This print-out should have 16 questions. by Multiple-choice questions may continue on the next column or page - find all choices before answering. V1:1, V2:1, V3:3, V4:1, V5:1.

001 (part 1 of 1) 10 points
If f is the function whose graph on $[0,10]$ is given by

use the Trapezoidal Rule with $n=5$ to estimate the definite integral

$$
I=\int_{3}^{8} f(x) d x
$$

1. $I \approx 23$
2. $I \approx \frac{47}{2}$
3. $I \approx 22$
4. $I \approx 24$ correct
5. $I \approx \frac{45}{2}$

Explanation:

The Trapezoidal Rule estimates the definite integral

$$
I=\int_{3}^{8} f(x) d x
$$

$$
\begin{aligned}
I \approx \frac{1}{2}[f(3)+2\{ & f(4)+ \\
& \cdots+f(7)\}+f(8)]
\end{aligned}
$$

when $n=5$. For the given f, therefore,

$$
I \approx \frac{1}{2}[7+2\{5+5+5+4\}+3]=24
$$

reading off the values of f from the graph.
keywords: trapezoidal rule, integral, graph

$$
002 \text { (part } 1 \text { of 1) } 10 \text { points }
$$

Find

$$
\int \frac{e^{7 x}}{9+e^{14 x}} d x
$$

1. $\frac{1}{3} \arcsin e^{7 x}+C$
2. $\arcsin e^{7 x}+C$
3. $\frac{1}{21} \arctan \left(\frac{1}{3} e^{7 x}\right)+C$ correct
4. $\frac{1}{3+e^{7 x}}+C$
5. None of these.
6. $\frac{1}{3} \operatorname{arcsec} e^{7 x}+e^{7 x}+C$

Explanation:

$$
\begin{aligned}
\int \frac{e^{7 x}}{9+e^{14 x}} d x & =\frac{1}{7} \int \frac{7 e^{7 x} d x}{(3)^{2}+\left(e^{7 x}\right)^{2}} \\
& =\frac{1}{7} \int \frac{d\left(e^{7 x}\right)}{(3)^{2}+\left(e^{7 x}\right)^{2}} \\
& =\frac{1}{7} \cdot \frac{1}{3} \arctan \left(\frac{1}{3} e^{7 x}\right)+C \\
& =\frac{1}{21} \arctan \left(\frac{1}{3} e^{7 x}\right)+C
\end{aligned}
$$

keywords: exponential function, inverse trig function

003 (part 1 of 1) 10 points

Evaluate the definite integral

$$
I=\int_{0}^{1} \frac{x-11}{x^{2}-x-2} d x
$$

1. $I=7 \ln 3$
2. $I=\ln 3$
3. $I=-7 \ln 3$
4. $I=7 \ln 2$ correct
5. $I=-\ln 3$
6. $I=\ln 2$
7. $I=-7 \ln 2$
8. $I=-\ln 2$

Explanation:

After factorization

$$
x^{2}-x-2=(x+1)(x-2) .
$$

But then by partial fractions,

$$
\frac{x-11}{x^{2}-x-2}=\frac{4}{x+1}-\frac{3}{x-2} .
$$

Now

$$
\int_{0}^{1} \frac{4}{x+1} d x=[4 \ln |(x+1)|]_{0}^{1}=4 \ln 2
$$

while
$\int_{0}^{1} \frac{3}{x-2} d x=[3 \ln |(x-2)|]_{0}^{1}=-3 \ln 2$.
Consequently,

$$
I=7 \ln 2 .
$$

keywords: definite integral, rational function, partial fractions, natural log

004 (part 1 of 1) 10 points
Evaluate the definite integral

$$
I=\int_{0}^{\pi / 4} \frac{4 \cos x+6 \sin x}{\cos ^{3} x} d x
$$

1. $I=\frac{11}{2}$
2. $I=\frac{5}{2}$
3. $I=10$
4. $I=7$ correct
5. $I=1$

Explanation:

After division we see that

$$
\begin{aligned}
\frac{4 \cos x+6 \sin x}{\cos ^{3} x} & =4 \sec ^{2} x+6 \tan x \sec ^{2} x \\
& =(4+6 \tan x) \sec ^{2} x
\end{aligned}
$$

