M210T - Emerging Scholars Seminar

Worksheet 21
May 3, 2010

1. Compute the following integrals:

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{1} \sqrt{x+y} d x d y \\
\iint_{R} x y e^{x^{2} y} d A, \quad R=[0,1] \times[0,2] \\
\int_{1}^{2} \int_{0}^{1} \frac{t}{s^{2}+t^{2}} d s d t
\end{gathered}
$$

2. Compute the following integrals:

$$
\begin{array}{cc}
\int_{1}^{3} \int_{y}^{y^{2}} x y d x d y \\
\iint_{D} y \sin x^{3} d A, & D=\{(x, y) \mid 0 \leq x \leq \pi, x \leq y \leq 2 x\} \\
\iint_{D}^{D}(x+y) d A, & D \text { is bounded by } y=\sqrt{x} \text { and } x=\sqrt{y} .
\end{array}
$$

3. Given that f is a continuous function, switch the order of integration on the following integrals:

$$
\int_{0}^{1} \int_{0}^{x} f(x, y) d x d y \quad \int_{0}^{1} \int_{y^{2}}^{y} f(x, y) d x d y \quad \int_{-2}^{2} \int_{x^{2}}^{4} f(x, y) d x d y \quad \int_{0}^{\pi / 2} \int_{0}^{\tan x} f(x, y) d y d x
$$

4. Compute the integral

$$
\int_{1}^{\infty} \int_{1}^{y} \frac{1}{x^{4}+x^{2} y^{2}} d x d y
$$

5. Notice that the area of a "polar rectangle" defined by $\left\{(r, \theta) \mid r_{1} \leq r \leq r_{2}, \theta_{1} \leq \theta \leq \theta_{2}\right\}$ depends on how large r_{1} and r_{2} are (as opposed to a typical rectangle, whose area only depends on the differences between the x 's and y 's). Show that the area is $\bar{r} \Delta r \Delta \theta$ where $\bar{r}=\frac{r_{1}+r_{2}}{2}, \Delta r=r_{2}-r_{1}$ and $\Delta \theta=\theta_{2}-\theta_{1}$.
6. $\frac{*}{2}$ (I wasted a few hours of my weekend doing this problem a very long and tedious way. There is, of course, a quick way that I didn't think of until this morning. Here's an opportunity for you to feel smarter than your instructor, if you don't already.) Compute

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{k^{3}}{n^{4}} \cos \left(\pi \frac{k^{2}}{n^{2}}\right)
$$

7. * What is wrong with the following proof that $3=0$?

Assume that

$$
x^{2}+x+1=0
$$

Then

$$
x^{2}=-x-1
$$

Since 0 is clearly not a solution, we can divide by x and get

$$
x=-1-\frac{1}{x}
$$

Substituting this in place of the linear term of the original equation yields

$$
\begin{gathered}
x^{2}+\left(-1-\frac{1}{x}\right)+1=0 \\
x^{2}-\frac{1}{x}=0 \\
x^{2}=\frac{1}{x} \\
x^{3}=1 \\
x=1
\end{gathered}
$$

Substituting into the original equation gives us $3=0$.

