M210T - Emerging Scholars Seminar
 Worksheet 16
 April 12, 2010

1. Find the first and second partial derivatives of the following functions and verify Clairaut's Theorem.

$$
f(x, y)=e^{x^{2} y}, \quad z=\left(x^{3}+2 x y-y\right)^{3}, \quad g(x, y)=\sin (x) \cos (y)+\cos (x) \sin (y)
$$

2. Which would increase the volume of a can more: an increase in the height, or an increase in the radius of the base? Which would you decrease for a larger decrease in volume?
3. Suppose that the function $z=f(x, y)$ is continuous. Let's determine what the function looks like near the point $(a, b, f(a, b))$.
a) If you were to talk about an object being tangent to the surface at the point $(a, b, f(a, b))$, what would this object be? In other words, if you were to zoom in very close to the point $(a, b, f(a, b))$, what does the surface resemble?
b) Find a line that is tangent to the surface that has x fixed as $x=a$. To do this, consider the curve (i.e. the parametric function) that lies in the surface with $x=a$. The equation of this curve would look like

$$
\mathbf{r}(t)=\langle a, t, f(a, t)\rangle .
$$

The line tangent to this curve at the point $(a, b, f(a, b))$ would be tangent to the surface and have $x=a$.
c) Similarly, determine a line that is tangent to the surface that has y fixed as $y=b$.
d) Can you use these lines to talk about the behavior of f near $(a, b, f(a, b))$?
4. Let $f(x, t)=A \cos (x+\omega t)+B \sin (x+\omega t)$, and show that f satisfies the wave equation (in one spatial dimension):

$$
\frac{\partial^{2} f}{\partial t^{2}}=\omega^{2} \frac{\partial^{2} f}{\partial x^{2}}
$$

Can you find a function $g(x, y, t)$ that satisfies the wave equation in two spatial dimensions:

$$
\frac{\partial^{2} g}{\partial t^{2}}=\omega^{2}\left(\frac{\partial^{2} g}{\partial x^{2}}+\frac{\partial^{2} g}{\partial y^{2}}\right) ?
$$

5. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{y}}{x^{2}+y^{2}}=0$ and that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ does not exist.
6. * Show that $\sqrt{2}$ is irrational. Can you extend your argument to show that \sqrt{p} is irrational for any prime number p ?
