Bordered Floer homology via immersed curves in the punctured torus

Jonathan Hanselman

University of Texas, Austin

March 6, 2016
Outline

1. Bordered Floer homology
2. Loops and curves
3. Pairing
4. Applications
Closed manifolds:

- To a closed, orientable 3-manifold Y we associate an abelian group $\widehat{HF}(Y) = H_*(\widehat{CF}(Y))$
Closed manifolds:
- To a closed, orientable 3-manifold Y we associate an abelian group $\widehat{HF}(Y) = H_*(\widehat{CF}(Y))$

Manifolds with torus boundary:
- There is an algebra \mathcal{A} associated to the torus.
- To an orientable 3-manifold M with boundary $\partial M = T^2$ and a pair of parametrizing curves (α, β) for ∂M, we associate a differential module $\widehat{CFD}(M, \alpha, \beta)$ or an A_∞-module $\widehat{CFA}(M, \alpha, \beta)$ over \mathcal{A}.
The torus algebra \mathcal{A}

- \mathcal{A} is generated (over \mathbb{F}_2) by $\rho_1, \rho_2, \rho_3, \rho_{12}, \rho_{23}, \rho_{123}$ and two idempotents, ι_0 and ι_1.

$$
\rho_1 \rho_2 \rho_3 \rho_{12} \rho_{23} \rho_{123} \iota_0 \iota_1
$$
The torus algebra \mathcal{A}

- \mathcal{A} is generated (over \mathbb{F}_2) by $\rho_1, \rho_2, \rho_3, \rho_{12}, \rho_{23}, \rho_{123}$ and two idempotents, ι_0 and ι_1.

- Multiplication is concatenation, e.g.

$$\rho_1 \rho_2 = \rho_{12}, \quad \rho_2 \rho_1 = 0, \quad \rho_1 \iota_1 = \rho_1, \quad \rho_1 \iota_0 = 0$$
The torus algebra A

- A is generated (over \mathbb{F}_2) by $\rho_1, \rho_2, \rho_3, \rho_{12}, \rho_{23}, \rho_{123}$ and two idempotents, ι_0 and ι_1.

- Multiplication is concatenation, e.g.

$$\rho_1 \rho_2 = \rho_{12}, \quad \rho_2 \rho_1 = 0, \quad \rho_1 \iota_1 = \rho_1, \quad \rho_1 \iota_0 = 0$$

- $\iota_0 + \iota_1 = 1 \in A$. We also denote this by ρ_{\emptyset}.
A-decorated graphs

An \mathcal{A} decorated graph is a directed graph with

- vertices labeled by ι_0 or ι_1 (we depict these labels using \bullet and \circ, respectively)
- edges labeled by ρ_I for $I \in \{1, 2, 3, 12, 23, 123, \emptyset\}$.
An A decorated graph is a directed graph with

- vertices labeled by ν_0 or ν_1 (we depict these labels using \bullet and \circ, respectively)
- edges labeled by ρ_I for $I \in \{1, 2, 3, 12, 23, 123, \emptyset\}$.

The module \widehat{CFD} (or \widehat{CFA}) can be represented by an A-decorated graph.

- vertices ↔ generators
 (each generator has an associated idempotent)
- arrows encode the differential
\(A \)-decorated graphs

An \(A \) decorated graph is a directed graph with

- vertices labeled by \(\nu_0 \) or \(\nu_1 \) (we depict these labels using \(\bullet \) and \(\circ \), respectively)
- edges labeled by \(\rho_I \) for \(I \in \{1, 2, 3, 12, 23, 123, \emptyset\} \).

The module \(\hat{CFD} \) (or \(\hat{CFA} \)) can be represented by an \(A \)-decorated graph.

