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Abstract. We consider a free boundary problem for the p-Laplace op-
erator which is related to the so-called Bernoulli free boundary problem.
In this formulation, the classical boundary gradient condition is replaced
by a condition on the distance between two different level surfaces of
the solution. For suitable scalings our model converges to the classical
Bernoulli problem; one of the advantages in this new formulation lies in
the simplicity of the arguments, since one does not need to consider the
boundary gradient.

We shall study this problem in convex and other regimes, and estab-
lish existence and qualitative theory.
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1. Introduction

For a bounded domain K ⊂ RN (N ≥ 2), the well known (exterior)
Bernoulli free boundary problem is to find a domain Ω ⊃ K, with the
requirement that the harmonic function u in the region Ω \ K with given
boundary values satisfies a prescribed Neumann condition on ∂Ω; the bound-
ary ∂Ω is thus called Bernoulli free boundary. There is a vast literature on
the subject, including by-now classical references [1, 2, 7, 9, 13, 30]. One
may also replace the Laplacian operator by the p-Laplacian operator; this
problem arises in various nonlinear flow laws, and several physical situations,
e.g. electrochemical machining and potential flow in fluid mechanics (see for
instance [7, 25, 34, 36, 37, 56, 11]).
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In this paper we propose a new formulation of the p-Laplacian Bernoulli
problem for 1 < p < +∞, in which the boundary gradient condition is
replaced by a (weaker) condition on the distance between two different level
sets of the solution. More precisely, given the p-capacitary potential u in
the annulus Ω \K we ask that

(1.1) dist(x, {u = l}) = λ, ∀x ∈ ∂Ω,

where {u = l} is the l-level set of u and l, λ are two positive given constants.
Condition (1.1) was considered in [50, 51, 52], while studying diffusion

problems with stationary isothermic surfaces; and independently by the
third author in [60], where he considered a discrete version of Serrin’s prob-
lem. This second approach was inspired by a parabolic free boundary model
in finance in which the distance between the free boundary (that is the zero
level set for the solution) and the location of a source is prescribed (c.f.
[44, 33, 22, 20] for an overview).

The novelty in the approach introduced here is that our problem with
condition (1.1) approximates the solution of the classical Bernoulli problem
in the following sense: as λ→ 0, any p-capacitary function uλ vanishing on
∂Ω and satisfying (1.1) with l = ωλ converges to a p-capacitary function
u vanishing on ∂Ω such that |∇u| = ω on ∂Ω. In some sense, this new
formulation can be understood as a discrete Bernoulli problem.

Two different problems can be set up according to where the free boundary
lies in the annulus: the exterior problem (PE), considered in Section 3, and
the interior one (PI), considered in Section 4. It is clear that the geometry
of the domains will play a crucial role in both problems.

In this paper we deal with two different geometries: the convex and
the star-shaped case. We address the questions of existence, multiplicity,
uniqueness and regularity for the discrete Bernoulli problem, together with
convergence to the usual Bernoulli problem in the convex setting.

The main ideas in our paper follow the approach by sub- and super-
solutions introduced by Beurling in [13]. For the classical Bernoulli problem
in the convex case with p-Laplacian operator, questions of existence and
uniqueness were addressed in [36, 37, 38]. It is noteworthy that the use of the
properties of the distance function (1.1) avoids many of the technicalities: for
example, higher regularity for solutions is an immediate consequence from
existence theory, which is not the case for the classical Bernoulli problem.

The most standard approach for the Bernoulli problem is either varia-
tional or by singular perturbation. In the case p = 2, the seminal paper by
Alt-Caffarelli [9] shows existence of a solution using variational techniques
without any geometric restriction on the set ∂{u > 0}. Moreover it is shown
that the free boundary is flat, and consequently of class C1,α up to a hyper-
surface of Hn−1-measure zero. For N = 2 they prove that the free boundary
is globally analytic (see [42]). Recently in [19] it was shown that there exists
no variational solution with singular free boundary for N = 3. The question
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remains open for 4 ≤ N ≤ 6, since in [27] existence of minimal cones is
shown for N = 7.

For p 6= 2 see [24] and [25]; in particular regularity is considered in [25, 26],
where the authors extend the results of [9] (C1,α regularity near flat points).
They prove that for N = 2 the free boundary is globally analytic for 2− δ <
p < +∞ with δ an absolute constant. For N 6= 2 not many results are
available: Petrosyan in [56] shows that for any N ≤ k∗ − 1 and any 2− δ <
p < 2 + δ the variational solution has globally analytic free boundary, where
k∗ is the critical dimension above which any variational solution has free
boundary with singular points.

If one adds a priori geometrical assumptions, the problem becomes more
tractable. If the initial given domain is convex, for any 1 < p < +∞ there
exists a unique classical solution, and the free boundary is also convex and
C2,α for both interior and exterior case. This is done in [36, 37, 38] using
Beurling’s method on sub- and super-solutions.

Although the literature is not yet exhaustive, one would expect similar
results if we relax the geometry of the domain to be star-shaped only (see, for
instance [7]). The p-capacitary potential in a star-shaped annulus has star-
shaped level sets, according to the rearrangement results of [41]; see Section
5 for a more detailed literature on star-shaped Bernoulli problem. However,
two questions remain open: (i) Existence of a solution using Beurling’s
method, which, by uniqueness, would coincide with the variational one. (ii)
The best regularity one expects for the free boundary.

The paper is structured as follows: after recalling in Section 2 some pre-
liminary results that will be used throughout the manuscript, we will con-
sider the exterior and interior problem in the convex setting, see Sections
3 and 4, respectively. Our problem will be then considered for star-shaped
domains in Section 5. In Section 6 we further extend the problem to more
general cases, such as non-constant distance constraint (including a con-
straint involving mean curvature), and two- and multi-phase problems. We
also give the proof of a Brunn-Minkowski inequality. In the last section
we show that the proposed model might give insights for new numerical al-
gorithms that could more efficiently approximate solutions to the classical
Bernoulli problem. Several open and tantalizing problems are also outlined.

2. Preliminaries

For the readers’ convenience we briefly recall in this section the main
existence and regularity properties for p-capacitary functions that will be
used later.

For 1 < p <∞, we define the p-Laplacian operator ∆p as

∆pu := div(|∇u|p−2∇u), 1 < p <∞,
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and the equation ∆pu = 0 in Ω is understood in the weak sense as∫
Ω
|∇u|p−2∇u∇ϕ = 0, ∀ ϕ ∈W 1,p

0 (Ω).

We first review some classical regularity properties:

Theorem 2.1. Let U be a bounded domain in RN and u be a (weak) solution
of ∆pu = 0 in U . Then:

i. u ∈ C1,α
loc (U), ([28, 62]),

ii. u satisfies the weak maximum principle and Hopf’s boundary lemma
([61]).

Additional Hölder regularity up to the boundary can be shown through
construction of conical barriers. With this objective in mind, we introduce
some notations: we say that a domain U satisfies a uniform exterior cone
condition if there exists a r0 > 0 such that for all x0 ∈ ∂U the finite right
circular cone Vx0 with vertex x0 and opening r0 satisfies U ∩Vx0 = {x0} and
Vx0 ⊂ U c. One may analogously define the uniform interior cone condition.

Lemma 2.2 ([61]). Let U be a domain with exterior cone condition. Then
the solution of the Dirichlet problem with Hölder boundary data for the p-
Laplacian in U is a Hölder-continuous function up to ∂U with Hölder norm
uniformly bounded depending on r0, supU |u| and R0 (radius of largest ball
that fits inside U).

With some additional information on the regularity of ∂U one can obtain
higher regularity for u up to ∂U , in particular, uniform gradient bounds.

Lemma 2.3 ([48]). Let U be a C1,α domain in RN . Then any solution to
∆pu = 0 in U is C1,β(U) where β depends on p, N and α.

Finally, we say that a set U satisfies the uniform interior ball condition if
there exists r0 > 0 such that for each x ∈ ∂U , there exists zx ∈ U with the
property that x ∈ ∂Br0(zx) ∩ ∂U and Br0(zx) ⊂ U .

In this paper we will be interested in the case that u is a p-capacitary
potential in a convex annulus. Let K,Ω be two domains in RN , N ≥ 2,
satisfying K ⊂ Ω, Ω bounded. In the sequel we say that uΩ is the p-
capacitary potential of the ring shaped region Ω \K if:

(PΩ)

 ∆p uΩ = 0 in Ω \K,
uΩ = 1 on K,
uΩ = 0 on ∂Ω.

It is clear that a domain Ω\K, with Ω and K convex, automatically
satisfies the uniform exterior cone condition, for some r0 depending only on
K. Thus, the Hölder estimate from Lemma 2.2 will only depend on the
(interior) cone condition for the domain K but not on Ω. We formulate this
as a Corollary:
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Corollary 2.4. Let Ω,K be two bounded convex domains such that K ⊂
K ⊂ Ω, and denote by uΩ the p-capacitary potential of Ω\K as given in
equation (PΩ). Suppose that K satisfies the uniform interior cone condition
for opening r0, and set d0 := dist(∂Ω,K). Then there is a constant M =
M(r0, d0) such that

‖uΩ‖Cα(Ω\K)
≤M.

If, in addition, K is C1,1, one can obtain uniform gradient estimates up
to the boundary:

Corollary 2.5. Let Ω,K be two bounded convex domains such that K ⊂ Ω,
and denote by uΩ the p-capacitary potential of Ω\K as given in (PΩ). Sup-
pose that K satisfies the uniform interior ball condition for radius r0. Denote
also d0 = minx∈∂Ω dist(x,K). Then there is a constant M = M(r0, d0) such
that

|∇uΩ| ≤M in Ω\K.
Now we deal with the lower bounds for the gradient:

Lemma 2.6 (Lemma 2 in [46]). Let Ω,K be two bounded convex domains
such that K ⊂ Ω and denote by uΩ the p-capacitary potential of Ω\K as
given in (PΩ). Suppose that Ω\K satisfies the uniform interior ball condition
for radius r0. There is a constant M0 such that

|∇uΩ| ≥M0 in Ω\K.
If K is uniformly convex, it can be easily shown by constructing a suitable

barrier that the gradient of |∇uΩ| near ∂K must be bounded from below
by a positive constant. If we do not have this extra information on K, but
we know the behavior near Ω, we can translate this information back to
K. First we need to introduce some notation. For two nested convex sets
K ⊂ Ω, and for x ∈ ∂K, we denote by Tx,a the supporting hyperplane at
x with the normal a pointing away from K. Depending on the geometry of
∂K, Tx,a is not necessarily unique. Now for each x ∈ ∂K there corresponds
a point yx, not necessarily unique, on ∂Ω ∩ {z : a · (z − x) > 0} such that
a · (yx − x) = max a · (z − x), where the maximum has been taken over all
z ∈ ∂Ω ∩ {z : a · (z − x) > 0}. Then, a crucial result is:

Lemma 2.7 (Lemma 2.2. in [37]). Let K and Ω be two nested open convex
domains, K ⊂ Ω, and denote by uΩ the p-capacitary potential of Ω\K, as
given in problem (PΩ). Then

lim sup
z→x

z∈Ω\K

|∇u(z)| ≥ lim sup
z→yx
z∈Ω\K

|∇u(z)| for all x ∈ ∂K,

where yx is the point indicated in the previous discussion.

Next, a fundamental result on properties of level sets for p-capacitary
functions uΩ in a convex ring:
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Proposition 2.8 ([46]). Let l ∈ [0, 1). Given a convex ring Ω\K, its p-
capacitary function uΩ described as above is real analytic and the level sets
{uΩ > l} are convex (with strictly positive principal curvatures) and analytic.

Finally, a crucial technical result that allows to define the gradient of the
solution at the boundary of a convex ring, and thus, give a notion of classical
solutions for the usual Bernoulli problem:

Proposition 2.9 (Theorem 1.3 in [35]). Let K and Ω be two nested open
convex domains, K ⊂ Ω, and denote by uΩ the p-capacitary potential of
Ω\K, as given in problem (PΩ). Suppose also that ∂K and ∂Ω are C1.

Then ∇u us semi-continuous in Ω\K, and non-tangentially continuous up
to ∂Ω ∪ ∂K.

Finally, we recall the definition of extremal points:

Definition 2.10. Let Ω be a convex set: a point x ∈ ∂Ω is an extremal point
if x cannot be written as a linear combination of the form x = tx1 +(1−t)x2

for t ∈ (0, 1), x1, x2 ∈ ∂Ω.

In the rest of the paper we denote by Γl the l level set of u:

Γl := {x ∈ Ω | u(x) = l}.

We also write K b Ω when K ⊂ Ω.

3. The exterior problem in convex setting

The first aim of this paper is to solve the following problem: given a
convex open bounded set K ⊂ RN , N ≥ 2, and l ∈ (0, 1), λ > 0 positive
constants, find a function u and a convex open bounded domain Ω ⊂ RN ,
Ω ⊃ K, solving

(PE)

{
∆pu = 0 in Ω \K, u = 1 in K, u = 0 on ∂Ω,

dist(x,Γl) = λ for all x ∈ ∂Ω.