Thus

$$
I=\int_{0}^{\pi / 4}(4+6 \tan x) \sec ^{2} x d x
$$

Let $u=\tan x$; then

$$
d u=\sec ^{2} x d x
$$

while

$$
\begin{aligned}
& x=0 \quad \Longrightarrow \quad u=0 \\
& x=\frac{\pi}{4} \quad \Longrightarrow \quad u=1
\end{aligned}
$$

In this case

$$
I=\int_{0}^{1}(4+6 u) d u=\left[4 u+3 u^{2}\right]_{0}^{1}
$$

Consequently,

$$
I=7 \text {. }
$$

keywords: trig integral, trig identity

005 (part 1 of 1) 10 points
Determine the indefinite integral

$$
I=\int \frac{1}{\sqrt{6 x-x^{2}}} d x
$$

1. $I=\sin ^{-1}\left(\frac{x+3}{3}\right)+C$
2. $I=2 \sqrt{6 x-x^{2}}+C$
3. $I=\frac{1}{3} \sin ^{-1}(x-3)+C$
4. $I=\sin ^{-1}\left(\frac{x-3}{3}\right)+C$ correct
5. $I=\frac{\sqrt{6 x-x^{2}}}{3}+C$

Explanation:

After completing the square we see that

$$
\begin{aligned}
x^{2}-6 x & =\left(x^{2}-6 x+9\right)-9 \\
& =(x-3)^{2}-9
\end{aligned}
$$

In this case

$$
I=\int \frac{1}{\sqrt{9-(x-3)^{2}}} d x
$$

To evaluate this last integral, set

$$
x-3=3 \sin \theta
$$

For then

$$
d x=3 \cos \theta d \theta
$$

while

$$
\sqrt{9-(x-3)^{2}}=3 \cos \theta
$$

in which case

$$
I=\int \frac{3 \cos \theta}{3 \cos \theta} d \theta=\int d \theta
$$

Consequently,

$$
I=\theta+C=\sin ^{-1}\left(\frac{x-3}{3}\right)+C
$$

with C an arbitrary constant.
keywords:
006 (part 1 of 1) 10 points
Determine the value of the definite integral

$$
I=\int_{6}^{12} \frac{\ln t}{t^{2}} d t
$$

1. $I=\frac{1}{6}+\frac{1}{6} \ln 3$
2. $I=\frac{1}{12}+\frac{1}{3} \ln 3$
3. $I=\frac{1}{6}+\frac{1}{12} \ln 3$
4. $I=\frac{1}{12}+\frac{1}{12} \ln 3$ correct
5. $I=\frac{1}{12}+\frac{1}{6} \ln 3$

Explanation:

After integration by parts,

$$
\begin{aligned}
\int_{6}^{12} \frac{\ln t}{t^{2}} d t & =\left[-\frac{\ln t}{t}\right]_{6}^{12}+\int_{6}^{12} \frac{1}{t^{2}} d t \\
& =\left[-\frac{\ln t}{t}-\frac{1}{t}\right]_{6}^{12} \\
& =\frac{1}{12}+\left(\frac{\ln 6}{6}-\frac{\ln 12}{12}\right)
\end{aligned}
$$

This last expression can be simplified using the properties of logs. For

$$
\ln 12=\ln (2 \cdot 6)=\ln 2+\ln 6
$$

so that

$$
\begin{aligned}
\frac{\ln 6}{6}-\frac{\ln 12}{12} & =\left(\frac{1}{6}-\frac{1}{12}\right) \ln 6-\frac{\ln 2}{12} \\
& =\frac{1}{12}(\ln 6-\ln 2) \\
& =\frac{1}{12} \ln 3
\end{aligned}
$$

Thus

$$
I=\frac{1}{12}+\frac{1}{12} \ln 3
$$

keywords: integration by parts, log function
007 (part 1 of 1) 10 points
Determine if the improper integral

$$
I=\int_{4}^{\infty} 4 x e^{-4 x^{2}} d x
$$

converges, and if it does, find its value.