- vertices \(\leftrightarrow \) generators
 (each generator has an associated idempotent)
- arrows encode the differential

We will think of the invariants \(\hat{CFD} \) or \(\hat{CFA} \) as \(A \)-decorated graphs
 (up to appropriate equivalence)
We can always assume the graphs are \emph{reduced} (i.e. no \(\rho_\emptyset \) arrows).
Examples

\(\widehat{\text{CFD}}(D^2 \times S^1, m, \ell)\)

\(\rho_{12}\)

\(\widehat{\text{CFD}}(D^2 \times S^1, \ell, m)\)

\(\rho_{23}\)

\(\widehat{\text{CFD}}(\text{RHT}, \mu, \lambda)\)

\(\rho_1\)

\(\rho_2\)

\(\rho_3\)

\(\rho_{23}\)

\(\rho_{123}\)

\(\widehat{\text{CFD}}(\text{Fig8}, \mu, \lambda)\)

\(\rho_1\)

\(\rho_2\)

\(\rho_3\)

\(\rho_{123}\)

\(\rho_{12}\)
Loop type manifolds

At a given vertex of a reduced \mathcal{A}-decorated graph, we categorize the incident edges:

- At a given vertex of a reduced \mathcal{A}-decorated graph, we categorize the incident edges:
Loop type manifolds

At a given vertex of a reduced \(\mathcal{A} \)-decorated graph, we categorize the incident edges:

\[\bullet \xrightarrow{1} \bullet \xrightarrow{3} \circ \xrightarrow{2} \circ \xrightarrow{3} \]
\[\bullet \xrightarrow{12} \bullet \xrightarrow{2} \circ \xrightarrow{23} \circ \xrightarrow{23} \]
\[\bullet \xrightarrow{123} \bullet \xrightarrow{12} \circ \xrightarrow{1} \circ \xrightarrow{123} \]
\[I_\bullet \quad I_{II_\bullet} \quad I_\circ \quad I_{II_\circ} \]

Definition

A loop is a connected valence two \(\mathcal{A} \)-decorated graph s.t. at every vertex, the two incident edges have types \(I_\bullet \) and \(I_{II_\bullet} \) or \(I_\circ \) and \(I_{II_\circ} \).
Loop type manifolds

At a given vertex of a reduced \mathcal{A}-decorated graph, we categorize the incident edges:

\[
\begin{array}{c}
\bullet \rightarrow \\
\bullet \leftarrow \\
\circ \rightarrow \\
\circ \leftarrow \\
\end{array}
\]

Definition

A *loop* is a connected valence two \mathcal{A}-decorated graph s.t. at every vertex, the two incident edges have types $I\circ$ and $II\circ$ or $I\bullet$ and $II\bullet$.

Definition

A 3-manifold M with torus boundary is *loop type* if, up to homotopy equivalence, the graph representing $\widehat{CFD}(M, \alpha, \beta)$ is a disjoint union of loops.
Loop type manifolds

At a given vertex of a reduced \mathcal{A}-decorated graph, we categorize the incident edges:

\begin{align*}
\text{I} & : \bullet \quad \bullet \quad \circ \quad \circ \\
\text{II} & : \bullet \quad \circ \quad \circ \quad \circ \\
\end{align*}

Definition

A loop is a connected valence two \mathcal{A}-decorated graph s.t. at every vertex, the two incident edges have types I• and II• or I◦ and II◦.

Definition

A 3-manifold M with torus boundary is loop type if, up to homotopy equivalence, the graph representing $\widehat{CFD}(M, \alpha, \beta)$ is a disjoint union of loops.

Note: Does not depend on the choice of parametrization (α, β).
Remark: The loop type assumption appears to be quite mild
Loop type manifolds

Remark: The loop type assumption appears to be quite mild

- If M has more than one L-space filling, M is loop type
Remark: The loop type assumption appears to be quite mild

- If M has more than one L-space filling, M is loop type
- For $K \subset S^3$, if $\text{CFK}^-(K)$ admits a horizontally and vertically simplified basis, $S^3 \setminus \nu(K)$ is loop type
Loop type manifolds

Remark: The loop type assumption appears to be quite mild

- If M has more than one L-space filling, M is loop type
- For $K \subset S^3$, if $\text{CFK}^{-}(K)$ admits a horizontally and vertically simplified basis, $S^3 \setminus \nu(K)$ is loop type
- We currently do not know of any examples which are not loop type
Combinatorial description of loops

An *oriented* loop admits a well defined grading. There are four types of vertices:

\[\text{I•, II•, II••, I••} \]

Reversing the orientation flips all the signs.