We first show:

Theorem 3.1. Problem (PE) has a unique regular solution (u,Ω) with Ω

convex, ∂Ω ∈ C∞, and u ∈ C1,α(Ω\K) uniformly up to the boundary of Ω.

The proof is inspired by previous works of one of the authors [36, 37]
via Beurling’s method (see also the classical reference [13]). The method is
based on constructions of super- and sub-solutions for (PE); hence, existence
of a solution for (PE) follows by the proof of the existence of a minimal
super-solution which turns out to be a subsolution (or solution) as well.
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3.1. Proof of existence. We first deal with the existence statement in
Theorem 3.1. For each convex set Ω, let uΩ be the p-capacitary potential of
Ω\K. Let us consider the class

C := {Ω convex bounded open set in RN , Ω ⊃ K},
and define the following three subsets:

A = {Ω ∈ C | sup
x∈∂Ω

dist(x,Γl) ≤ λ},
A0 = {Ω ∈ C | inf

x∈∂Ω
dist(x,Γl) < λ},

B = {Ω ∈ C | inf
x∈∂Ω

dist(x,Γl) ≥ λ}.

Note that A is the set of subsolutions, A0 the set of strict subsolutions,
while B is the set of supersolutions for problem (PE). Let us first check that
they are non-empty sets :

Lemma 3.2. There exist a supersolution and a strict subsolution for prob-
lem (PE).

Proof. By translation suppose that the origin of the cartesian system lies
inside K. In order to construct a supersolution take 0 < r < R big enough
such that K ⊂ Br(0). The solution of the capacitor problem for the annulus

BR(0)\Br(0) is explicitly given by function
u(|x|) =

log
(
R
|x|

)
log
(
R
r

) for p = N,

u(|x|) =
|x|

p−N
p−1 −R

p−N
p−1

r
p−N
p−1 −R

p−N
p−1

for p 6= N.

It is clear that we can have dist({ū = l}, {ū = 0}) as big as we wish by
fixing r and taking R big enough. Consider also uR to be the p-capacitary
potential of the set BR(0)\K. By the comparison principle, uR ≤ ū for all
x ∈ BR(0)\Br(0). This immediately implies that

dist(x, {uR = l}) ≥ λ for all x ∈ ∂BR(0),(3.1)

which shows that uR is a supersolution for our problem, i.e, BR(0) ∈ B.
Now we seek a strict subsolution. Let BR(0) and uR as above. Since

K ⊂ BR(0), and uR is the p-capacitary potential in this annulus, we can
apply Lemma 2.6 to bound the gradient of uR from below. More precisely,
there exists a small neighborhood U of ∂K and some α > 0 such that

(3.2) |∇uR(x)| ≥ α > 0 for all x ∈ U\K.
Choose the level set {uR = 1 − ε} and set Uε := {x : uR(x) > 1 − ε} ∩ U .
Define now

uε(x) :=
uR(x)− (1− ε)

ε
.
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The function uε(x) is a p-harmonic function in the domain Uε, uε(x) = 0 in
{uR(x) = 1 − ε} and uε(x) = 1 in K, so it is the p-capacitary potential of
the set Uε. We need to prove that uε ∈ A0, i.e.,

sup
x∈{uε=0}

dist(x, {uε = l}) < λ.

This is easy to see since from the lower bound (3.2) it follows

dist(x, {uε = l}) ≤ εl

α
< λ, x ∈ {uε = 0},

by choosing ε small enough. �

Lemma 3.3. Let (uS ,ΩS) be any supersolution and (us,Ωs) any subsolution
for problem (PE). Then Ωs ⊂ ΩS and us ≤ uS.

Proof. We use Lavrent’ev rescaling method. Assume by contradiction that
there is a subsolution (us,Ωs) which is not smaller than a supersolution
(uS ,ΩS). Without loss of generality, assume that 0 ∈ K. Rescale the
function us by a parameter ε < 1 small enough, i.e. uεs(x) = us(

x
ε ), so that

uεs is a p-capacitary function in Ωε
s\Kε for Ωε

s ⊂ ΩS , Kε ⊂ K. Moreover, for
all x ∈ ∂Ωε

s,

dist(x, {uεs = l}) ≤ λε < λ.

Consider the biggest ε0 such that Ωε0
s ⊆ ΩS and ∂Ωε0

s ∩ ∂ΩS 6= 0. Note
that we can take ε0 < 1 because Ωs 6= ΩS . Then, by strong comparison
principle uεs ≤ uS for each x ∈ Ωε0

s \K. Let x0 ∈ ∂Ωε0
s ∩ ∂ΩS : it holds that

λ > λε ≥ dist(x0, {uεs = l}) ≥ dist(x0, {uS = l}) ≥ λ,
which is a contradiction. �

The next step in the application of Beurling’s method is to show that the
set B is closed under intersection. This is the preparation step in order to
show that the limit of a decreasing sequence of elements in B still belongs
to B.

Lemma 3.4. Let Ω1 and Ω2 be two elements of B. It holds that

Ω1 ∩ Ω2 ∈ B.
Proof. Let uΩ1∩Ω2 be the solution of the p-capacitary problem in the inter-
section Ω1 ∩ Ω2. By application of the maximum principle in each of the
domains Ω1 and Ω2, we can conclude that

uΩ1∩Ω2(x) ≤ min{uΩ1(x), uΩ1(x)}, for each x ∈ Ω1 ∩ Ω2.

Moreover, since Ω1 ∩ Ω2 must contain K, the level set {uΩ1∩Ω2 = l} is well
defined. Let x0 ∈ {uΩ1∩Ω2 = l} the point where the minimum distance
between the sets ∂(Ω1 ∩ Ω2) and {uΩ1∩Ω2 = l} is achieved. Then

l = uΩ1∩Ω2(x0) ≤ min{uΩ1(x0), uΩ2(x0)},
which implies that the point x0 is further away from both boundaries ∂Ω1

and ∂Ω2, in other words a distance greater than or equal to λ. �
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Next lemma shows convergence of the sets Ωn.

Lemma 3.5. Let Ω1 ⊃ Ω2 ⊃ . . . be a decreasing sequence of convex domains
in B, and suppose that the set Ω, defined the as interior of the closure ∩Ωk,
is convex, bounded, open and Ω ⊃ K. Then Ω ∈ B.

Proof. Let uk be the p-capacitary potential of Ωk\K. By construction, 0 ≤
uk ≤ 1, and it is a decreasing sequence. Then we can easily show that on
every compact subset of Ω := Interior(∩Ωk), uk converges in C1,α norm to a
p-harmonic function u. However, the lack of control of the gradients at the
boundary does not allow to show higher regularity up to the boundary, but
only Cα.

We first prove that u is precisely the solution to the p-capacitary problem
in Ω\K, denoted by uΩ. Clearly, u ≡ 1 in K. We also need to check that
u ≡ 0 outside Ω. For that, let x 6∈ Ω. Since K is convex, Ωk\K automatically
satisfies the uniform exterior cone condition, and one may use Corollary 2.4
to estimate

0 ≤ uk(x) ≤ dist(x,RN \ Ωk)
α sup ‖uk‖Cα(Ω\K)(3.3)

≤Mdist(x,RN \ Ωk)
α → 0,

as k →∞. This implies that u(x) = 0, as desired.
Since the sequence of functions is decreasing, the set {uk = l} converges

to the set where {u = l}. However the boundary of the set Ωk may not
converge to the set {u = 0}: that may happen if the gradient of u vanishes
at some point of ∂Ω so that the limit function flattens out, and in this case
the distance property would be violated. As a consequence, we need to check
that u(x) > 0 for all x ∈ Ω. By the minimum principle, u cannot vanish in
the interior, but it could happen that it vanishes at the boundary of some
set Ω̃ ⊂ Ω. Hence assume by contradiction that Ω̃ 6= Ω; consider a point
x0 ∈ ∂Ω̃, x0 6∈ Ω and let P ∈ {u = l} be the point where distance between x0

and {u = l} achieves its minimum. It can happen that x0 = P but this is not
a problem in the argument. Note that the ball Bε/2(x0) is completely inside
Ωk for all k (otherwise, the distance property for uk would be violated).

Moreover uk(x)→ 0 as k →∞ for all x ∈ Bε/2(x0) \ (Bε/2(x0) ∩ Ω̃). Cover

the segment x0P by a finite number of balls of radius ε/2, and define S =
∪Ni=0Bε/2(xi). In the set S the Harnack inequality applied to the function
uk implies

l = u(P ) ≤ uk(P ) ≤ sup
S
uk(x) ≤ C inf

S
uk(x),

where C depends only on S. But this is a contradiction since, as k →∞, it
holds

l ≤ C inf
S
uk(x)→ 0.

We have shown that Ω̃ = Ω, so that u > 0 on Ω. Then u = uΩ is the
p-capacitary potential for the set Ω\K. Moreover the set Ω belongs to B
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since

λ ≤ dist(∂Ωn, {un = l})→ dist(∂Ω, {u = l}) as n→ +∞.(3.4)

Note here that the passage to the limit is justified because ∂Ωn → ∂Ω and
{un = l} → {u = l} in the Hausdorff distance sense. �

The previous two lemmas allow us to find a minimal set Ω in B, i.e., the
solution u will be the minimal supersolution, that stays above the strict sub-
solution we have found in Lemma 3.2. More precisely we have the following
corollary:

Corollary 3.6. Assume that there exist two domains Ω0 ∈ A0 and Ω1 ∈ B,
with Ω0 ⊂ Ω1. Set

S := {Ω ∈ B : Ω0 ⊂ Ω}.
Then there exists a domain Ω in the class S which is minimal for the inclu-
sion.

Proof. Let Ω̃ be the intersection of all domains in the class S and set Ω to
be the interior of the closure of Ω̃, which is still convex. To prove Ω ∈ B,
we select a sequence of domains {Uk}∞k=1 in S such that ∩Uk = Ω̃. Consider
the sequence of domains defined by Ω1 = U1 and Ωk+1 = Ωk ∩ Uk+1 for
k ≥ 1. Each Ωk is convex and because of Lemma 3.4 belongs to B. Lemma
3.5 completes the proof of the corollary. �

In the following, we always denote by Ω the (non-trivial) minimal element
in the class S defined in the previous proposition. To finalize the proof of
the theorem we need to check that this minimal set satisfies the distance
property so it is indeed the solution of (PE).

Proof of Theorem 3.1:
We need to show that Ω, the minimal set of B, and its corresponding p-
capacitor potential uΩ satisfy the distance property:

dist(x, {uΩ = l}) = λ for all x ∈ ∂Ω.

The proof for the standard Bernoulli problem uses crucially the convexity
assumption. Our problem may be solved through a different and much
simpler argument, which may be extended to more complex geometries, for
instance, the star-shaped case. By contradiction, suppose that there is a
point x0 ∈ ∂Ω such that

dist({uΩ = l}, x0) = λ+ ε, ε > 0.

Set L := {uΩ > l}. Note that L\K is a convex ring. Define Ω̃ as the set

Ω̃ := {x ∈ Ω : dist(x,L) < λ},
with ũ the p-capacitary potential of Ω̃\K. By the hypothesis, Ω̃ $ Ω, and
hence the comparison principle gives that ũ ≤ u. One may estimate, for
x ∈ ∂Ω̃, that

dist(x, {ũ = l}) ≥ dist(x, {u = l}) ≥ λ.
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Since ∂Ω̃ lies at fixed distance λ from L, and L is a convex bounded set, we
can conclude that also Ω̃ is convex. Hence Ω̃ belongs to the set B; but this
contradicts the fact that Ω is the minimal set in B.

Lemma 3.7. Assume that K is star-shaped. If problem (PE) admits a
solution, then it is unique.

Proof. It is a consequence of Lemma 3.3, since a solution is at the same time
a sub- and a super-solution. �

Remark 3.8. The uniqueness result together with the constructive construc-
tion of Ω as intersection of convex sets give that the solution Ω of problem
(PE) must be convex.

We look now at regularity. It is clear that u ∈ C∞(Ω\K) and even an-
alytic in the interior of Ω\K, but what about the regularity of the free
boundary? First note that {u = l} is level set of an analytic function, hence
it is analytic. Moreover all the normal curvatures at the level set are positive
(Lemma 2.8). The level set {u = 0} is at a fixed distance λ from {u = l} and
its curvatures are of the form µi

1+λµi
, where µi are the curvatures of {u = l};

hence we can conclude [31] that {u = 0} is also C∞ and analytic.

The proof of Theorem 3.1 is thus completed.

3.2. Convergence to the Bernoulli problem. Finally, we show that the
discrete Bernoulli problem converges, at the limit, to the usual Bernoulli
problem:

Theorem 3.9. Let ln and λn be two decreasing sequences of positive num-
bers such that ln → 0, λn → 0 as n → +∞ and ln = λnω. Let (un,Ωn)
be the solution of the exterior problem (PE) with constants l = ln and
λ = λn. As n → ∞, {Ωn} is a decreasing sequence of sets converging in
Hausdordff distance to some convex set Ω and the function un converges in
C1,α

loc
(Ω\K) ∩ Cα(Ω\K) to the (unique) solution u of the classical Bernoulli-

type problem

(PB)

{
∆pu = 0 in Ω \K, u = 1 in K, u = 0 on ∂Ω,

|∇u| = ω, for all x ∈ ∂Ω.

