M210T - Emerging Scholars Seminar
 Worksheet 5
 February 8, 2010

1. Do the following converge or diverge? Why? If it converges, can you determine what it converges to?

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{p}}, \quad \sum_{n=0}^{\infty} \frac{4^{n}}{n!}, \quad \sum_{n=1}^{\infty} \sqrt[n]{n}, \quad \sum_{n=1}^{\infty} \frac{\sin \left(\frac{1}{n}\right)}{n}, \quad \sum_{n=1}^{\infty} n\left(\frac{2}{3}\right)^{n}, \quad \sum_{n=1}^{\infty} \frac{\ln n}{n^{p}}
$$

2. Compare (I'm intentionally vague here) the following functions ($d, k>0, c>1$): $\ln (n), n^{k}, n^{n}, n!, d, c^{n}$. If $p(x)$ is a polynomial, where would $p(n)$ fit into this hierarchy? Keeping these comparisons in mind will make the Comparison Test more useful.
3. Does $\sum_{n=1}^{\infty}(\sqrt[n]{n}-1)$ converge or diverge? (Hint: Consider the previous problem, particularly $p(x)$ and $\ln (x)$.)
4. Show that $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}}$ converges. (Hint: The integral test is more useful than you think.)
5. Cauchy's Condensation Test: (this is a test you will not see in the book) If $\left\{a_{k}\right\}_{k=1}^{\infty}$ is a decreasing positive sequence and $s_{n}=\sum_{k=0}^{n} a_{k}$, show that

$$
\frac{1}{2}\left(a_{1}+2 a_{2}+4 a_{4}+\ldots+2^{n} a_{n}\right) \leq s_{2^{n}} \leq\left(a_{1}+2 a_{2}+4 a_{4}+\ldots+2^{n-1} a_{2^{n-1}}\right)+a_{2^{n}}
$$

It follows that $\sum_{k=1}^{\infty} a_{k}$ converges if and only if $\sum_{k=1}^{\infty} 2^{k} a_{2^{k}}$ converges (Why?). This gives us another way to show (among other things) that $\sum_{k=1}^{\infty} \frac{1}{k^{p}}$ converges if and only if $p>1$.
6. * You have an infinite supply of ping-pong balls, numbered uniquely with positive integers $(\# 1, \# 2, \# 3, \ldots)$. One minute before noon you add the first ten balls to a bag of infinite volume, and you remove ball $\# 1.30$ seconds before noon you add the next ten balls, $\# 11$ through $\# 20$, and you remove ball $\# 2$. 15 seconds before noon, you add balls $\# 21$ through $\# 30$ and remove ball $\# 3$. You continue in this fashion adding the next ten balls and removing the lowest numbered ball at $60 / 2^{n}$ seconds before noon. How many ping-pong balls are in the bag at noon?