Proposition

This agrees with the relative \mathbb{Z}_2 grading on \hat{CFA} defined by Petkova.

An oriented loop gives a cyclic word in \{•+, •−, ◦+, ◦−\}. In fact, the converse is also true.
An *oriented* loop admits a well defined grading. There are four types of vertices:

- I
- II
- I
- II

Reversing the orientation flips all the signs.

Proposition

This agrees with the relative \mathbb{Z}_2 grading on \hat{CFA} defined by Petkova.

An oriented loop gives a cyclic word in $\{\cdot, \circ, +, -\}$. In fact, the converse is also true.
Combinatorial description of loops

An *oriented* loop admits a well defined grading. There are four types of vertices:

\[
\begin{array}{cccc}
& \bullet & & \\
\text{I} & & & \\
& \bullet & & \\
\text{II} & & & \\
+ & & & \\
\end{array}
\begin{array}{cccc}
& \bullet & & \\
\text{II} & & & \\
& \bullet & & \\
\text{I} & & & \\
- & & & \\
\end{array}
\begin{array}{cccc}
\circ & \circ & & \\
\text{I} & & & \\
\circ & \circ & & \\
\text{II} & & & \\
- & & & \\
\end{array}
\begin{array}{cccc}
\circ & \circ & & \\
\text{II} & & & \\
\circ & \circ & & \\
\text{I} & & & \\
+ & & & \\
\end{array}
\]

Reversing the orientation flips all the signs.
Combinatorial description of loops

An oriented loop admits a well defined grading. There are four types of vertices:

\[\begin{align*}
 & \bullet \quad \bullet \\
 & \bullet \quad \circ \\
 & \circ \quad \circ \\
 & \circ \quad \bullet \\
\end{align*} \]

Reversing the orientation flips all the signs.

Proposition

This agrees with the relative \mathbb{Z}_2 grading on \hat{CFA} defined by Petkova.
Combinatorial description of loops

An oriented loop admits a well defined grading. There are four types of vertices:

\[
\begin{align*}
\text{I} & \quad \text{II} \\
\bullet & \quad \bullet \\
+ & \quad - \\
\text{II} & \quad \text{I} \\
\bullet & \quad \bullet \\
- & \quad + \\
\text{I} & \quad \text{II} \\
\circ & \quad \circ \\
- & \quad - \\
\text{II} & \quad \text{I} \\
\circ & \quad \circ \\
+ & \quad +
\end{align*}
\]

Reversing the orientation flips all the signs.

Proposition

This agrees with the relative \mathbb{Z}_2 grading on $\hat{\text{CFA}}$ defined by Petkova.

An oriented loop gives a cyclic word in $\{\bullet^+, \bullet^-, \circ^+, \circ^-\}$. In fact, the converse is also true.
We will replace \circ^\pm with α^\pm and \bullet^\pm with β^\pm. We have:

oriented loops \leftrightarrow cyclic words in α^\pm, β^\pm
We will replace \circ^{\pm} with $\alpha^{\pm 1}$ and \bullet^{\pm} with $\beta^{\pm 1}$. We have:

- oriented loops \leftrightarrow cyclic words in $\alpha^{\pm 1}, \beta^{\pm 1}$
- \leftrightarrow elements of F_2 mod conjugation
We will replace \circ^{\pm} with $\alpha^{\pm 1}$ and \bullet^{\pm} with $\beta^{\pm 1}$. We have:

- oriented loops \leftrightarrow cyclic words in $\alpha^{\pm 1}, \beta^{\pm 1}$
- \leftrightarrow elements of F_2 mod conjugation
- \leftrightarrow homotopy classes of oriented curves in $T^2 \setminus pt$
We will replace \circ^{\pm} with $\alpha^{\pm1}$ and \bullet^{\pm} with $\beta^{\pm1}$. We have:

oriented loops \leftrightarrow cyclic words in $\alpha^{\pm1}, \beta^{\pm1}$
\leftrightarrow elements of F_2 mod conjugation
\leftrightarrow homotopy classes of oriented curves in $T^2 \setminus pt$

loops \leftrightarrow homotopy classes of curves in $T^2 \setminus pt$
We will replace \circ^\pm with α^\pm and \bullet^\pm with β^\pm. We have:

- oriented loops \leftrightarrow cyclic words in α^\pm, β^\pm
- \leftrightarrow elements of F_2 mod conjugation
- \leftrightarrow homotopy classes of oriented curves in $T^2 \setminus pt$

loops \leftrightarrow homotopy classes of curves in $T^2 \setminus pt$
Bordered invariants as curves

- Given a loop type manifold M with parametrizing curves α and β, $\widehat{CFD}(M, \alpha, \beta)$ is represented by a collection of loops.
- These correspond to a collection of immersed curves in the punctured torus.
- We think of this as a collection $\gamma(M, \alpha, \beta)$ in $\partial M \setminus \{z\}$, where z is a fixed basepoint.
Bordered invariants as curves

• Given a loop type manifold M with parametrizing curves α and β, $\widehat{CFD}(M, \alpha, \beta)$ is represented by a collection of loops.
• These correspond to a collection of immersed curves in the punctured torus.
• We think of this as a collection $\gamma(M, \alpha, \beta)$ in $\partial M \setminus \{z\}$, where z is a fixed basepoint.

Theorem 1 (H-Rasmussen-Watson)

The curves $\gamma(M) := \gamma(M, \alpha, \beta)$ do not depend on the parametrizing curves α and $\beta.
Example: \(\mathcal{CFD}(\text{RHT}, \mu, \lambda) \)
Bordered Floer homology has a pairing theorem:

\[\widehat{CFA}(M_1, \alpha_1, \beta_1) \boxtimes \widehat{CFD}(M_2, \alpha_2, \beta_2) \cong \widehat{CF}(M_1 \cup M_2) \]

Suppose \(M_1 \) and \(M_2 \) are loop type manifolds. Then we have collections of immersed curves \(\gamma_1 \subset \partial M_1 \) and \(\gamma_2 \subset \partial M_2 \).
Bordered Floer homology has a pairing theorem:

\[
\widehat{CFA}(M_1, \alpha_1, \beta_1) \boxtimes \widehat{CFD}(M_2, \alpha_2, \beta_2) \simeq \widehat{CF}(M_1 \cup M_2)
\]

Suppose \(M_1\) and \(M_2\) are loop type manifolds. Then we have collections of immersed curves \(\gamma_1 \subset \partial M_1\) and \(\gamma_2 \subset \partial M_2\).

Theorem 2 (H.-Rasmussen-Watson)

Let \(Y = M_1 \cup_h M_2\), where \(h : \partial M_2 \to \partial M_1\) is a diffeomorphism. Then

\[
\widehat{HF}(Y) \cong HF(\gamma_1, h(\gamma_2)),
\]

Where right side denotes the intersection Floer homology of the two sets of curves in the punctured torus \(\partial M_1 \setminus \{z\}\).
Example

Let Y be the 3-manifold obtained by splicing two RHT complements, that is, by gluing them with a map taking μ_1 to λ_2 and λ_1 to μ_2.
Example

Let Y be the 3-manifold obtained by splicing two RHT complements, that is, by gluing them with a map taking μ_1 to λ_2 and λ_1 to μ_2.

\[h(\gamma_2) \]

\[\gamma_1 \]
Application: L-space gluing

Question: If M_1 and M_2 are 3-manifolds with torus boundary, when is $Y = M_1 \cup M_2$ an L-space?
Application: L-space gluing

Question: If M_1 and M_2 are 3-manifolds with torus boundary, when is $Y = M_1 \cup M_2$ an L-space?