The boundary condition |∇u| = ω is to be understood in the following sense:

(3.5) lim inf
y→x,y∈Ω

|∇u(y)| = lim sup
y→x,y∈Ω

|∇u(u)| = ω, for every x ∈ ∂Ω.

Remark 3.10. It is shown in [37] that the solution for the Bernoulli problem
(PB) exists, it is unique if K is bounded, and has C2,α boundary ∂Ω.

Proof. Define the rescaled distance function

dn(x) = ln[1− dist(x, {un = ln})/λn].
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Clearly, when x ∈ ∂Ωn ∪ {un = ln} we have that dn(x) = un(x). Define also
Sn := {0 ≤ un ≤ ln}, a narrow ring. Since the level sets of un are convex
surfaces, the function dn is p-superharmonic in the set Sn, i.e,

−∆pdn ≥ 0.

Since dn and un have the same boundary values on ∂Sn, comparison principle
yields that un ≤ dn everywhere in Sn. In particular, one obtains that for
x ∈ ∂Ωn, and lm ≤ ln,

dist(x, {un = lm}) ≥ dist(x, {dn = lm}).
On the other hand for any x ∈ {0 ≤ dn ≤ ln} it holds |∇dn(x)| = ω. Since
0 ≤ lm ≤ ln,

dist(x, {dn = lm}) ≥
lm

sup |∇dn|
=
lm
ω

= λm for all m ≥ n.

Thus, un is a supersolution for every problem (PE) with constants (λm, lm),
m ≥ n, i.e., Ωn ∈ Bm where

Bm := {Ω ∈ C | inf
x∈∂Ω

dist(x, {uΩ = lm}) ≥ λm},

for all m ≥ n. Because of our construction of the solution for the exterior
problem with constants (λm, lm) as the minimal set in Bm, this immediately
gives that Ωn contains all the Ωm for m ≥ n. Consequently we have shown
that the sequence of {Ωn}∞n=0 is decreasing and from maximum principle it
follows that {un} is a decreasing sequence.

Since un ≤ dn on Sn, using Hopf’s boundary lemma we arrive at |∇un| ≤
|∇dn| = ω on ∂Ωn. This tells us that un is a supersolution for the Bernoulli
problem with constant ω in the sense indicated in [37].

As a consequence, the sequence of sets Ωn converges (for example in the
Hausdorff measure) as n→∞ towards a convex domain Ω ⊃ K. Moreover

un converges in C1,α
loc -norm to a p-harmonic function u: by Theorem 3.2

in [37] we know that u solves the p-capacitary problem in Ω \ K and is a
supersolution, i.e., |∇u| ≤ ω for all x in ∂Ω.

The last step consists of showing that (u,Ω) solves the Bernoulli problem
(PB) with constant ω in the sense indicated in (3.5). Use again comparison
to the distance function, we obtain that |∇un| ≥ ω on the level set {un = ln}.
But Lemma 2.7 gives that the inequality |∇un| ≥ ω is also true for every
point in {ln ≤ u < 1}. Since we have uniform convergence of the gradients
away from the boundary and the sequence of sets Ωn → Ω is decreasing, we
are able to pass to the limit and thus |∇u(y)| ≥ ω for every point y ∈ Ω\K.
The proof of the Theorem is completed. �

4. The interior problem in convex setting

We consider now the following problem: given a convex open bounded
set Ω ⊂ RN for N ≥ 2 and l ∈ (0, 1), λ > 0, find a function u and a convex
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open bounded domain K ⊂ Ω such that

(PI)

{
∆pu = 0 in Ω \K, u = 0 in K, u = 1 in ∂Ω,

dist(x,Γl) = λ, for all x ∈ ∂K.

Our first main result for the interior case is the following.

Theorem 4.1. There exists a constant λΩ,max that depends only on l and
Ω such that for any λ ≤ λΩ,max problem (PI) has a smooth solution (u,K)
with K a convex set and ∂K ∈ C0,1.

For each convex set K, one can define its associated p-capacitary potential
uK as the solution of the following problem:

(PK)


∆puK = 0 in Ω \K,
uK = 0 in K,

uK = 1 on ∂Ω.

Note that, without risk of confusion, we have switched the notation from
problem (PΩ) in the exterior case.

The proof of Theorem 4.1 goes, as in the exterior case, by considering the
maximal element in the class:

Bλ = {K convex bounded open set,

Ω ⊃ K | inf
x∈∂K

dist(x, {uK = l}) ≥ λ}.(4.1)

In the following we show that, fixed l ∈ (0, 1), the set B is non-empty if the
value of λ is smaller than a certain critical value, which will be denoted by
λΩ,max. We also show that problem (PI) does not necessarily have a unique
solution for certain values of λ.

4.1. A minimal supersolution and the Bernoulli constant. As a mo-
tivation, consider the simple case that Ω is a ball: such particular example
shows, as in the case of the classical Bernoulli problem, the existence of a
constant λΩ,max such that no solution exists for λ > λΩ,max, one or two so-
lutions can occur for λ < λΩ,max and only one solution exists if λ = λΩ,max.
Using Beurling’s terminology, we call the unique solution that corresponds to
the value λ = λΩ,max of parabolic type, the smallest solution for λ < λΩ,max

of hyperbolic type and the biggest solution for λ < λΩ,max of elliptic type.
The elliptic solutions form a decreasing family, while the hyperbolic solutions
form a increasing family of solutions.

Lemma 4.2. Let Ω = BR(0) ⊂ RN be a ball with radius R. Fixed l ∈ (0, 1)
and p > 1, we have that:

i. If p ≤ N , there exists a constant λmax depending on l and R such
that problem (PI) has a unique solution for λ = λmax, two solutions
if 0 < λ < λmax and no solutions if λ > λmax.



14 M.D.M. GONZALEZ, M. GUALDANI, AND H. SHAHGHOLIAN

ii. If p > N , then there exist constants λmax and λmin depending on
l, p and R such that problem (PI) has a unique solution for λ ∈
(0, λmin)∪{λmax}, two solutions if λ ∈ (λmin, λmax) and no solutions
if λ > λmax.

Proof. It has been shown in [57] that all the solutions of the p-capacitary
problem with Ω = BR(0) are balls centered in the origin. We deal first with
the case N = p. Given any r with 0 < r < R, the unique solution ur of the
p-capacitary problem with Ω = BR(0) and K = Br(0) reads as follows:

ur(|x|) = 1− log(R)− log(|x|)
log(R)− log(r)

.

It holds

ur(|x|) = l if and only if |x| = Rl r1−l,

and consequently

Λ(r) := dist(x, {ur = l}) = r
((

R
r

)l − 1
)

for all x ∈ ∂Br(0).

We note here that Λ(r)+r ≤ R for r ∈ (0, R) so ur is an admissible solution
for the p-capacitary problem in the annulus.

With elementary computations one can check that Λ(r) reaches its max-
imum value at

rmax := R (1− l) 1
l with Λ(rmax) = R

(1− l)1/l

(1/l − 1)
=: λmax.(4.2)

We may easily compute Λ(0) = 0, Λ(R) = 0, and Λ(r) is strictly increasing
for 0 < r < rmax, strictly decreasing for rmax < r < R. This implies that for
any λ ∈ (0, λmax) there exist two values rλ,1 < rmax < rλ,2 < R such that

both solutions ui, i = 1, 2 of the p-capacitary problems in BR(0) \ Brλ,i(0)
satisfy dist(x, {ui = l}) = λ for all x ∈ ∂Bri(0) for i = 1, 2. Moreover,
there exists a unique solution for λmax, and no solutions in the remaining
case. This completes the proof of the lemma for the case p = N .

On the other hand, when p 6= N the p-capacitary potential is given by

ur(|x|) =
r
p−N
p−1 − |x|

p−N
p−1

r
p−N
p−1 −R

p−N
p−1

,

and, keeping the same notation as above,

Λ(r) =
[
(1− l)r

p−N
p−1 + lR

p−N
p−1

] p−1
p−N − r.

But again, Λ(r) + r ≤ R, so ur is indeed an admissible solution in the
annulus.
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Next, Λ(r) reaches its maximum value at

rmax := R

[
l

(1− l)
N−p
N−1 − (1− l)

] p−1
p−N

.

Note that Λ is an increasing function in the interval (0, rmax), decreasing

at (rmax, R), Λ(R) = 0 and Λ(0) = l
p−1
p−NR > 0 if p > N and Λ(0) = 0 for

p < N .
We set λmin := Λ(0) and

(4.3)

λmax := Λ(rmax) = R

( l

1−(1−l)
p−1
N−1

) p−1
p−N
−
(

l

(1−l)
N−p
N−1−(1−l)

) p−1
p−N

 .
This completes the proof of the lemma. �

Now we go back to the problem (PI) for a general convex bounded set Ω
in RN and a fixed l ∈ (0, 1) (although we may not write it, the dependence
in l will be always implicit). Consider the set of supersolutions as defined
in (4.1). Since Bλ1 ⊂ Bλ2 for λ1 > λ2, we can define the Bernoulli constant
for our problem as

λΩ,max := sup{λ > 0 | Bλ is not empty}.(4.4)

A possible bound from below for λΩ,max is given by the next lemma.

Lemma 4.3. Let l ∈ (0, 1) and Ω be any open bounded convex set, then

λΩ,max ≥ λmax,
where λmax is defined in (4.2) if p = N and (4.3) if p 6= N , and R is the
radius of the largest ball inscribed in Ω.

Proof. According to Theorem 4.1 and the definition in (4.4), problem (PI) is
solvable for given constants λ > 0, l ∈ (0, 1), provided that Bλ 6= ∅. Follow-
ing the discussion above, for any λ ≤ Λ(rmax) there exists a unique constant
rλ,2, with rmax ≤ rλ,2 < R such that the solution of the p-capacitary problem

urλ,2 in BR(0) \Brλ,2(0) satisfies the distance property:

dist(x, {urλ,2 = l}) = λ for all x ∈ ∂Brλ,2(0).

Note that if λ = D(rmax) then rmax = rλ,2.
For any λ ≤ D(rmax) consider now the solution ū of the p-capacitary

problem in Ω \ Brλ,2(0). By comparison principle applied to the functions
urλ,2 and ū, the (minimum) distance between the sets {ū = l} and ∂Brλ,2(0)
is greater or equal λ. This shows that ū is a supersolution for (PI), as
stated. �

Corollary 4.4. Fix l ∈ (0, 1) and Ω a convex bounded domain in RN . Then,
for each λ ≤ λΩ,max, there exists a supersolution (u,K) such that K belongs
to the class Bλ.
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Proof. Indeed, we have just seen that if x0 ∈ Ω and R the radius of the
largest ball centered at x0 inscribed in Ω, then for λ ≤ λΩ,max the solution
ū constructed in Lemma 4.2 is a supersolution of the problem and indeed
its zero set K := Brλ,2(0) belongs to the class Bλ. �

Remark 4.5. Because of the distance property, for any K ∈ Bλ, we have
that

dist(x, ∂Ω) ≥ λ for any x ∈ ∂K,
which shows that any element in the class Bλ is strictly contained in Ω and
thus, non-degenerate.

We have just shown that for any λ ≤ λΩ,max the set Bλ is not empty.
Obviously it holds that Bλ2 ⊂ Bλ1 if λ1 ≤ λ2. We first define the maximal
set as

Kλ := C
(⋃

K∈Bλ
K
)
,(4.5)

and will prove that Kλ satisfies the distance problem (PI) with constants

(λ, l). Here C (X) denotes the closed convex hull of the set X.
It is an interesting open question to see if for general convex domains Ω

the set of all solutions of problem (PI) follows the same structure as the
ball case, i.e. parabolic, elliptic and hyperbolic case; in particular to prove
that the family of maximal convex solutions defined above is an elliptic
(i.e. decreasing and continuous) family of solutions and that there exists
a unique solution corresponding to the value λ = λΩ,max. These questions
have been already addressed for the classical Bernoulli problem and proven
to be true for the linear case p = 2, [3, 21] and for p 6= 2 more recently in [15].

Before we prove Theorem 4.1, let us show a couple of preparatory lemmas:

Lemma 4.6. Let K1 and K2 be two elements of Bλ. It holds that

K∗ ∈ Bλ,
where K∗ is the convex hull of the set K1 ∪K2.

Proof. Let u∗ be the solution of the p-capacitary problem in Ω \K∗. Since
the set K∗ is strictly contained in Ω, the level set {u∗ = l} is well defined.
Let x0 ∈ {u∗ = l} and x1 ∈ ∂K∗ be the points where the minimum distance
between the sets ∂K∗ and {u∗ = l} is attained. We would like to show that
dist(x0, x1) ≥ λ.

First, by application of the maximum principle we can quickly conclude
that

u∗(x) ≤ min{uK1(x), uK2(x)}, for each x ∈ Ω,

which, in particular, implies that

l = u∗(x0) ≤ min{uK1(x0), uK2(x0)}.
Because, by initial hypothesis, uK1 and uK2 are supersolutions of the prob-
lem (PI) in the sense of (4.1), one knows right away that every point in
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{u∗ = l} is far from both boundaries ∂K1 and ∂K2 a distance greater or
equal than λ, and in particular the same is true for x0. We have just shown
that if we set K := K1 ∪K2, then

(4.6) dist(x0, ∂K) ≥ λ.

