M210T - Emerging Scholars Seminar
 Worksheet 20
 April 28, 2010

1. What point on the ellipse given by the equation $4 x^{2}+9 y^{2}=36$ is farthest from the point $(5,5)$? What point is closest?
2. Find the extreme values of the function $f(x, y)=e^{-x y}$ in the right half plane bounded by $x^{2}+4 y^{2} \leq 1$.
3. Suppose we are trying to minimize the function $f(x, y)=x$ on the curve $y^{2}+x^{4}-x^{3}=0$.
a) Try using Lagrange multipliers to solve this problem.
b) Show that the minimum value of f on the curve actually occurs at $(0,0)$.
c) Why does (b) not agree with (a)? i.e. Why does the method of Lagrange multipliers fail in this case?
4. Suppose that $x_{1}, x_{2}, \ldots, x_{n}$ are nonnegative real numbers so that $\sum_{k=1}^{n} x_{k}=c$. Find the minimum and maximum values of $\sqrt[n]{x_{1} x_{2} \cdots x_{n}}$. Use your result to compare the geometric and arithmetic means of the x_{k} 's.
5. What point on the ellipse in number 1 is closest to the line $x+7 y=35$?
6. * The probability that a women between 40 and 50 years old has breast cancer is 0.8 percent. If a woman has breast cancer, the probability is 90 percent that she will have a positive mammogram. If a woman does not have breast cancer, the probability is 7 percent that she will still have a positive mammogram. Imagine a woman who has a positive mammogram. What is the probability that she actually has breast cancer? (In a study, 95 out of 100 American doctors estimated incorrectly).