Let \mathcal{L}_{M_i} denote the set of L-space slopes on ∂M_i.

Theorem 3 (H.-Rasmussen-Watson)

If M_1 and M_2 are loop type and neither is the solid torus, then $M_1 \cup M_2$ is an L-space iff every slope on $\partial M_1 = \partial M_2$ is in either $\mathcal{L}_{M_1}^\circ$ or $\mathcal{L}_{M_2}^\circ$.

- If M_1 and M_2 are *simple loop type*, this was proved by H.-Watson and Rasmussen-Rasmussen.
Application: L-space gluing

Question: If M_1 and M_2 are 3-manifolds with torus boundary, when is $Y = M_1 \cup M_2$ an L-space?

Let \mathcal{L}_{M_i} denote the set of L-space slopes on ∂M_i.

Theorem 3 (H.-Rasmussen-Watson)

If M_1 and M_2 are loop type and neither is the solid torus, then $M_1 \cup M_2$ is an L-space iff every slope on $\partial M_1 = \partial M_2$ is in either $\mathcal{L}_{M_1}^\circ$ or $\mathcal{L}_{M_2}^\circ$.

- If M_1 and M_2 are *simple loop type*, this was proved by H.-Watson and Rasmussen-Rasmussen.
- This was the key remaining step in confirming a conjecture of Boyer-Gordon-Watson for graph manifolds.
Application: L-space gluing

Question: If M_1 and M_2 are 3-manifolds with torus boundary, when is $Y = M_1 \cup M_2$ an L-space?

Let \mathcal{L}_{M_i} denote the set of L-space slopes on ∂M_i.

Theorem 3 (H.-Rasmussen-Watson)

If M_1 and M_2 are loop type and neither is the solid torus, then $M_1 \cup M_2$ is an L-space iff every slope on $\partial M_1 = \partial M_2$ is in either $\mathcal{L}^\circ_{M_1}$ or $\mathcal{L}^\circ_{M_2}$.

- If M_1 and M_2 are *simple loop type*, this was proved by H.-Watson and Rasmussen-Rasmussen.

- This was the key remaining step in confirming a conjecture of Boyer-Gordon-Watson for graph manifolds.

- Using curves, the proof is essentially an application of the Mean Value Theorem.
Other applications

- If $Y = M_1 \cup M_2$ is a toroidal integer homology sphere and both sides are loop type, Y is not an L-space.
Other applications

- If $Y = M_1 \cup M_2$ is a toroidal integer homology sphere and both sides are loop type, Y is not an L-space.
- Rank inequality for pinching
 \[\text{rk } \widehat{\text{HF}}(M_1 \cup M_2) \geq \text{rk } \widehat{\text{HF}}(M_1 \cup D^2 \times S^1) \]
Other applications

- If $Y = M_1 \cup M_2$ is a toroidal integer homology sphere and both sides are loop type, Y is not an L-space.
- Rank inequality for pinching
 \[\text{rk } \widehat{HF}(M_1 \cup M_2) \geq \text{rk } \widehat{HF}(M_1 \cup D^2 \times S^1) \]
- Connections to Seiberg-Witten theory?
Other applications

- If $Y = M_1 \cup M_2$ is a toroidal integer homology sphere and both sides are loop type, Y is not an L-space.
- Rank inequality for pinching
 \[\text{rk} \, \hat{HF}(M_1 \cup M_2) \geq \text{rk} \, \hat{HF}(M_1 \cup D^2 \times S^1) \]
- Connections to Seiberg-Witten theory?
- Recovering HF^+?
Thank you!