On the other hand, we have constructed K∗ as the convex hull of K. If
x1 is an extremal point of K∗, then it belongs also to ∂K which implies
that dist(x0, x1) ≥ λ by (4.6). If x1 is not an extremal point of K∗, it can
be written as a linear combination of points {yi}ni=1 that are extremal for
K. For such points we have already shown that dist(yi, {u∗ = l}) ≥ λ. But
because the set {u∗ = l} is the boundary of a convex set by Proposition 2.8
one automatically obtains that dist(x1, x0) ≥ λ too. �

Lemma 4.7. Let K1 ⊂ K2 ⊂ . . . be a increasing sequence of convex domains
in Bλ, and suppose that the set K, defined as interior of the closure ∪Kn,
is convex, bounded, open and Ω ⊃ K. Then K ∈ Bλ.

Proof. Let un be the p-capacitary potential of Ω\Kn. By construction, 0 ≤
un ≤ 1, and {un} is a decreasing sequence. Then we can easily show that
on every compact subset of Ω, un converges in C1,α norm to a p-harmonic
function u. We first prove that u is precisely the solution to the p-capacitary
problem in Ω\K, denoted by uK . Clearly, u ≡ 1 on ∂Ω. We also need to
check that u ≡ 0 in K. For that, let x ∈ K \Kn. Since K is convex, Ω\Kn

automatically satisfies the uniform exterior cone condition, and one may use
Corollary 2.4 to get a uniform (in n) Cα estimate up to the boundary, hence

0 ≤ un(x) ≤ dist(x,Kn)α sup ‖un‖Cα(Ω\K) ≤Mdist(x,Kn)α → 0

as n→∞. This implies that u(x) = 0 for all x ∈ K, as desired.
Note that, because we have a decreasing sequence of functions, the set

{un = l} converges to the set where {u = l}. However, the boundary of the
set Kn may not converge to the set {u = 0}, and this may happen if the
gradient of un grows in some neighborhood of ∂K. Hence we need to check
that u(x) > 0 for all x ∈ Ω \K. Assume that K ⊂ K̃ and u = 0 in K̃. This

is done again by a Harnack chain argument: let x0 ∈ ∂K̃ and P ∈ {u = l}
be two points such that

dist(x0, P ) ≤ λ− ε for some ε > 0.

Since Kn satisfies the exterior ball condition, the ball Bε/2(x0) is completely

outside Kn for all n. Moreover, un(xn)→ 0 for all x ∈ Bε/2(x0) as n↗∞.

Cover the segment x0P by a finite number of balls of radius ε/2, and
define S = ∪Ni=1Bε/2(xi). In the set S, Harnack inequality applied to the
function un implies

l = u(P ) ≤ un(P ) ≤ sup
S
un(x) ≤ C inf

S
un(x),
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where C depends only on S. But this is a contradiction, since as n↗∞,

l ≤ C inf
S
un(x)→ 0.

We have shown that, necessarily, K̃ = K, so that u > 0 on Ω \ K. Then
u = uK is the p-capacitor potential for the set Ω\K. Moreover K belongs
to Bλ; the proof follows the same argument as in (3.4) with Ωn replaced by
Kn. �

Now we check that the maximal set found in the previous lemma satisfies
the distance property. Such maximal set provides the solution for problem
(PI), and thus the proof of Theorem 4.1 is almost complete.

Lemma 4.8. Assume that Bλ is non-empty. Let K be the maximal set of
Bλ found in the previous lemma and let uK be the corresponding solution of
the p-capacitor problem for Ω\K. It holds

dist(x, {uK = l}) = λ for all x ∈ ∂K.
Proof. We know that both the sets ∂K and {u = l} are convex (the sec-
ond one is convex by Lemma 2.8). Then one just needs to understand the
distance between two convex sets. By construction, we know that for all
x ∈ ∂K.

(4.7) dist({uK = l}, x) ≥ λ.
Suppose that there is a point x0 ∈ ∂K such that

dist({uK = l}, x0) = λ+ ε.

Then one can consider the convex set K̃ = {x ∈ Ω : dist(x, {uK = l})} = λ.

Let ũ be the p-capacitary solution in K̃; clearly ũ < uK by the strong
maximum principle. Then, if x ∈ ∂K̃,

dist(x, {ũ = l}) ≥ dist(x, {uK = l}) ≥ λ,
which shows that K̃ is in the class Bλ, which contradicts the maximality of
K. �

Conclusion of the proof of Theorem 4.1: We have already seen that for
any λ < λΩ,max, the set Bλ is nonempty and thus there exists a solution for
(PI). It remains to check that this is so for λ = λΩ,max.

Let λk be a sequence converging to λΩ,max from below. We have just
shown that for each λk, there exists a convex solution Kk. One can subtract
a subsequence, still denoted by Kk, which converges to a convex domain K in
the Hausdorff topology. Then, by Arzela-Ascoli, the p-capacitary potential
uk of Ω\Kk converges to u, the p-capacitary potential of Ω\K. We have also
shown that the distance from the l-level set of uk is at a distance λk, then
passing to the limit we also see that the same holds for u (similar argument
as before).
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Remark 4.9. In contrast to the exterior problem studied before, in the in-
terior discrete Bernoulli problem the free boundary may have corners; con-
sequently ∂K is only C0,1 and the solution is C0,α up to the boundary.

4.2. Convergence to the Bernoulli problem. Before we state the main
theorem of the section, let us recall what is known for the interior Bernoulli
problem:

Theorem 4.10 ([36]). Given a convex domain Ω, there exists a constant ω0

depending on Ω and p such that for all ω ≥ ω0 the Bernoulli-type problem

(PBI )

{
∆pv = 0 in Ω \D, v = 0 in D, v = 1 in ∂Ω,

|∇v| = ω for all x ∈ ∂D,

has a solution (v,D) (not necessarily unique). Moreover D is convex. The
boundary condition |∇v| = ω is again understood in the sense of (3.5).

Remark 4.11. We remind the reader that the solution (v,D) given in the
previous theorem is the one constructed as the extremal supersolution for
problem (PBI ), although there may be others. The set of supersolutions for
each fixed ω is defined in [36] as the class of Lipschitz functions in Ω such
that v = 1 on ∂Ω, ∆pv ≤ 0 in {v > 0} ∩ Ω and |∇v| ≤ ω on ∂{v > 0} ∩ Ω.

Now, the main theorem of this section is:

Theorem 4.12. Let Ω be a bounded convex domain in RN . Let ω > ω0,
where ω0 is the Bernoulli constant for the domain Ω given in Theorem 4.10.
Fix two decreasing sequences {ln} and {λn} of positive numbers such that
ln → 0, λn → 0 as n → +∞ and ln = λnω. Let also λnΩ,max be the

corresponding quantity (4.4) to each ln. Then:

• There exists a solution (v,D) for the interior Bernoulli problem
(PBI ) with constant ω.
• There exists a sequence of solutions (un,Kn) of problem (PI) for

each l = ln, λ = λn.
• The sequence of convex sets {Kn} is decreasing and as n→∞ con-

verges in Hausdorff distance to the convex set D.
• In addition, the function un converges in C1,α

loc (Ω\D) ∩ Cα(Ω\D) to
v.

The proof of the theorem will be a consequence of the following claims:

Claim 1: The existence of a solution for the Bernoulli problem with con-
stant ω > ω0 is the statement of Theorem 4.10.

Claim 2: For each n, there exists a solution (un,Kn) to the interior
problem (PI) with constants λ = λn and l = ln.

The proof of this claim uses the following lemma on the relation between
the solvability of the distance problem and the Bernoulli one:
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Lemma 4.13. Given a convex bounded domain Ω and l ∈ (0, 1), the Bernoulli
constant defined in (4.4) for the distance problem satisfies

(4.8) λΩ,max ≥
l

ω0
,

where ω0 is the Bernoulli constant from Theorem 4.10.

Proof. As in the proof of Lemma 4.3, it is enough to show that any solution
(v,D) for the Bernoulli problem (PB) with constant ω0 is also a supersolu-
tion for (PI) for λ ≤ l

ω0
. Indeed, the Bernoulli condition for v tells us that

|∇v| = ω0 on ∂D, which implies that |∇v| ≤ ω0 in Ω\D because of Lemma
2.7. Then, if x ∈ ∂D,

(4.9) dist(x, {v = l}) ≥ l

sup |∇v| =
l

ω0
≥ λ,

which implies D ∈ Bλ. �

Using the lemma for the domain Ω and the level ln we may estimate

λnΩ,max ≥
ln
ω0
≥ ln
ω

= λn,

which tells us that the distance problem (PI) with constants (λn, ln) may
be solved (Theorem 4.1). This proves Claim 2.

Claim 3: Kn is a decreasing sequence of sets. In particular, we have that
u = supn un and K = ∩nKn, where (un,Kn) is the solution to the distance
problem (PI) with constants λ = λn, l = ln.

Fix m ≤ n, so that ln ≤ lm and λn ≤ λm. Let us check first that un
belongs to the set of supersolutions Bm, defined as

Bm := {K ⊂ Ω | inf
x∈∂K

dist(x, {uK = lm}) ≥ λm}.

For that, consider the distance function dn between two level sets of un,
rescaled by a factor ω, so that dn and un have the same boundary values in
the set Sn := {0 ≤ un ≤ ln}. More precisely,

(4.10) dn(x) = ln[1− dist(x, {un = ln})/λn].

Since the level set {un = ln} is smooth, the distance function is smooth
(a reference for the regularity of distance functions may be found in [31]).
Note that in order to have dn well defined outside Sn, we need to take the
distance function to the level set dist(x, {ln = un}) with a change of sign
once we pass the level set.

Next, since the level sets of un are convex surfaces (see Lemma 2.8), the
distance function defined in the set Sn is p-subharmonic, i.e.,

∆pdn ≥ 0.
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Moreover, since dn and un share the same boundary values on both bound-
aries of the set Sn, we can use Hopf’s lemma on the smooth curve {un = ln},
thus obtaining that

ω = |∇dn| ≥ |∇un|, ∀ x ∈ {un = ln}.
Define now the set An := {ln ≤ un ≤ 1}. From Hopf’s lemma we can
deduce that the function fn := dn − un is strictly positive in a annulus Mn

(a neighborhood of {un = ln}) inside An. Suppose, by contradiction, that
Mn is strictly contained in the neighborhood An; consider fn in the domain
M̃n := Sn ∪Mn: it holds that fn = 0 on ∂Kn, fn > 0 in {0 < un < ln},
fn = 0 on {un = ln}, fn > 0 in Mn and fn = 0 on ∂Mn. But this is
a contradiction since fn is super-harmonic and should reach its maximum
value at the boundary of M̃n. Hence Mn = An. Then in the set An one has
that un ≤ dn. As a consequence, for m ≤ n, i.e., lm ≥ ln, and x ∈ ∂Kn =
{un = 0},

dist(x, {un = lm}) ≥ dist(x, {dn = lm}) = λm,

and un ∈ Bm as claimed. In particular, since um is constructed as the
extremal supersolution in the set Bm, we have that um ≤ un, which in par-
ticular implies that Kn ⊂ Km. This is, Kn → K is a decreasing sequence of
sets, and the claim is proved.

Claim 4: Let K := ∩nKn. Then K ⊇ D and is convex. In particular, it
is not degenerate.

Following the steps of Lemma 4.13, one can show that the solution (v,D)
of problem (PBI ) is a supersolution to the (λn, ln) distance problem. Hence
Kn ⊇ D for any n ∈ N.

Claim 5 : There exists a function u such that un → u in the space
C1,α
loc (Ω\K) ∩ Cα(Ω\K).

Claim 6: In addition, u = 0 on ∂K and ∂K ∈ C0,α, so that u is the
p-capacitary potential in the annulus Ω\K.

Claims 5 and 6 follow similarly as the exterior case as a consequence of
uniform Cα estimates up to the boundary for a convex annulus Ω\K, so we
will not make further comment.

Now we remark that the the regularity of the boundary ∂K is slightly
worse than in the exterior case (see Remark 4.9), indeed it is only C0,1, and
we may not have gradient bounds up to the boundary. However, we still
have from the proof of Claim 3 that in the set An := {ln ≤ un < 1} it holds
that

(4.11) |∇un| ≤ ω.
Now we may pass to the limit n→∞. It is easy to see that |∇un| converges
uniformly to |∇u| on compact sets inside Ω\K. As a consequence of (4.11)
we get the following claim:
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Claim 7: |∇u| ≤ ω on ∂K. From Lemma 2.7 we also get that |∇u| ≤ ω
in Ω\K.

To complete the proof of Theorem 4.12 it suffices to show that D = K
and u = v. First, in Claim 4 we have shown that D ⊂ K. On the other
hand, in Claim 7 we have shown that |∇u| ≤ ω on ∂K. This in particular
implies that (u,K) is a supersolution for the Bernoulli problem (PBI ) in the
sense of Remark 4.11. As a consequence, one gets that K ⊂ D (see [36]), as
desired.

