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1. Do the following converge or diverge? Why? If it converges, can you determine what
it converges to?
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2. Compare (I’m intentionally vague here) the following functions (d, k > 0, c > 1):
ln(n), nk, nn, n!, d, cn. If p(x) is a polynomial, where would p(n) fit into this hierar-
chy? Keeping these comparisons in mind will make the Comparison Test more useful.
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∞∑
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n− 1) converge or diverge? (Hint: Consider the previous problem, partic-

ularly p(x) and ln(x).)

4. Show that
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converges. (Hint: The integral test is more useful than you

think.)

5. Cauchy’s Condensation Test: (this is a test you will not see in the book)
If {ak}∞k=1 is a decreasing positive sequence and sn =
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It follows that
∑∞

k=1 ak converges if and only if
∑∞

k=1 2ka2k converges (Why?). This
gives us another way to show (among other things) that
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if p > 1.

6. * You have an infinite supply of ping-pong balls, numbered uniquely with positive
integers (#1, #2, #3, . . .). One minute before noon you add the first ten balls to a bag
of infinite volume, and you remove ball #1. 30 seconds before noon you add the next
ten balls, #11 through #20, and you remove ball #2. 15 seconds before noon, you add
balls #21 through #30 and remove ball #3. You continue in this fashion adding the
next ten balls and removing the lowest numbered ball at 60/2n seconds before noon.
How many ping-pong balls are in the bag at noon?
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