1. $I=e^{-64}$
2. $I=4 e^{-64}$
3. $I=\frac{1}{2} e^{64}$
4. I does not converge
5. $I=e^{64}$
6. $I=\frac{1}{2} e^{-64}$ correct

Explanation:

The integral

$$
I=\int_{4}^{\infty} 4 x e^{-4 x^{2}} d x
$$

is improper because of the infinite range of integration. To overcome this we restrict to a finite interval of integration and consider the limit

$$
I=\lim _{t \rightarrow \infty} I_{t}, \quad I_{t}=\int_{4}^{t} 4 x e^{-4 x^{2}} d x
$$

To evaluate I_{t} we use the substitution $u=x^{2}$. For then

$$
\begin{gathered}
I_{t}=2 \int_{16}^{t^{2}} e^{-4 u} d u=-\frac{1}{2}\left[e^{-4 u}\right]_{16}^{t^{2}} \\
=\frac{1}{2}\left(e^{-64}-e^{-4 t^{2}}\right)
\end{gathered}
$$

But,

$$
\lim _{x \rightarrow \infty} x^{m} e^{-a x^{2}}=0
$$

for any integer $m>0$ and any $a>0$, so

$$
\lim _{t \rightarrow \infty} e^{-4 t^{2}}=0
$$

Consequently, I converges and

$$
I=\frac{1}{2} e^{-64}
$$

keywords: improper integral, limit, exponential function

008 (part 1 of 1) 10 points

Determine if the improper integral

$$
I=\int_{0}^{1} 4 \ln 6 x d x
$$

converges, and if it does, find its value.

1. $I=4(\ln 6+1)$
2. $I=4(\ln 6-1)$ correct
3. $I=6(\ln 4-1)$
4. $I=4 \ln 6-6$
5. $I=6 \ln 4+4$
6. I does not converge
7. $I=6(\ln 4+1)$

Explanation:

Since $\ln 6 x \rightarrow-\infty$ as $x \rightarrow 0$, the graph of $4 \ln 6 x$ has a vertical asymptote at $x=0$. It is this that makes I an improper integral. So we set

$$
I=\lim _{t \rightarrow 0+} \int_{t}^{1} 4 \ln 6 x d x
$$

and check if the limit exists.

Now, after integration by parts,

$$
\int_{t}^{1} 4 \ln 6 x d x=[4 x \ln 6 x]_{t}^{1}-\int_{t}^{1} 4 d x
$$

Thus

$$
\int_{t}^{1} 4 \ln 6 x d x=4 \ln 6-4-4 t \ln 6 t+4 t
$$

It is when investigating the limit of this expression as $t \rightarrow 0+$ that L'Hospital's Rule is needed. For

$$
\lim _{t \rightarrow 0+} 4 t \ln 6 t=\lim _{t \rightarrow 0+} \frac{4 \ln 6 t}{(1 / t)}
$$

so by L'Hospital's Rule

$$
\lim _{t \rightarrow 0+} \frac{4 \ln 6 t}{(1 / t)}=\lim _{t \rightarrow 0+} \frac{4 / t}{-\left(1 / t^{2}\right)}=0
$$

Hence

$$
\begin{aligned}
& \lim _{t \rightarrow 0+} \int_{t}^{1} 4 \ln 6 x d x \\
& \quad=4 \ln 6-4+\lim _{t \rightarrow 0+} 4 t=4 \ln 6-4
\end{aligned}
$$

Consequently,

$$
I=4 \ln 6-4=4(\ln 6-1)
$$

keywords: improper integral, unbounded function, finite interval, L'Hospital, log function

009 (part 1 of 1) 10 points

Determine f_{y} when

$$
f(x, y)=\sin (4 x-y)-y \cos (4 x-y) .
$$

1. $f_{y}=-y \sin (4 x-y)$
2. $f_{y}=2 \cos (4 x-y)+y \sin (4 x-y)$
3. $f_{y}=y \cos (4 x-y)$
4. $f_{y}=2 \sin (4 x-y)-y \cos (4 x-y)$
5. $f_{y}=-2 \cos (4 x-y)-y \sin (4 x-y)$ correct
6. $f_{y}=-2 \sin (4 x-y)+y \cos (4 x-y)$
7. $f_{y}=y \sin (4 x-y)$
8. $f_{y}=-y \cos (4 x-y)$