Remark 4.14. If Ω is a ball, relation (4.8) can be written explicitly. Indeed
for λmax in Lemma 4.2 via the limit

lim
l→0

l

λmax
=


e/R if N = p,

1

R

(
p− 1

N − 1

)N−1
p−N

if N 6= p,

one recovers the usual Bernoulli constant for the ball calculated in [36].

5. The star-shaped case

A domain U ⊂ RN is called star-shaped with respect to the point x0 ∈ U
if for all x ∈ U the segment joining x and x0 is contained in U . Moreover the
set U is called star-shaped with respect to the ball B ⊂ U if U is star-shaped
with respect to every point x0 ∈ B.

Let U be a star-shaped domain with respect to the point x0. For θ ∈ SN−1,
where SN−1 is the unit sphere, set

φ(θ) = sup{ρ > 0 : x0 + ρθ ∈ U}.
Then we can write

U = {x0 = ρθ : θ ∈ SN−1, 0 ≤ ρ < φ(θ)}.
It is well known [17] that:

Lemma 5.1. Let U be a bounded domain in RN which is star-shaped with
respect to the point x0 ∈ U . Then it is star-shaped with respect to a ball
centered at x0 if and only if the function φ satisfies the Lipschitz condition
on SN−1.

We call such domains star-shaped Lipschitz. It is clear that star-shaped
Lipschitz sets satisfy both the interior and exterior cone condition. One may
also consider star-shaped Lipschitz rings: they are of the form U = Ω\K,
where Ω and K are star-shaped Lipschitz with respect to the same center.

Given a bounded, star-shaped Lipschitz domain K ⊂ RN , we consider
the exterior distance problem

(P∗)

{
∆pu = 0 in Ω \K, u = 1 in K, u = 0 on ∂Ω,

dist(x,Γl) = λ for all x ∈ ∂Ω,
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for some function u and a star-shaped domain Ω ⊂ RN , with the same center
as K. Our main result in this section is stated in the following theorem:

Theorem 5.2. Problem (P∗) has a unique solution (u,Ω) with ∂Ω ∈ C0,α

and C1,1 from inside.

Before we give the proof of the theorem, let us briefly recall what is known
for the (exterior) classical Bernoulli problem (PB) when K star-shaped with
respect to a ball. For the case p = 2 Kawohl proved in [41] existence and
uniqueness of a (variational) solution via rearrangement method. In addition
he proved that such solution has star-shaped Lipschitz level sets. Also Acker-
Meyer [7] showed that, still for p = 2, the solution is regular and that
∂Ω ∈ C∞ is also starlike with respect to the same ball.

Now we are ready for the proof of Theorem 5.2: it follows the lines of
the problem in the convex case, but some additional ingredients are needed
to compensate for the lack of convexity. First, note that uniqueness was
already shown in Lemma 3.7.

Note that the regularity results of Theorem 2.1 and Lemma 2.2 still hold
since they only depend on the Lipschitz constant of the boundary of the
domain. Moreover, Lemma 2.6 is true for star-shaped rings as it was shown
in [47]: indeed, a solution of the p-Laplacian equation is smooth, C1,α, and
satisfies a type of Harnack inequality, from which a bound from below for
the gradient follows. Moreover, we have the following proposition:

Proposition 5.3 ([41]). Let l ∈ [0, 1). Given a (Lipschitz) star-shaped
ring Ω\K and its p-capacitary function uΩ described as above, the level sets
{uΩ > l} are (Lipschitz) star-shaped.

Since, by hypothesis, the initial domain K is star-shaped Lipschitz with
respect to some point, then there exists some small ball Bδ centered at that
point such that K is star-shaped with respect to that ball. Consider the
class

C∗ := {Ω open, bounded, star-shaped with respect to Bδ, Ω ⊃ K},
and define the set of sub- and super-solutions as follows:

A = {Ω ∈ C∗ | sup
x∈∂Ω

dist(x,Γl) ≤ λ},
A0 = {Ω ∈ C∗ | inf

x∈∂Ω
dist(x,Γl) < λ},

B = {Ω ∈ C∗ | inf
x∈∂Ω

dist(x,Γl) ≥ λ}.

The construction of super- and sub-solutions in Lemma 3.2 is valid also
for K star-shaped Lipschitz domains; this implies that the sets A0 and B are
nonempty. Lemma 3.4 holds as well. Consider now a set Ω0 ∈ A0 and set
Ω ⊂ RN to be the intersection of all domains in the class B containing Ω0.
By construction, Ω is star-shaped with respect to the same ball Bδ. Let u to
be the p-capacitary potential of Ω\K. Then one may conclude as in Lemma
3.5 that Ω ∈ B; the only tricky point is to check that there exists a uniform
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Hölder estimate in equation (3.3). But this is true because Cα-estimates up
to the boundary from Corollary 2.4 only depend on the Lipschitz constant
of the boundary. Moreover, we know by construction that

inf
x∈∂Ω

dist(x,Γl) ≥ λ.

This implies that the equivalent of Lemma 3.5 and Corollary 3.6 for star-
shaped domains are proven.

Finally, one needs to check that the function u is indeed a solution for
the distance problem (P∗), i.e.

dist(x,Γl) = λ for all x ∈ ∂Ω.(5.1)

This follows from a simple argument: let Ω be the extremal set as con-
structed above, and set L := {u > l}. Note that L is a star-shaped
annulus. By contradiction, assume that there exists x0 ∈ ∂Ω such that
dist(x0, ∂L) > λ. Define Ω̃ as

Ω̃ := {x ∈ Ω : dist(x,L) < λ},

and let ũ be the p-capacitary potential of Ω̃\K. By hypothesis, Ω̃ $ Ω.
Comparison principle implies that ũ ≤ u and consequently

dist(x, {ũ = l}) ≥ dist(x, {u = l}) ≥ λ, for x ∈ ∂Ω̃.

Since ∂Ω̃ has a fixed distance λ from Γl, and Γl is a star-shaped surface,
we conjecture that Ω̃ is also star-shaped with respect to the ball Bδ. We
proceed by contradiction: suppose that Ω̃ is not star-shaped with respect
to a point in Bδ. Without loss of generality we can assume this point to be
the origin x = 0. Note that both sets L := {l ≤ u ≤ 1} and Ω̃ are smooth.

Then there exists a point z ∈ ∂Ω̃ such that the tangent plane Π to ∂Ω̃ at z
passes through the origin.

By construction the point z lies at a distance λ from Γl; in particular
there exists x0 ∈ Γl where this distance is attained. Since all the sets here
are smooth, we know that the line joining x0 to z is normal to the plane
Π. Then one may just work with the intersection of Ω̃ with the plane Π1,
where Π1 is the plane that contains the origin, the point z and the normal
vector ~ν (see Figure 1).

Consider now the line s passing through the points 0 and z and the line t
passing through 0 and x0. Since the set L is star-shaped with respect to 0,
the curve Γl ∩Π1 has to cross the line t exactly at x0, and after crossing, it
lies on the half-plane bounded by t that does not contain the point z. Hence
there exist some points in Ω̃ ∩ Π1 which are on the half-plane bounded by
s (which does not contain x0) that lie at a distance strictly greater than λ

from Γl. But this contradicts the definition of Ω̃.
Hence Ω̃ is star-shaped and belongs to B; by the minimality of Ω if follows

that Ω̃ = Ω and (5.1) is proven.
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•
•

•

0

x0

z

Γl ∩Π1

Ω̃

t

s!ν

Figure 1. Star-shaped domain

For the regularity, just note that the distance property implies that ∂Ω is
C1,1 from inside, but further regularity is unknown. The proof of Theorem
5.2 is thus completed.

6. Generalizations

6.1. Non-constant distance property - convex case. The next ques-
tion one may ask is what happens when we replace the constant λ in the
distance property by a non-constant function λ(x). For the Bernoulli prob-
lem, this problem was considered in [35]. We concentrate on the exterior
problem here; the interior problem follows the same line with appropriate
modifications.

Theorem 6.1. Let K ⊂ RN , N ≥ 2, be a convex open bounded domain,
l ∈ (0, 1) and λ(x) a continuous function satisfying 0 < c0 ≤ λ(x) ≤ c1 in
RN . Suppose moreover that λ(x) is locally concave in RN\K (i.e., concave
on each line segment contained in the set RN\K).

Then there exist a function u ∈ C1,α(Ω) and a convex open bounded do-
main Ω ⊂ RN , Ω ⊃ K, ∂Ω ∈ C2 which solve the following problem:

(P ′E)

{
∆pu = 0 in Ω \K, u = 1 in K, u = 0 on ∂Ω,

dist(x,Γl) = λ(x) for all x ∈ ∂Ω.

Moreover if the function

(6.1) t ∈ [0, 1] 7→ tλ((x− z0)/t)

is strictly increasing for all x ∈ RN for some z0 ∈ K, then Ω is unique.

Proof. The proof of the above theorem is analogous to one of Theorem 3.1,
with small modifications that we indicate below. First, the sets A, B and
A0 are defined as in Section 3. Super and subsolutions are constructed as
in Lemma 3.2 by choosing, for the supersolution, R big enough such that

dist(x, {uR = l}) ≥ c1



26 M.D.M. GONZALEZ, M. GUALDANI, AND H. SHAHGHOLIAN

and, for the subsolution, ε small enough such that

ε l

α
≤ c0.

Next, Lemma 3.4 and 3.5 follow similarly. The existence of a neighborhood
of radius ε contained in each Ωk for all k where one can apply Harnack
inequality is a consequence of the fact that λ(x) is a continuous function.

Corollary 3.6 holds as well for λ = λ(x) and the proof follows exactly
the one for λ = const. Hence we obtain (Ω, u) minimal in the class B. Ω is
convex by construction, and thus, ∂Ω is Lipschitz.

It remains to check that this solution satisfies the distance property, i.e.,

dist(x, {u = l}) = λ(x) for all x ∈ ∂Ω.

Contrary to the constant case, convexity for Ω is a crucial hypothesis. By
contradiction, assume that the above is not true, i.e. there exists a point
x0 ∈ ∂Ω such that

dist(x0, {u = l}) > λ(x0).

By continuity one can find a neighborhood V 3 x0 such that dist(x, {u =
l}) > λ(x) for all x ∈ V . Let EΩ be the set of extremal points of Ω. If

x0 ∈ EΩ, then one may find a convex set Ω̃ such that Ω\V  Ω̃  Ω and

x0 6∈ Ω̃. Let ũ be the p-capacitary function of Ω̃. Comparison principle
implies that ũ ≤ u; then for all x ∈ ∂Ω̃,

dist(x, {ũ = l}) ≥ dist(x, {u = l}) ≥ λ(x).

We have just shown that Ω̃ ∈ B. Contradiction with the minimality of Ω.
If x0 6∈ EΩ, then x0 can be written as a linear combination of extremal

points, i.e.,

(6.2) x0 =
n∑
i=1

tnxn, where
n∑
i=1

ti = 1, xi ∈ EΩ, i = 1, . . . , n.

By hypothesis dist(xi, {u = l}) = λ(xi) for every i = 1, . . . , n and

dist(x0, {u = l}) ≤
n∑
i=1

tidist(xi, {u = l}) =
n∑
i=1

tiλ(xi) ≤ λ(x0),

where we have used the local concavity assumption on λ for the last inequal-
ity.

Next, to show that that the solution is unique we follow the same rescal-
ing method as in Lemma 3.7. Suppose, by contradiction, that (P ′E) has
two solutions (u1,Ω1), (u2,Ω2). Without loss of generality assume that in
hypothesis (6.1) we have that z0 = 0 ∈ K. Rescale uε2(x) = u2(x/ε). Then
Ωε

2 ⊂ Ω1 and one may consider the biggest ε(< 1) such that Ωε
2 touches Ω1

from inside. Let xε0 ∈ ∂Ωε
2 ∩ Ω1 and x0 = xε0/ε. It holds

(6.3)
dist(xε0, {uε2 = l}) = εdist(x0, {u2 = l}) = ελ(x0) = ελ(xε0/ε) < λ(xε0),
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thanks to (6.1) for the last inequality. On the other hand, by comparison
principle, we easily have that uε2 ≤ u1; in particular,

(6.4) dist(xε0, {uε2 = l}) ≥ dist(xε0, {u1 = l}) = λ(xε0).

Then equations (6.3) and (6.4) give the desired contradiction.
We look now at the regularity: since Ω is convex the surface {u = l} is

analytic by Lemma 2.8. Then ∂Ω is the set of points at distance λ(x) from
this level set, that will have principal curvatures given by the formula

µi
1 + λ(x)µi

.

If λ is continuous, then ∂Ω will have continuous principal curvatures, which
implies that ∂Ω ∈ C2. Higher regularity on λ will imply higher regularity
for ∂Ω. The proof of the theorem is thus completed.

