C(‖f‖Lp)|Q|
1
3
− 1

2s

(∫
Q

(1 + |v|)(N+6)sα/2f dv

) 1
2sα

≤ C(‖f‖Lp)|Q|
1
3
− 1

2s ‖f〈v〉(N+6)sα/2‖
1

2sα

L1 .

The modulus of continuity η(r) is proportional to C(T )r1−
3
2s , where C(T ) depends on the

(N+6)sα
2 -moments of f and on the Lp norm of f .

�

4. Higher integrability and weighted gradient estimates

The first immediate consequence of Proposition 1, Theorem 2 and Boltzmann’s H Theorem
is a L2((0, T ), L2(R3)) integrability estimate for f .

Theorem 3. Let f be a solution to the Landau equation with initial datum fin such that
f ∈ L∞((0, T ), Lp(R3)) for some p > 3/2. Assume moreover that∫

R3

fin(1 + |v|)k dv < +∞,

for any 1 ≤ k ≤ 6(p−1)
p−3/2 . Then f ∈ L2((0, T ), L2(R3)) and

‖f‖L2((0,T ),L2(R3)) ≤ C(fin, T, ‖f‖L∞(Lp)).

Proof. The function f satisfies the assumptions for (9), following Proposition 1. Then, com-
bining (10) with φ =

√
f , N = 0 and (8), we get:∫ T

0

∫
R3

f2 dvdt ≤ ε
∫ T

0

∫
R3

(A[f ]∇
√
f,∇

√
f) dvdt+ C(fin)η̃(ε)T

≤ ε
(
H(fin)−H(ρfin) +

∫ T

0

∫
R3

f2 dvdt

)
+ C(fin)η̃(ε)T.

The thesis follows by choosing ε < 1.
�

Once we have the bound L2((0, T ), L2(R3)), we can get an estimate for f in the space
L∞((0, T ), L2(R3)), as shown in the following theorem:

Theorem 4. Let f and fin as is Theorem 3. Assume moreover that fin ∈ L2(R3). Then
f ∈ L∞((0, T ), L2(R3)) and ‖f‖L∞(L2) ≤ C(fin, T, ‖f‖L∞(Lp)).

Proof. The proof is a simple consequence of Gronwall’s lemma. Take f as test function in (7)
and integrate by parts; this gives∫

R3

f2(T ) dv =

∫
R3

f2in dv −
∫ T

0

∫
R3

(A[f ]∇f,∇f) dvdt+

∫ T

0

∫
R3

f3 dvdt.(11)

Since f ∈ L2((0, T ), L2(R3)) by Theorem 3, we use (10) with φ = f , N = 0, and ε < 1 and
get ∫

R3

f2(T ) dv ≤
∫
R3

f2in dv +
1

ε

∫ T

0

∫
R3

f2 dvdt.
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Gronwall’s inequality yields ∫
R3

f2(T ) dv ≤ e
1
ε
T

∫
R3

f2in dv.

Note that the above computations are formal. To make them rigorous one first considers a
truncation of f of the form fηR(v) where ηR(v) = η(v/R) and η(v) = 1 inside a ball of center
0 and radius 1, η(v) = 0 outside the ball of center 0 and radius 2 and smooth in between.
Thanks to the condition that f ∈ L∞((0, T ), Lp∩L1(R3)) for some p > 3/2 both A[f ] and a[f ]
are uniformly bounded and one can take fηR(v) as test function in (7). Since ∇ηR → 0 as
R→ +∞ and both A[f ] and a[f ] are uniformly bounded one can pass to the limit R→ +∞
and obtain (11).

�

For proving our uniqueness result, we also need the following weighted gradient bound.

Proposition 2. Let N ≥ 0 and f ∈ L∞(0, T, Lp) with p > 3/2 be a weak solution to the

Landau equation with initial data fin ∈ L1 ∩ L2(R3) and (4N+6)(p−1)
p−3/2 -moments bounded. Let

moreover
∫
R3 f

2
in(1 + |v|)N dv < +∞. For any T > 0 we have∫

R3

f2(1 + |v|)N dv +
1

2

∫ T

0

∫
R3

(1 + |v|)N−3|∇f |2 dvdt ≤ C(T, fin, ‖f‖L∞(0,T,Lp)).

