M210T - Emerging Scholars Seminar
 Worksheet 3
 January 27, 2010

1. Do the following sequences converge or diverge? If they converge, what do they converge to?

$$
\begin{array}{ll}
a_{n}=\sqrt{n} \sin (\pi / \sqrt{n}), & b_{n}=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{(2 n)^{n}}, \\
\{\sqrt{2}, \sqrt{\sqrt{2}}, \sqrt{\sqrt{\sqrt{2}}}\}, & d_{n}=\left(1+\frac{a}{n}\right)^{n}, \\
e_{n}=\frac{\cos (n)}{n}, & f(n)=\left\{\begin{array}{l}
1 \text { if } n=2^{k} \text { for some integer } k \\
0 \text { otherwise }
\end{array}\right.
\end{array}
$$

2. Write down a definition (without using words like "close" or "approaches") for $\lim _{n \rightarrow \infty} a_{n}=L$. Use this definition to prove that $a_{n}=\frac{3+n}{2 n}$ converges to $\frac{1}{2}$ and $b_{n}=(-1)^{n}$ diverges.
3. Define the sequence $\left\{a_{n}\right\}$ by $a_{1}=1$ and $a_{n+1}=1+\frac{1}{a_{n}}$ for $n \geq 1$. Go ahead and assume that a_{n} converges. What does it converge to?
4. The Fibonacci Sequence is defined recursively by

$$
F_{1}=F_{2}=1, \quad F_{n}=F_{n-1}+F_{n-2} \quad \text { for } n \geq 3
$$

Consider the sequence defined by $a_{n}=\frac{F_{n+1}}{F_{n}}$. Assume that a_{n} converges, and figure out what it converges to.
5. Prove that $a_{n}=\frac{(2 n-1)!}{n^{2 n-1}}$ converges.
6. Prove that $a_{n}=\cos (n)$ diverges.
7. * You have nine marbles of the same diameter. Eight of them have the same weight, and one is heavier than the others. You also have a balance. Can you determine which marble is the heavy one using the balance only twice? If you have n marbles, with one heavier than the others, what is the minimum number of weighings that would guarantee that you can find the heavy one?
8. * Show that there must be two people in this class who know the same number of people from this class (note that knowing someone is reflexive; i.e. you know me if and only if I know you).