�

6.2. The distance problem with mean curvature condition. We shall
now consider the case where λ = λ(x, κ(x)), with κ(x) being the mean cur-
vature of ∂Ω at the point x. The standard Bernoulli problem for harmonic
functions (case p = 2) with non-constant gradient condition depending on
the mean curvature has been studied in [10, 53, 54] through a variational
formulation for the functional∫

D
|∇u|2 dx+ Per({v > 0}).

Here we follow the sub/supersolution approach.
We first recall the definition of mean curvature in the viscosity sense:

Definition 6.2. For U a bounded convex domain, one may define the (in-
terior) mean curvature of ∂U in the viscosity sense as follows: assume that
0 ∈ ∂U and that the interior normal ν to ∂Ω at the origin is in the direction
of the e-axis. We define

κ(∂U)(0) := inf
A∈U

κ(SA)(0),

where SA = {(x, e) : e = 〈Ax, x〉} and U is the set of all symmetric matrices
A such that the set SA (the graph of a quadratic polynomial) locally touches
∂U at 0 from inside.

If the set U is empty (i.e., no paraboloid touches ∂U at 0 from inside),
we define

κ(∂U)(0) =∞.
We also define the exterior mean curvature

Definition 6.3. Let U be as in the previous definition: We define the ex-
terior mean curvature κ(∂U)(0) as

κ(∂U)(0) := sup
A∈U

κ(SA)(0),
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where SA = {(x, e) : e = 〈Ax, x〉} and U is the set of all symmetric matrices
A such that the set SA (the graph of a quadratic polynomial) locally touches
∂U at 0 from outside.

If the graph of any quadratic polynomial locally touches ∂U at x = 0 from
outside, we say that

κ(∂U)(0) =∞.
Clearly for any point x0 ∈ ∂U where ∂U ∈ C2 in a neighborhood of x0 it

holds that κ(∂U)(x0) = κ(∂U)(x0).

In this section we study the exterior discrete Bernoulli problem (P ′E) with
distance condition depending on the mean curvature. More precisely, given
a convex bounded domain K with ∂K ∈ C1,1 we prescribe the condition

(6.5) dist(x,Γl) =
l̃

κ(∂Ω)(x)
=: λκ,l̃(x), x ∈ ∂Ω,

with l̃ ∈ (0, 1). We do not include l̃ = 1 since it is not an admissible value
for the case when K is a ball, as explained in Lemma 6.7.

The main result is summarized in the following theorem.

Theorem 6.4. Let K ⊂ RN , N ≥ 2, be a convex open bounded set and
l, l̃ ∈ (0, 1). There exist a function u ∈ C1,α(Ω) and a convex open bounded
domain Ω ⊂ RN , Ω ⊃ K, with ∂Ω ∈ C0,1 which solve the following problem:

(P ′K)


∆pu = 0 in Ω \K, u = 1 in K, u = 0 on ∂Ω,

dist(x,Γl) ≥ λκ,l̃(x) for all x ∈ ∂Ω,

dist(x,Γl) = λκ,l̃(x) for all x ∈ ∂Ωκ,

where λκ,l̃(x) is defined in (6.5) and ∂Ωκ is the set of all points x ∈ ∂Ω for

which at least one of the following assumptions is satisfied:

(A1) x is an extremal point of Ω and ∂Ω is C2-smooth at x,
(A2) x is not an extremal point, but it can be written as a linear combi-

nation of extremal points satisfying (A1).

Moreover the set ∂Ω ∈ C0,1 does not contain points x of the form

(A3) x is an extremal point of Ω and κ(∂Ω)(x) = κ(∂Ω)(x) =∞,
(A4) x is not an extremal point, but it can be written as a linear combi-

nation of extremal points satisfying (A3).

Recall that extremal points are defined in Definition 2.10. We first show
a technical lemma that will be used later:

Lemma 6.5. Let Ωn be a decreasing sequence of convex bounded domains
converging in Hausdorff measure to Ω. Let x0 be a point on ∂Ω; it holds

(6.6) lim inf
{xn}

κ(∂Ωn)(xn) ≤ κ(∂Ω)(x0),
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where the lim inf is taken for all sequences {xn} satisfying xn ∈ ∂Ωn and
xn → x0.

Proof. First note that if κ(∂Ω)(x0) = +∞ inequality (6.6) holds. Let x0 be
a regular point with curvature 0 ≤ k0 := κ(∂Ω)(x0) < +∞. Without loss
of generality assume that x0 = 0. For any ε > 0, there exists a paraboloid
Pk0+ε with curvature κ0 + ε at the point x = 0 that touches ∂Ω from inside
at 0 in a neighborhood Uε 3 0 (see Figure 2).

∂Ω

Pκ0+ε

P δ
κ0+ε

• 0
!ν

Uε

Figure 2.

Shift now the paraboloid Pk0+ε by a small positive distance δ in the direc-
tion of the outward normal ~ν to ∂Ω at 0; denote this shifted ball by P δk0+ε.

Clearly, if δ is small enough, P δk0+ε∩∂Ω ⊂ Uε. Since Ωn are convex sets and
{∂Ωn} converges to ∂Ω as n↗∞, there exists at least a set Ωnδ , with nδ de-
pendent on δ, such that Ω∪ (P δk0+ε∩Uε) ⊆ Ωnδ and ∂Ωnδ ∩∂P δk0+ε = {xnδ};
moreover P δk0+ε touches tangentially ∂Ωnδ at the point xnδ . Inequality (6.6)
follows since ε and δ can be taken arbitrarily small. �

The supersolutions are given by those Ω such that

(6.7) dist(x,Γl)≥ λκ,l̃(x),

and hence we define the set of all supersolutions as

B := {Ω ⊂ RN , convex, bounded, K b Ω : uΩ satisfies (6.7)}.
Note that if x0 ∈ ∂Ω is a point where κ(∂Ω)(x) = +∞ then the distance

property (6.7) does not impose any restriction. One may define analogously
A (and A0) to be the set of subsolutions (strict subsolutions) through con-
dition

(6.8) dist(x,Γl)≤(<) λκ,l̃(x).
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Lemma 6.6. If Ω1,Ω2 ∈ B, then Ω1 ∩ Ω2 ∈ B.

Proof. The proof is a simple consequence of the fact that

dist(x0, {uΩ1∩Ω2 = l}) ≥ max {dist(x, {uΩ1 = l}),dist(x0, {uΩ2 = l})} .
�

Lemma 6.7. The sets B and A are non empty. Moreover, any supersolution
is greater or equal than every admissible subsolution.

Proof. A possible supersolution for our problem is the function uR con-
structed in Lemma 3.2: this depends on the fact that there exists R big
enough such that

dist(x,Γl) ≥ l̃ R ∀x ∈ ∂BR(0) and l̃ ∈ (0, 1).

Note that if K is the ball Br(0) and ū(|x|) the capacitary function in the
annulus BR(0) \Br(0), condition (3.1) becomes(

1−
( r
R

)l)
≥ l̃.

Clearly there exists some finite value for R (dependent on l̃) that satisfies

the inequality above if l̃ ∈ (0, 1) but none if l̃ = 1.
For the subsolution consider the function uε constructed in Lemma 3.2;

it holds

dist(x, {uε = l}) ≤ εl̃

α
, for all x ∈ {uε = 0},

and the desired property (6.8) is satisfied by choosing

ε ≤ α

maxx∈{uR=1−ε} κ(x)
,

where κ(x) is the mean curvature of the level set {uR = 1 − ε}. Note that
maxx∈{uR=1−ε} κ(x) < +∞ since this level set is a analytic surface (see
Proposition 2.8).

Lastly we show that any supersolution is larger than every subsolution.
We proceed as in Lemma 3.3 by assuming that there exists a subsolution,
denoted by (ΩS , uS) which is not everywhere larger than a subsolution,
denoted by (Ωs, us). We rescale the subsolution until ∂Ωε

s touches ∂ΩS at a
point x0 ∈ ∂Ωε

s ∩ ∂ΩS . Then

κ(∂Ωε
s)(x0) ≥ κ(∂ΩS)(x0).

Using strong comparison principle we arrive at the following contradiction:

l̃

κ(∂Ωε
s)(x0)

≥ dist(x0, {uεs = l}) > dist(x0, {uS = l}) ≥ l̃

κ(∂ΩS)(x0)
.

This concludes the proof of the lemma. �
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Lemma 6.8. Let {Ωn} be a decreasing sequence of bounded convex domains
in B, and define Ω := Interior(∩Ωk). Then the p-capacitary potential of
Ω\K, denoted by uΩ, satisfies (6.7) and thus, Ω ∈ B. Moreover, there exists
a positive constant c0 such that κ(∂Ω)(x) ≥ c0 for all x ∈ ∂Ω.

Proof. Since each domains Ωn is convex, we can start as in the proof of
Lemma 3.5. Let un be the p-capacitary potential of Ωn\K. The sequence
{un} converges in C1,α norm to a p-harmonic function u. Convexity imme-
diately implies that u ≡ 0 outside Ω, as it was done in (3.3). In addition
it holds that the set {un = l} converges to the set {u = l} and that ∂Ωn

converges to ∂Ω in Hausdorff distance.
We show first that K b Ω: the existence of a subsolution (found in

Lemma 6.7) implies, using Lemma 2.5, that |∇un| ≤ M for a constant M
independent of n. Consequently, for any n ∈ N, it holds

dist(x, {un = l}) ≥ l

M
, ∀x ∈ ∂Ωn.(6.9)

This implies that K b Ω. Unfortunately inequality (6.9) does not give any
information on uniform bounds from above for κ(∂Ωn).

Instead we show that κ(∂Ω) is uniformly bounded from below by a positive
constant. By construction we have that Ωn ⊂ Ω0 for every n. Then, for every
point xn ∈ ∂Ωn,

l̃

κ(∂Ωn)(xn)
≤ dist(xn, {un = l}) ≤ diam(Ω0), ∀xn ∈ ∂Ωn.(6.10)

In particular ∂Ωn cannot have flat parts. Moreover, if we take a sequence
xn ∈ ∂Ωn such that xn → x0 as n↗∞ with x0 ∈ ∂Ω, from (6.10) and (6.6)
(maybe after passing to a subsequence) we get

l̃

κ(∂Ω)(x0)
≤ diam(Ω0), ∀x0 ∈ ∂Ω,

which shows that ∂Ω cannot have flat parts either.
Two things are now to be proven: (i) the function u is the p-capacitary

potential in Ω\K and (ii) the function u satisfies (6.7). Suppose that Ω̃ :=

{supp(u)} ⊂ Ω; then there exists a point x0 ∈ ∂Ω̃\∂Ω with a neighborhood

of radius ε, denoted by Bε(x0), such that Ω̃ ∪Bε(x0) ⊂ Ω. Let P ∈ {u = l}
be the closest point of {u = l} to x0 and cover the segment x0, P with a
finite number of balls if radius ε. Note that this is possible because the
segment x0, P has a non-negative finite length whose bounds are given in
(6.9) and (6.10). By mimicking the argument in Lemma 3.5 one can show
that Harnack inequality leads to a contradiction. Hence (i) is proven.

Consider now a point x0 ∈ ∂Ω and any sequence {xn ∈ ∂Ωn} such that
xn → x0 as n↗∞; it holds

dist(xn, {un = l})→ dist(x0, {u = l}), as n↗∞.
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On the other hand, taking lim supn→+∞ on both sides of (6.7) and using
(6.6) we obtain

lim
n→+∞

dist(xn, {un = l}) ≥ lim sup
n→+∞

l̃

κ(∂Ωn)(xn)
≥ l̃

κ(∂Ω)(x0)
.

The proof is completed. �

Proof of Theorem 6.4. It remains to prove that the p-capacitary func-
tion (uΩ,Ω) constructed in Lemma 6.8 satisfies the distance property

(6.11) dist(x,Γl) = λκ,l̃(x),

for every x that satisfies either (A1) and (A2) and that ∂Ω does not have
points that satisfy (A3) nor (A4).

Suppose, by contradiction, that there exists an extremal point x0 ∈ ∂Ω
such that

dist(x0, {uΩ = l}) ≥ l̃

κ(∂Ω)(x0)
+ δ, δ > 0.

Then there exists a neighborhood U of x0 (depending on δ) such that for
any x ∈ U ∩ ∂Ω it holds

(6.12) dist(x, {uΩ = l}) ≥ l̃

κ(∂Ω)(x0)
+
δ

2
.

We first assume that ∂Ω is C2 in a neighborhood of x0, i.e. assumption
(A1) is satisfied. We apply translations and rotations so that x0 = 0 and
choose coordinates x = (x′, xn) in such a way that Ω ⊂ {xn > 0} and
parameterize the surface ∂Ω near x0 as a graph xn = ϕ(x′), x′ ∈ RN−1, such
that ϕ(0) = 0, ∇ϕ(0) = 0. Defined a new function ϕ1(x′) := (1−ε)ϕ(x′)+ε2.
For ε small enough the intersection set Vε := {(x′, xn), | ϕ(x′) = ϕ1(x′)} is
strictly contained in the small neighborhood U . Consider the new function
ϕ̃ := max{ϕ,ϕ1} and define the set

Ω̃ = (Ω ∩ U ∩ {(x′, xn) | xn > ϕ̃(x′)}) ∪ (Ω ∩ U c).