Proof. There exists a universal constant C such that

‖a[f ]‖L∞(R3) ≤ C‖f‖
1−q/3
L1 ‖f‖q/3

Lq/(q−1) , ∀ 1 ≤ q < 3.(12)

In particular

‖a[f ]‖L∞(R3) ≤ C‖f‖
1/3
L1 ‖f‖

2/3
L2 ≤ C‖f〈v〉m/2‖L2 ,(13)

for m > 3 and 〈v〉 := (1 + |v|2)1/2. For large v, one can obtain a sharper estimate:

a[f ](v, t) ≤
C(‖f‖

L3/2+ , fin, T )

1 + |v|
, ∀v ∈ R3 t ∈ [0, T ].(14)

Let |v| be large enough; for 2 ≥ s > 3/2 Hölder inequality yields:

|a[f ]| ≤|v|
3−s′
s′

∫
B |v|

2

(|v|)
fs dy

1/s

+
1

|v|
‖f‖L1(R3)

≤c |v|
3−s′
s′

(1 + |v|)λ/s

(∫
R3

fs(1 + |y|)λ dy
)1/s

+
1

|v|
‖f‖L1(R3),

with 1
s + 1

s′ = 1 and s′ < 3. Chose λ = 3(s− 1) so that 3−s′
s′ −

λ
s = −1 and get

|a[f ](v)| ≤ 1

(1 + |v|)

(∫
R3

f s(1 + |y|)3(s−1) dy
)1/s

+
1

|v|
‖f‖L1(R3).

Hölder’s inequality yields∫
R3

fs(1 + |y|)3(s−1) dy ≤
(∫

R3

fpdy

)1/α′ (∫
R3

f(1 + |y|)
3(p−1)
(p−3/2)dy

)1/α

,
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with α = (p− 1)/(p− 3/2). We use Lemma 2 to bound the last integral and get (14).
Take now φ := f(1 + |v|)N as test function in (7):∫
R3

ftf(1 + |v|)N dv ≤ −
∫
R3

〈A[f ](1 + |v|)N∇f,∇f〉 dv +N

∫
R3

a[f ](1 + |v|)N−1f |∇f | dv

+

∫
R3

f(1 + |v|)N∇f · ∇a[f ] dv +N

∫
R3

f2(1 + |v|)N−1|∇a[f ]| dv

= I1 + I2 + I3 + I4.

By Lemma 1 we have

I1 ≤ −c1
∫
R3

(1 + |v|)N−3|∇f |2 dv.

Using (12) to bound the L∞-norm of a[f ], Young’s inequality yields

I2 ≤ ω
∫
R3

(1 + |v|)N−3|∇f |2 dv +
C2

ω

∫
R3

(1 + |v|)N−2f2 dv,

where C only depends on the L∞(0, T, Lp) and on the L∞(0, T, L1)-norm of f . From integra-
tion by parts one obtains

I3 + I4 ≤ c1
∫
R3

(1 + |v|)N−1f2|∇a[f ]| dv + c2

∫
R3

(1 + |v|)Nf3 dv

.
∫
R3

|∇a[f ]|3 dv +

∫
R3

(1 + |v|)2Nf3 dv

≤ C‖f‖3
L3/2 + ε

∫
R3

(1 + |v|)−3|∇f |2 dv + η̃(ε)

∫
R3

f2 dv,

using Hardy-Littlewood-Sobolev inequality

‖∇a[f ]‖L3p/(3−p)(R3) ≤ C‖f‖Lp(R3) ∀ p ∈ (1, 2],(15)

and (10) with weight (1 + |v|)2Nf to bound the weighted cubic norm of f . Summarizing we
have

∂t

∫
R3

f2(1 + |v|)N dv ≤− (c− ε)
∫
R3

(1 + |v|)N−3|∇f |2 dv

+ C

∫
R3

(1 + |v|)N−2f2 dv + C(‖f‖Lp).

Taking ε sufficiently small we get the desired estimate. �

5. The contraction argument

We have the following uniqueness result.

Theorem 5. Let u, φ ∈ L∞(0, T, Lp) for some p > 3/2 be two solutions to the Landau
equation with nonnegative initial data fin such that∫

R3

fin〈v〉k dv < +∞,
∫
R3

f2in〈v〉10 dv < +∞,

for any 0 ≤ k ≤ 46(p−1)
p−3/2 . Then u = φ .
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Proof. Define w = u− φ. Take w〈v〉m with m = 4 as test function in the resulting equation
for w, After integration by parts one obtains∫
R3

w2(T )〈v〉m dv = −
∫ T

0

∫
R3

A[u]∇w · ∇(w〈v〉m) dvdt−
∫ T

0

∫
R3

A[w]∇φ · ∇(w〈v〉m) dvdt

+
1

2

∫ T

0

∫
R3

w∇a[u] · ∇(w〈v〉m) dvdt+

∫ T

0

∫
R3

φ∇a[w] · ∇(w〈v〉m) dvdt

+

∫
R3

w2
in〈v〉m dv

=: I1 + I2 + I3 + I4 + I5.

Using Lemma 1 one gets

I1 ≤ −(1− ε)
∫ T

0

∫
R3

〈v〉m

(1 + |v|)3
|∇w|2 dvdt+

m2

ε

∫ T

0
‖A[u]‖L∞

∫
R3

w2〈v〉m dvdt.

