M210T - Emerging Scholars Seminar
 Worksheet 17
 April 14, 2010

1. Find the plane that is tangent to the following functions at the given points:

$$
\begin{gathered}
z=\sin ^{2}(x)+\cos ^{2}(y) \quad \text { at } \quad(\pi, \pi / 2) \\
f(x, y)=e^{x y^{2}} \\
f(x, y)=\frac{x}{x y+y} \quad \text { at } \quad(0,0) \\
\text { at } \\
f(2,1)
\end{gathered}
$$

2. The total resistance R of three resistors in parallel is given by the equation

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

where R_{1}, R_{2}, and R_{3} are the resistances of the three resistors. If the three resistors are variable resistors,
a) find the linearization of the total resistance when the resistors are set at $R_{1}=100 \Omega$, $R_{2}=150 \Omega$, and $R_{3}=300 \Omega(1 \Omega$ is an $O h m$, the SI unit of resistance).
b) find how fast the total resistance is changing if each resistor is increasing at a rate of 2Ω per minute.
3. a) If you are standing on the plane $z=a x+b y+c$, in which direction should you move on the surface so that the height is increasing at the fastest rate (your answer may be in terms of the constants $a, b, c)$?
b) If you are standing on the differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ at the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$, in which direction should you move so that the height is increasing at the fastest rate (your answer may be in terms of x_{0}, y_{0}, and f and it's derivatives)?
c) How fast does the height of the surface in (a) increase if you move in the direction $\langle u, v\rangle$? What about the function in (b)?
4. Find the second order Taylor approximation of the function $f(x, y)=e^{x y^{2}}$ at the point $(0,0)$. What does this look like graphically?
5. * Show that there are infinitely many prime numbers.