By construction it holds that Ω̃  Ω; moreover the mean curvature of Ω̃
can be estimated in terms of the mean curvature or ∂Ω at x0, except maybe
at the points in Vε ∩ ∂Ω, in which it may be infinity. Hence let ũ be the
p-capacitary potential of Ω̃\K. Comparison principle and (6.12) yield, for ε
small enough,

dist(x1, {ũ = l}) ≥ dist(x1, {uΩ = l}) ≥ l̃

κ(∂Ω)(x0)
+
δ

2
≥ l̃

κ(∂Ω)(x1)
,

for x1 ∈ ∂Ω̃ ∩ U . Note that we may obtain the same conclusion of x1 ∈ Vε
even if the curvature at those points is ninfinity. The existence of such
Ω̃  Ω contradicts the minimality of Ω.
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Let us assume now that the extremal point x0 satisfies (A3). Inequality
(6.12) reduces to

dist(x, {uΩ = l}) ≥ δ

2
.

We perturb Ω to Ω̃ in the following way: consider, as before, ∂Ω written
as the graph xn = ϕ(x′). By hypothesis, κ(∂Ω)(x0) = ∞, so for each
constant M > 0, there exists a paraboloid m(x′) with curvature equal M
at x0 that touches ∂Ω from outside at x0. Define a new function ϕ1(x′) :=

(1 − ε)m(x′) + ε2 and consider ϕ̃ := max{ϕ,ϕ1}. Define the set Ω̃ as in
the previous case; contradiction follows similarly. Hence in such point x0 we
have that dist(x0, {uΩ = l}) = 0; but this is not possible because we have
uniform gradient bounds for uΩ (see Corollary 2.5).

Next we consider the case of x0 not being an extremal point of ∂Ω: Lemma
12 in [54] shows that 1

κ(∂Ω)(x) is a locally concave function if Ω is convex.

Then we may proceed as in (6.2) and following arguments in order to con-
clude that property (6.11) is satisfied for each points of the form (A2) and
that ∂Ω does not contain points of the form (A4). �

Remark 6.9. Open problems:

(i) Full regularity of ∂Ω for (P ′K). For the classical Bernoulli problem
full regularity of ∂Ω is obtained via the well known regularity the-
ory for almost minimal surfaces (see [8]). It is an interesting open
question to show that such theory can be applied also for (P ′K).

(ii) One may also consider the problem with more general distance func-
tions λκ,l̃ = λ(x, κ(x)) in (P ′K).

6.3. Two- and Multi-phase problems. The multi-phase Bernoulli prob-
lem (c.f. [4, 5, 45] for p = 2, [6] for general p), has many applications in
studying interfaces, for instance. In a similar flavor we formulate the multi-
phase discrete Bernoulli problem. Fix m ∈ N ∪ {0} and let K1,Km+2 be
two convex bounded domains such that K1 ⊂ Km+2. Moreover consider a
sequence of real numbers −1 ≤ ai ≤ 1, i = 2, . . . ,m + 1 with ai > ai+1

and continuous functions gi : (Km+2\K1) × R+ → R+, i = 2, . . . ,m + 1.
We seek a sequence {Ki : i = 2, . . . ,m + 1} of convex domains such that
K1 b K2 b . . . b Km+1 b Km+2 solve the multi-layer distance problem.
Let ui be the p-capacitary potential of the set Ki+1\Ki, i.e., solution of

(PM )

 ∆p ui = 0 in Ki+1 \Ki,
ui = ai on ∂Ki,
ui = ai+1 on ∂Ki+1.

The functions ui must satisfy the following (nonlinear) joining conditions:
for 0 < l < min{|ai − ai+1|} the level sets

Γi+l := {ui = ai+1 + l}, Γi+1
−l := {ui+1 = ai+1 − l}

satisfy

(6.13) Fi
(
x,dist(x,Γi+l),dist(x,Γi+1

−l )
)

= 0, for all x ∈ ∂Ki+1,
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for given functions Fi : K × R+ × R+ → R, i = 1, . . . ,m.
We assume that Fi(x, p, q) is a continuous function, and that Fi(x, p, q) is

strictly decreasing as a function of the variable p for all x, q. Then via the
implicit function theorem one can write the joining condition (6.13) as

dist(x,Γi+l) = g
(
x,dist(x,Γi+1

−l )
)
, on ∂Ki+1,

for some functions g : K × R+ → R+.
We assume the following initial hypothesis on the functions gi, i = 1, . . . ,m:

(H1) gi is continuous and bounded from below by a positive constant.
(H2) gi is non-decreasing with respect to the second argument.
(H3) The function x 7→ gi (x, q(x)) is a concave function whenever q(x) is

a concave function.
(H4) For any given value y0 > 0, i = 1, . . . ,m, there exist constants

0 < c1 < c2 such that c1 ≤ gi(x, y)/y ≤ c2, uniformly for all x ∈ K
and all y ≥ y0.

Although condition (H4) may seem artificial at first, it is the classical
hypothesis that assures convexity for the level sets of the solution to the
Bernoulli problem (c.f. [45]). The classical example is

g(x, q) =
1

(a(x)α + qα)1/α
,

for a function a such that 1/a(x) is concave. Existence, uniqueness and
convexity of solutions for a general g is an open problem.

The main results of this sections are in the following two theorems:

Theorem 6.10. Let K1,K3 ⊂ RN be two convex bounded domains such
that K1 b K3. Then there exists a convex domain K2 such that

K1 b K2 b K3, ∂K2 ∈ C1,1,

and the p-capacitary potentials u1 and u2 of the sets K2\K1 and K3\K2,
respectively, i.e., solutions of

(6.14)

 ∆pu1 = 0 in K2\K1,
u1 = 1 on ∂K1,
u1 = 0 on ∂K2,

 ∆pu2 = 0 in K3\K2,
u2 = 0 on ∂K2,
u2 = −1 on ∂K3,

satisfy the nonlinear joining condition

(6.15) dist(x, {u1 = l}) = g (x, dist(x, {u2 = −l})) on ∂K2.

Theorem 6.11. The multi-phase version of Theorem 6.10 holds.

The proof of Theorem 6.10 already contains the fundamental ideas for
m > 2: indeed Theorem 6.11 follows easily from Theorem 6.10 and the
uniform separation results of Theorem 6.15.

Consider the class of convex sets

C :=
{

Ω ⊂ RN , convex bounded domain : K1 b Ω b K3

}
,
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and u1, u2 the p-capacitary potentials of K\K1 and K3\K, respectively.
Define the set of subsolutions and supersolutions as

A := {Ω ∈ C | dist(x, {u1 = l}) ≤ g (x, {u2 = −l})} ,
B := {Ω ∈ C | dist(x, {u1 = l}) ≥ g (x, {u2 = −l})} ,(6.16)

for x ∈ ∂K2.
We next show that the set B is closed and stable under intersections:

Lemma 6.12. If Ω, Ω̃ ∈ B, then Ω ∩ Ω̃ ∈ B.

Proof. Let u1, u2, ũ1, ũ2 be the p-capacitary potentials of Ω\K1, K3\Ω, Ω̃\K1

and K3\Ω̃ respectively. By construction Ω ∩ Ω̃ is a convex domain. Next,

let v1 and v2 be the p-capacitary potentials of (Ω ∩ Ω̃)\K1 and K3\(Ω ∩ Ω̃)

respectively. Let x ∈ ∂(Ω ∩ Ω̃); without loss of generality we assume that
x ∈ ∂Ω.

By comparison principle, v1 ≤ min{u1, ũ1}. It holds

(6.17) dist(x, {v1 = l}) ≥ dist(x, {u1 = l}) ≥ g (x, dist(x, {u2 = −l})) ,
since Ω ∈ B.

On the other hand, by comparison principle we have that v2 ≥ max{u2, ũ2};
thus

dist(x, {v2 = −l}) ≤ dist(x, {u2 = −l}).
Since g is non-decreasing with respect to the second argument, it holds

(6.18) g (x,dist(x, {v2 = −l})) ≤ g (x,dist(x, {u2 = −l})) .
Formula (6.17) together with (6.18) gives that

dist(x, {v1 = l}) ≥ g (x,dist(x, {v2 = −l})) ,
which implies that Ω ∩ Ω̃ ∈ B. The proof of the lemma is completed. �

Lemma 6.13. Let Ω1 ⊃ Ω2 ⊃ . . . be a decreasing sequence of convex do-
mains in B. Then Ω := Interior(∩Ωk) Ω belongs to the class B.

Proof. Let uk1 and uk2 be the p-capacitary potentials of Ωk\K1 and K3\Ωk,
respectively. By standard arguments one can show that uk1 and uk2 converge
in Cα to v1 and v2, the p-capacitary potentials of Ω\K1, K3\Ω. Moreover
the convergence is C1,α away from the boundary sets.

To conclude the proof of the lemma, we need to show that dist(x, {v1 =
l}) ≥ g (x, {v2 = −l}) for x ∈ ∂Ω: the proof mimics the one of the one-phase
case (see Lemma 3.5. �

Lemma 6.14. The classes A, B are nonempty.

Proof. Consider the solution u of the p-capacitary problem in K3\K1:

(6.19)


∆pu = 0 in K3\K1,

u = 1 on ∂K1,

u = −1 on ∂K3.
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For any ε ∈ (−1, 1), set Kε := {u = ε}, and define the function

uε(x) :=


u1,ε(x) =

u(x)− α
1− α for x ∈ Kε\K1

u2,ε(x) =
u(x)− α

1 + α
for x ∈ K3\Kε.

Then one may check, using assumption (H4) that Kε ∈ B for ε close to −1,
and that Kε ∈ A for ε close to +1. �

Proof of Theorem 6.10: Let K2 be the minimal set in B; K2 is convex
and well defined by the previous lemmas. Let u1, u2 be the p-capacitary
potentials of K2\K1 and K3\K2, respectively. Then we just need to check
the joining condition (6.15). Suppose by contradiction that the property
(6.15) fails. Then there exists x0 ∈ ∂K2 such that

dist(x0, {u1 = l}) > g (x0,dist(x, {u2 = −l})) + ε.

By continuity, the same inequality holds (maybe with ε/2) in a whole neigh-
borhood of x0. If x0 is an extremal point of K2 the same argument as in
Section 6.1 gives a contradiction.

However, if x0 is not an extremal point but is a finite linear combination
of extremal points, we need the following additional argument: for x ∈ ∂K2,
x 7→ dist(x, {u1 = l}) is a convex function and x 7→ dist(x, {u2 = −l}) is
concave. By the concavity assumption (H3) of g, we know that the function

G(x) := dist(x, {u1 = l})− g (x,dist(x, {u2 = −l}))
is also convex. Since K2 ∈ B, we know that G ≥ 0. But we have just
shown that G vanishes for all extremal points of K2. Then, if x0 is a finite
linear combination of extremal points, then we must have G(x0) = 0, which
concludes the argument and also the proof of Theorem 6.10.

For the regularity of the free boundary, just note that if g is bounded from
below by a positive constant, then ∂K2 satisfies the interior ball condition.
Since K2 is convex, we may conclude that ∂K2 ∈ C1,1. �

We finish this section with a uniform separation result, in the spirit of
Theorem 5.1 from [6] for the classical Bernoulli problem:

Theorem 6.15. Let H be the set of configurations (K1,K2,K3) such that
K1,K2,K3 are convex bounded domains satisfying

• K1 b K2 b K3,
• K1 satisfies the interior ball condition for radius ≥ r1,
• K3 satisfies the interior ball condition for radius ≥ r3,
• K2 belongs to the set of supersolutions B from (6.16).

Then there exists a value η = η(R, r1, r3) such that

dist(∂K1, ∂K2) ≥ ηdist(∂K1, ∂K3),

uniformly for all (K1,K2,K3) ∈ H.
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Proof. Without loss of generality, assume that dist(∂K1, ∂K3) = 1, other-
wise the result follows by rescaling. Let u be the solution of the p-capacitary
problem (6.19) and set

α := sup{u(x) : x ∈ ∂K2} ∈ (−1, 1).

We claim that there exists a uniform α0 such that for every admissible
configuration we must have α ≤ α0. For the proof of the claim, it is enough
to restrict to configurations that have α ∈ (0, 1). Let u1, u2 be as in (6.14).
Consider the functions

u1,α(x) :=
u(x)− α

1− α ; u2,α(x) :=
u(x)− α

1 + α

in the set K3\K1. Then u1 = 1 = u1,α on ∂K1, while u1,α ≤ 0 = u1 on ∂K2.

