M210T - Emerging Scholars Seminar
 Worksheet 19
 April 26, 2010

1. Find and identify (if possible) the critical points of the following functions:

$$
f(x, y)=x y e^{x y}, \quad g(x, y)=3 x-x^{3}-2 y^{2}+y^{4}
$$

2. Consider the triangle with vertices $A(0,0), B(0,30)$, and $C(15,0)$. Find the points Q on the triangle (on the interior or boundary) maximize or minimize the value of $|\overrightarrow{A Q}|^{2}+|\overrightarrow{B Q}|^{2}+|\overrightarrow{C Q}|^{2}$.
3. Find a function f so that $f_{x}(0,0)=f_{y}(0,0)=0, f_{x x}$ and $f_{y y}$ are both positive, and f does not have a local minimum at $(0,0)$.
4. What point on the ellipse given by the equation $4 x^{2}+9 y^{2}=36$ is farthest from the point $(5,5)$? What point on the ellipse is closest to the line $x+7 y=35$?
5. Suppose you want to maximize the function $f(x, y)$ given the constraint that $g(x, y)=0$. How might you use gradients to approach this? Take for example $f(x, y)=9 x^{2}+16 y^{2}$ given the constraint that $g(x, y)=x^{2}+y^{2}-4=0$.
6. * You create a painting using only three colors: red, white, and blue. Prove or disprove that there must be two points on the painting that are exactly one inch apart that are the same color.