Explanation:

From the Product Rule we see that
$f_{y}=-\cos (4 x-y)-\cos (4 x-y)-y \sin (4 x-y)$.
Consequently,

$$
f_{y}=-2 \cos (4 x-y)-y \sin (4 x-y)
$$

keywords: partial derivative, first order partial derivative, trig function,

$$
010 \text { (part } 1 \text { of } 1 \text {) } 10 \text { points }
$$

Find the volume of the solid under the graph of

$$
f(x, y)=3+9 x^{2}+4 y
$$

and above the rectangle

$$
A=\{(x, y): 1 \leq x \leq 2, \quad 0 \leq y \leq 2\}
$$

1. volume $=61$ cu.units
2. volume $=54$ cu.units
3. volume $=55$ cu.units
4. volume $=56$ cu.units correct
5. volume $=63$ cu.units

Explanation:

The volume is given by the double integral

$$
V=\int_{0}^{2} \int_{1}^{2}\left(3+9 x^{2}+4 y\right) d x d y
$$

of $f(x, y)$ over the rectangular region A. Integrating each term separately, we see that

$$
\begin{aligned}
V & =\int_{0}^{2} \int_{1}^{2} 3 d x d y+\int_{0}^{2} \int_{1}^{2} 9 x^{2} d x d y \\
& +\int_{0}^{2} \int_{1}^{2} 4 y d x d y=6+42+8
\end{aligned}
$$

Consequently,

$$
\text { volume }=56 \text { cu.units. } .
$$

keywords:

011 (part 1 of 1) 10 points

Evaluate the double integral

$$
I=\iint_{A}(4 x+3) d x d y
$$

when A is the bounded region enclosed by $y=x$ and $y=x^{2}$.

1. $I=\frac{2}{3}$
2. $I=\frac{7}{6}$
3. $I=\frac{1}{2}$
4. $I=1$
5. $I=\frac{5}{6}$ correct

Explanation:

The area of integration A is the shaded region in the figure

To determine the limits of integration, therefore, we have first to find the points of intersection of the line $y=x$ and the parabola
$y=x^{2}$. These occur when $x^{2}=x$, i.e., when $x=0$ and $x=1$. Thus the double integral can be written as a repeated integral

$$
I=\int_{0}^{1}\left[\int_{x^{2}}^{x}(4 x+3) d y\right] d x
$$

integrating first with respect to y. After integration this inner integral becomes

$$
\begin{gathered}
{[(4 x+3) y]_{x^{2}}^{x}=(4 x+3)\left(x-x^{2}\right)} \\
=3 x+x^{2}-4 x^{3}
\end{gathered}
$$

Thus

$$
\begin{aligned}
I=\int_{0}^{1} & \left(3 x+x^{2}-4 x^{3}\right) d x \\
& =\left[\frac{3}{2} x^{2}+\frac{1}{3} x^{3}-x^{4}\right]_{0}^{1}
\end{aligned}
$$

Consequently,

$$
I=\frac{5}{6} .
$$

keywords:

$$
012 \text { (part } 1 \text { of 1) } 10 \text { points }
$$

Reverse the order of integration in the integral

$$
I=\int_{4}^{\sqrt{24}}\left(\int_{x^{2} / 6}^{4} f(x, y) d y\right) d x
$$

but make no attempt to evaluate either integral.

$$
\begin{aligned}
& \text { 1. } I=\int_{y^{2} / 6}^{4}\left(\int_{4}^{\sqrt{24}} f(x, y) d x\right) d y \\
& \text { 2. } I=\int_{\frac{8}{3}}^{4}\left(\int_{4 y}^{\sqrt{6}} f(x, y) d x\right) d y
\end{aligned}
$$

3. $I=\int_{\frac{8}{3}}^{4}\left(\int_{4}^{\sqrt{6 y}} f(x, y) d x\right) d y$ correct
4. $I=\int_{4}^{6}\left(\int_{\sqrt{6}}^{4 y} f(x, y) d x\right) d y$
5. $I=\int_{\frac{8}{3}}^{4}\left(\int_{\sqrt{6 y}}^{4} f(x, y) d x\right) d y$