Comparison principle gives that u1,α ≤ u1 in the set K2\K1. Similarly, since
u2 = −1 = u2,α on ∂K3 and u2,α ≤ 0 = u2 on ∂K2, we arrive at u2,α ≤ u2

in the set K3\K2.
Choose x0 ∈ ∂K2 such that u(x0) = α. Because K2 is a supersolution,

we must have

dist(x0, {u1 = l}) ≥ g(x0,dist(x0, {u2 = −l})).
On the other hand, since we had that u1,α ≤ u1 in K2\K1,

dist(x0, {u1 = l} ≤ dist(x0, {u1,α = l}) = dist(x0, {u = l(1− α) + α}).
In addition, the relation u2,α ≤ u2 in K3\K2 gives

dist(x0, {u2 = −l} ≥ dist(x0, {u2,α = −l}) = dist(x0, {u = −l(1 + α) + α}).
By hypothesis, g is a non-decreasing function, so the previous three inequal-
ities give the relation

(6.20) dist(x0, {u = l(1− α) + α}) ≥ g(x0, dist(x0, {u = −l(1 + α) + α})).
Taking into account that u(x0) = α, we may now estimate

dist(x0, {u = l(1− α) + α}) ≤ l(1− α)

inf |∇u| ≤
l(1− α)

m1

for some m1 depending on r1, where we are using Lemma 2.6 to bound the
gradient from below. Moreover,

dist(x0, {u = −l(1 + α) + α}) ≥ l(1 + α)

sup |∇u| ≥
l(1 + α)

m2
,

where m2 = m2(r2) is given in Corollary 2.5. Formula (6.20) and the mono-
tonicity of g yield to

l(1− α)

m1
≥ g

(
x0,

l(1 + α)

m2

)
.

By hypothesis (H4) on g it holds

(6.21)
l(1− α)

m1
≥ c1

l(1 + α)

m2
,
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for c1 depending on m2.
Note that m1 and m2 depend on the distance dist(∂K1, ∂K3) = 1, and

on the initial constants r1, r3. But then, (6.21) already implies that α ≤ α0

for some α0. The claim is proved.
Finally, to complete the proof of the theorem, one uses Lemma 5.3 in

[6]. �

Remark 6.16. If we relax the hypothesis on the domains K1,K3 to only
a interior cone condition, then we can use the uniform Cβ estimate from
Corollary 2.4 instead of the gradient estimate, and still obtain a uniform
separation result.

6.4. A Brunn-Minkowski inequality. Given two domains Ω1 and Ω2 ⊂
RN , we define their Minkowski linear combination Ωt as

Ωt := (1− t)Ω0 + tΩ1, t ∈ [0, 1].

Notice that if Ω0,Ω1 are convex sets, so is Ωt.
An upper semicontinuous function u : RN → R ∪ {±∞} is said to be

quasi-concave if it has convex superlevel sets, or, equivalently, if

u((1− t)x0 + tx1) ≥ min{u(x0), u(x1)}, for all t ∈ [0, 1], x0, x1 ∈ RN .
If u is defined only in a proper subset Ω in RN , we extend u as −∞ in
RN\Ω and we say that u is quasi-concave in Ω if such an extension is quasi-
concave in RN . In an analogous way, u is quasi-convex if−u is quasi-concave.
Obviously, if u is concave (convex), then it is quasi-concave (quasi-convex).

Consider u0, u1 two upper semicontinuous functions defined in Ω0,Ω1 ⊂
RN , respectively, and let t ∈ [0, 1]; the Minkowski linear combination of
u0 and u1 is the upper semicontinuous function u∗t whose super-level sets

L(t)
l := {u∗t ≥ l} are the Minkowski linear combination of the super-level

sets L(0)
l , L(1)

l of u0, u1, respectively, i.e.,

L(t)
l = (1− t)L(0)

l + tL(1)
l ,

and

u∗t (x) = sup{l : x ∈ L(t)
l }.

The notion of quasi-concavity has already been used in the study of the
classical Bernoulli problem in the papers [15, 49], for instance. Here we plan
to extend those results to the distance problems (PE) and (PI). It turns
out that the proofs seem to be very well adapted for the case of distance
between level sets.

Our first proposition deals with the exterior case:

Proposition 6.17. Fix l ∈ (0, 1). Let K0, K1 be two bounded convex do-
mains in RN , and λ0, λ1 two given positive constants. For t ∈ [0, 1], define
their Minkowski sum

Kt := (1− t)K0 + tK1, and λt := (1− t)λ0 + tλ1.
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Denote by (u0,Ω0), (u1,Ω1), (ut,Ωt) the solutions of the exterior distance
problem (PE) for given data (K0, λ0, l), (K1, λ1, l) and (Kt, λt, l), respec-
tively. Then

(6.22) (1− t)Ω0 + tΩ1 ⊃ Ωt.

Proof. Let Ω̃t := (1 − t)Ω0 + tΩ1; Consider the Minkowski sum u∗t of the
functions u0 and u1. Then for every level set s ∈ [0, 1], we have that

{u∗t ≥ s} = (1− t){u0 ≥ s}+ t{u1 ≥ s}.
Let x ∈ ∂Ω̃t and y ∈ {u∗t = l}. Then there exist x0 ∈ ∂Ω0 and x1 ∈ ∂Ω1

such that x = (1− t)x0 + tx1 and as a consequence,

dist(x, y) ≥ (1−t)dist(x0, {u0 = l})+tdist(x1, {u1 = l}) = (1−t)λ0+tλ1 = λt.

This implies that Ω̃t ∈ Bλt .
Since the solution of the problem (PE) for given initial data (Kt, λt) is

given as the minimal set in the class Bλt , we arrive at Ω̃t ⊃ Ωt, as desired. �

Remark 6.18. We conjecture that equality in (6.22) holds if and only if K0

and K1 are homothetic.

We consider now the interior counterpart: let l ∈ (0, 1) and be Ω a convex
domain in RN . Denote by Λ(Ω) := λΩ,max the Bernoulli constant for the
(interior) distance problem defined in (4.4).

Proposition 6.19. Fix l ∈ (0, 1). Let Ω0, Ω1 be two bounded convex do-
mains in RN , and λ0 ≤ Λ(Ω0), λ1 ≤ Λ(Ω1) two given positive constants.
For t ∈ [0, 1], define

Ωt := (1− t)Ω0 + tΩ1, and λt := (1− t)λ0 + tλ1.

Denote by (u0,K0), (u1,K1), (ut,Kt) the solutions of the interior distance
problem (PI) for given data (Ω0, λ0, l), (Ω1, λ1, l) and (Ωt, λt, l), respectively.
Then

(6.23) (1− t)K0 + tK1 ⊂ Kt.

Proof. By definition of the Bernoulli constant (4.4), there exist convex sets
K0 b Ω0, K1 b Ω1, whose p-capacitary potentials u0 and u1, respectively,
satisfy dist(xi, {ui = l}) ≥ λi, for all xi ∈ ∂Ki, i = 0, 1.

Let u∗t be the Minkowski addition of the quasi-convex functions u0 and u1;
u∗t is a quasi-convex function whose sublevel sets are the Minkowski linear
combination of the corresponding sublevel sets of u0 and u1, i.e.

{u∗t ≤ s} = (1− t){u0 ≤ s}+ t{u1 ≤ s} for all s ∈ [0, 1].

We define K̃t := {u∗t = 0}; note that K̃t = (1− t)K0 + tK1.

Then by a purely geometrical argument we can show that if x ∈ ∂K̃t and
y ∈ {u∗t = l}, then we may find x0 ∈ ∂K0, x1 ∈ ∂K1 such that

dist(x, y) ≥ (1− t)dist(x0, {u0 = l}) + tdist(x1, {u1 = l}) ≥ (1− t)λ0 + tλ1.
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Hence for all x ∈ ∂K̃t it holds

dist(x, {u∗t = l}) ≥ λt.
The inequality above implies that the set Ωt belongs to the class Bλt . Since
the set Kt, solution of the interior distance problem (PI), is constructed as
the largest set in the class Bλt , then one automatically obtains that

(1− t)K0 + tK1 = K̃t ⊂ Kt.

�

As a consequence, we obtain a Brunn-Minkowski inequality for Λ(Ω) in
the spirit of the (Newtonian) capacitary inequalities of [16]:

Corollary 6.20. Fix l ∈ (0, 1). Let Ω0,Ω1 be two bounded convex domains
in RN . For each t ∈ (0, 1), define

Ωt := (1− t)Ω0 + tΩ1.

Then

(6.24) Λ(Ωt) ≥ (1− t)Λ(Ω0) + tΛ(Ω1).

Conjecture 6.21. We conjecture that equality in (6.24) holds if and only
if Ω0 and Ω1 are homothetic. One may also compare the Bernoulli constant
Λ(Ω) to the Bernoulli constant of a ball with the same mean width, and
obtain (sharp) isoperimetric inequalities. Another open problem is whether
uniqueness of solution for λ = Λ(Ω) holds.

7. Concluding Remarks

7.1. An alternative approach for Numerical computation. One of
the major problems in designing numerical algorithms for the (interior and
exterior) classical Bernoulli problem, as well as for the formulation presented
in this manuscript, is related to the fact that the set Ω (for the exterior
case), or K (for the interior case) is unknown and chosen by the solution.
Consequently, to impose numerically the gradient or the distance condition
to the solution itself at the unknown boundary becomes a non-trivial task.

Consider for a moment the exterior discrete Bernoulli problem (the inte-
rior can be treated similarly)

(PE)

{
∆pu = 0 in Ω \K, u = 1 in K, u = 0 on ∂Ω,

dist(x, {u = λω}) = λ for all x ∈ ∂Ω,

and the classical one

(PB)

{
∆pu = 0 in Ω \K, u = 1 in K, u = 0 on ∂Ω,

|∇u| = ω for all x ∈ ∂Ω.

The numerical implementation of a distance condition between two level
sets of a p-harmonic function might be easier than the implementation of
a gradient condition on a level set. Moreover we have rigorously shown in
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the previous sections that solutions of (PE) converge to solutions of (PB) as
λ→ 0.

Based on these two observations, we propose the following algorithm to
numerically approximate solutions to problem (PE) and consequently solu-
tions to (PB). Fix the set K ⊂ RN and (un−1,Ωn−1) solution of (PΩ) with
Ω = Ωn−1:

1. Let Bλ(x) be the ball of radius λ and centrum in x; define

Ωn := {un−1 ≥ λω} ∪
⋃

x∈Γn−1

Bλ(x)

with Γn−1 = {x ∈ Ωn−1, | un−1(x) = λω}.

2. If Ωn−1 = Ωn the couple (Ωn−1, un−1) is a solution for (PE). If
Ωn−1 6= Ωn solve (PΩ) with Ω = Ωn.

3. Let (un,Ωn) be a solution of (PΩ) with Ω = Ωn. Restart from step
1. for n→ n+ 1.

Hence a numerical algorithm for (PB) consists on solving (PE) with the
scheme {1.,2.,3.} for a decreasing sequence of values for λ.

We remark the reader that estimates showing convergence and stability
of algorithm {1.,2.,3.} are not provided in this manuscript but are very
interesting open questions.

7.2. Open problems. Let K b Ω be two bounded domains in RN . Let
u ∈ C2(Ω\K) ∩ C(Ω) be a classical solution of the Dirichlet problem

F (x, u,∇u,D2u) = 0 in Ω\K,
u = 0 on ∂Ω,

u = 1 on ∂K,

where F (x, t, p, A) is a proper and (degenerate) elliptic operator defined
on RN × R × RN × SN (here SN denotes the set of real symmetric n × n
matrices). If bothK and Ω are convex, the natural question to ask is whether
all the level sets of u are convex. i.e. whether u is a quasi-convex function.
Without suitable assumptions on F , the answer can be negative (see [55]) for
instance. Before dealing with the classical Bernoulli or the discrete version of
it presented in this manuscript, one should aim to find sufficient conditions
on F which guarantee that u is a quasi-convex function. An answer to
this question for the p-Laplacian operator can be found in Lemma 2.8 and
Lemma 5.3 for respectively the convex and star-shaped domains. Note that
for a general F , the problem was considered in [58].

Another interesting open question is whether any solution to (PE) (or
to (PI)) satisfies the so called normal vector property: a solution (u,Ω) to
(PE) satisfies the normal vector property if given any point x0 ∈ ∂Ω the
line perpendicular to the boundary ∂Ω at x0 intersects the convex hull of K,
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as in Figure 3. Similar questions have been addressed for reaction-diffusion
equations in the context of front-propagation (Jones’ Lemma, see [39, 12]).

Ω
K

x0

Figure 3. Normal vector property

Finally, one may also consider cases in which the condition (1.1) is re-
placed by

dist(x, {u = 0}) = λ, ∀x ∈ {u = l},
or, even more general, by the distance between any two levels sets. Such
problems fall outside the scope of this paper and are left as open questions.

A still open and tantalizing problem concerns the formulation of the dis-
crete Bernoulli problem considered here via a suitable variational functional.
The next question would then be to formulate suitable isoperimetric prob-
lems, in the spirit of [24].
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ETSEIB - Dept. de MA1, Av. Diagonal 647, 08028 Barcelona, Spain

E-mail address: mar.gonzalez@upc.edu

Maria Pia Gualdani, Department of Mathematics, University of Texas at
Austin, 2515 Speedway C1200 , Austin TX, 78712, USA

E-mail address: gualdani@math.utexas.edu

Henrik Shahgholian, Department of Mathematics, The Royal Institute of
Technology 100 44 Stockholm, Sweden

E-mail address: henriksh@kth.se


	1. Introduction
	2. Preliminaries
	3. The exterior problem in convex setting
	4. The interior problem in convex setting
	5. The star-shaped case
	6. Generalizations
	7. Concluding Remarks
	References

