M210T - Emerging Scholars Seminar Worksheet 10 March 3, 2010

1. For each parametric equation, write a Cartesian equation, and sketch a graph.

a)	$\begin{aligned} x &= 5\cos t\\ y &= 3\sin t \end{aligned}$	/	$\begin{aligned} x &= 5 \sec t \\ y &= 3 \tan t \end{aligned}$		$\begin{aligned} x &= \cos^3 t \\ y &= \sin^3 t \end{aligned}$
d)	$\begin{aligned} x &= \log_{10} \theta \\ y &= \ln \theta \end{aligned}$	/	$\begin{aligned} x &= 10^s \\ y &= e^s \end{aligned}$	f)	$\begin{aligned} x &= t^m \\ y &= t^n \end{aligned}$

- 2. Graph each in the xy plane (they are all different). Show how each graph is traced as t varies.
 - a) x = t b) $x = t^{2}$ c) $x = e^{t}$ $y = t^{2}$ $y = t^{4}$ $y = e^{2t}$ d) $x = (1 - t^{2})^{1/2}$ e) $x = t^{-1}$ f) $x = |t|^{1/2}$ $y = 1 - t^{2}$ $y = t^{-1}$ y = t
- 3. Show that if x and y are functions of t, then

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}.$$

Find dy/dx two different ways for each parametric equation in exercise 1.

- 4. Can you find a way to find the arc length of a parametric curve $x = f(t), y = g(t), a \le t \le b$?
- 5. * Suppose we choose fifty-one integers from the set {1, 2, 3, 4, ..., 100}.
 a) Prove that there must be two integers among the fifty-one we chose that are relatively prime (that is, do not have a common prime factor).
 b) Prove that there must be two integers among the fifty-one we chose such that one of the integers is a multiple of the other.