To estimate ‖A[u]‖L∞ we use (12). For I2, we use (13) with m = 4 and Young’s inequality:

I2 ≤ε
∫ T

0

∫
R3

〈v〉m

(1 + |v|)3
|∇w|2 dvdt+

1

ε

∫ T

0

∫
R3

A2[w]〈v〉m(1 + |v|)3|∇φ|2 dvdt

+m

∫ T

0

∫
R3

wA[w]〈v〉m−2∇φ · v dvdt

≤ε
∫ T

0

∫
R3

〈v〉m

(1 + |v|)3
|∇w|2 dvdt+

1

ε

∫ T

0

∫
R3

A2[w]〈v〉m(1 + |v|)3|∇φ|2 dvdt

+m

∫ T

0

∫
R3

〈v〉mw2 dvdt+m

∫ T

0

∫
R3

A2[w]〈v〉m−2|∇φ|2 dvdt

≤ε
∫ T

0

∫
R3

〈v〉m

(1 + |v|)3
|∇w|2 dvdt+

∫ T

0
B(t)

∫
R3

〈v〉mw2 dvdt

with B(t) :=
∫
R3〈v〉m+3|∇φ|2 dv + 1. Note that B(t) is integrable, as shown in Proposition 2

for N = m+ 6 = 10. We rewrite I3 as

I3 =
1

4

∫ T

0

∫
R3

〈v〉−m∇a[u] · ∇(w2〈v〉2m) dvdt

=
1

4

∫ T

0

∫
R3

u〈v〉mw2 dvdt+m

∫ T

0

∫
R3

w∇w · v〈v〉m−2a[u] dvdt

+
m

2

∫ T

0

∫
R3

w2v · ∇〈v〉m−2a[u] dvdt+
3m

2

∫ T

0

∫
R3

w2〈v〉m−2a[u] dvdt

≤1

4

∫ T

0

∫
R3

u〈v〉mw2 dvdt+ cm‖a[u]‖L∞(R3)

∫ T

0

∫
R3

w2〈v〉m−2 dvdt

+ ε

∫ T

0

∫
R3

〈v〉m

(1 + |v|)3
|∇w|2 dvdt+

1

ε

∫ T

0

∫
R3

w2a2[u]〈v〉m+1 dvdt.

To bound the first integral we use (10) with N = 2m and get∫
R3

u〈v〉mw2 dv ≤ ε
∫
R3

|∇w|2

(1 + |v|)3
dv + C

∫
R3

w2 dv.
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This yields

I3 ≤ ε
∫ T

0

∫
R3

〈v〉m

(1 + |v|)3
|∇w|2 dvdt

+

∫ T

0
B1(t)

∫
R3

〈v〉mw2 dvdt,

with B1(t) := C(‖a[u]‖L∞(R3) + ‖a[u]〈v〉‖L∞(R3) + 1). Note that B1(t) is integrable, thanks
to (14). Finally,

I4 ≤
∫ T

0
‖∇a[w]‖L6(R3)

∥∥∥∥∥ 〈v〉m/2∇w(1 + |v|)3/2

∥∥∥∥∥
L2(R3)

∥∥∥φ〈v〉m/2+3/2
∥∥∥
L3(R3)

dt

+m

∫ T

0
‖∇a[w]‖L6(R3)

∥∥∥w〈v〉m/2∥∥∥
L2(R3)

∥∥∥φ〈v〉m/2−1∥∥∥
L3(R3)

dt

≤ 1

ε

∫ T

0
‖w‖2L2(R3)

(∫
R3

φ3(1 + |v|)3m/2+9/2 dv

)2/3

dt+ ε

∫ T

0

∫
R3

|∇w|2〈v〉m

(1 + |v|)3
dvdt

+m

∫ T

0

∥∥∥w〈v〉m/2∥∥∥2
L2(R3)

(∫
R3

φ3(1 + |v|)3m/2−3 dv
)1/3

dt.

Thanks again to (10), we get∫
R3

φ3(1 + |v|)3m/2+9/2 dv ≤ Cε,m,φin
∫
R3

|∇φ|2

(1 + |v|)3
dv +

∫
R3

φ2 dv,

and conclude that

I4 ≤ Cε,m,φin
∫ T

0
B2(t)

∥∥∥w〈v〉m/2∥∥∥2
L2(R3)

dt+ ε

∫ T

0

∫
R3

|∇w|2〈v〉m

(1 + |v|)3
dvdt

with

B2(t) :=

(∫
R3

|∇φ|2

(1 + |v|)3
dv +

∫
R3

φ2 dv

)2/3

+

(∫
R3

|∇φ|2

(1 + |v|)3
dv +

∫
R3

φ2 dv

)1/3

.

The function B2(t) is integrable thanks to Proposition (2) with N = 0.
Summarizing the estimates for I1, .., I4, for ε small enough we get∫

R3

w2(T )〈v〉m dv ≤
∫
R3

w2
in〈v〉m dv + C

∫ T

0
(B(t) +B1(t) +B2(t))

∫
R3

w2〈v〉m dvdt,

with
∫ T
0 B(t) +B1(t) +B2(t) dt < +∞.

Since win(·) = 0, Gronwall’s inequality yields∫
R3

w2(T )〈v〉m dv ≤ 0,

and this concludes the proof.
�
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