M210T - Emerging Scholars Seminar

Worksheet 10
March 3, 2010

1. For each parametric equation, write a Cartesian equation, and sketch a graph.
a) $\begin{aligned} & x=5 \cos t \\ & y=3 \sin t\end{aligned}$
b) $x=5 \sec t$
c) $\begin{aligned} x & =\cos ^{3} t \\ y & =\sin ^{3} t\end{aligned}$
d) $x=\log _{10} \theta$
$y=\ln \theta$
e) $x=10^{s}$ $y=e^{s}$
f) $x=t^{m}$
$y=t^{n}$
2. Graph each in the $x y$ plane (they are all different). Show how each graph is traced as t varies.
a) $\quad \begin{aligned} x & =t \\ y & =t^{2}\end{aligned}$
b) $x=t^{2}$
c) $x=e^{t}$ $y=e^{2 t}$
d) $x=\left(1-t^{2}\right)^{1 / 2}$ $y=1-t^{2}$
e) $x=t^{-1}$ $y=t^{-1}$
f) $x=|t|^{1 / 2}$ $y=t$
3. Show that if x and y are functions of t, then

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
$$

Find $d y / d x$ two different ways for each parametric equation in exercise 1.
4. Can you find a way to find the arc length of a parametric curve $x=f(t), y=g(t)$, $a \leq t \leq b$?
5. * Suppose we choose fifty-one integers from the set $\{1,2,3,4, \ldots, 100\}$.
a) Prove that there must be two integers among the fifty-one we chose that are relatively prime (that is, do not have a common prime factor).
b) Prove that there must be two integers among the fifty-one we chose such that one of the integers is a multiple of the other.