Explanation:

The region of integration is similar to the shaded region in the figure

(not drawn to scale). This shaded region is enclosed by the graphs of

$$
6 y=x^{2}, \quad y=4, \quad x=4
$$

To change the order of integration, first fix y. Then, as indicated by the dashed line, x varies from 4 to $\sqrt{6 y}$. To cover the region of integration, therefore, y must vary from $\frac{8}{3}$ to 4 . Hence, after changing the order of integration,

$$
I=\int_{\frac{8}{3}}^{4}\left(\int_{4}^{\sqrt{6 y}} f(x, y) d x\right) d y
$$

keywords:

013 (part 1 of 1) 10 points

Determine if the sequence $\left\{a_{n}\right\}$ converges, and if it does, find its limit when

$$
a_{n}=\frac{3 n+(-1)^{n}}{6 n+1}
$$

1. converges with limit $=\frac{1}{2}$ correct
2. converges with limit $=\frac{2}{3}$
3. converges with limit $=\frac{1}{3}$
4. converges with limit $=\frac{3}{7}$
5. sequence does not converge

Explanation:

After division by n we see that

$$
a_{n}=\frac{3+\frac{(-1)^{n}}{n}}{6+\frac{1}{n}}
$$

But

$$
\frac{(-1)^{n}}{n}, \quad \frac{1}{n} \longrightarrow 0
$$

as $n \rightarrow \infty$, so $a_{n} \rightarrow \frac{1}{2}$ as $n \rightarrow \infty$. Consequently, the sequence converges and has

$$
\text { limit }=\frac{1}{2}
$$

keywords: sequence, convergence, properties of limits

$$
014 \text { (part } 1 \text { of 1) } 10 \text { points }
$$

Determine if the sequence $\left\{a_{n}\right\}$ converges, and if it does, find its limit when

$$
a_{n}=\int_{n}^{7 n} \frac{1}{2 x+5} d x
$$

1. $\operatorname{limit}=\frac{1}{2} \ln \frac{7}{2}$
2. the sequence diverges
3. limit $=\frac{1}{2} \ln \frac{1}{7}$

By definition
4. limit $=\ln 7$
5. limit $=\frac{1}{2} \ln 7$ correct

Explanation:

After integration,

$$
\begin{aligned}
a_{n}= & {\left[\frac{1}{2} \ln (2 x+5)\right]_{n}^{7 n} } \\
& =\frac{1}{2} \ln \left(\frac{14 n+5}{2 n+5}\right) .
\end{aligned}
$$

Now

$$
\frac{14 n+5}{2 n+5}=\frac{14+\frac{5}{n}}{2+\frac{5}{n}} \longrightarrow 7
$$

as $n \rightarrow \infty$. But $\ln x$ is continuous as a function of x. We thus see that $\left\{a_{n}\right\}$ converges as $n \rightarrow \infty$ and has

$$
\text { limit }=\frac{1}{2} \ln 7 \text {. }
$$

keywords: sequence, limit, log

$$
015 \text { (part } 1 \text { of 1) } 10 \text { points }
$$

If the $n^{\text {th }}$ partial sum of an infinite series is

$$
S_{n}=\frac{n^{2}-2}{4 n^{2}+1}
$$

what is the sum of the series?

1. $\operatorname{sum}=\frac{5}{16}$
2. sum $=\frac{1}{4}$ correct
3. sum $=\frac{1}{8}$
4. sum $=\frac{3}{8}$
5. sum $=\frac{3}{16}$

Explanation:

$$
\operatorname{sum}=\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left(\frac{n^{2}-2}{4 n^{2}+1}\right)
$$

Thus

$$
\operatorname{sum}=\frac{1}{4}
$$

keywords: partial sum, definition of series

$$
016 \text { (part } 1 \text { of 1) } 10 \text { points }
$$

Determine if the series

$$
\sum_{n=1}^{\infty} \frac{2+4^{n}}{5^{n}}
$$

converges or diverges, and if it converges, find its sum.

1. converges with sum $=\frac{15}{4}$
2. converges with sum $=\frac{19}{4}$
3. series diverges
4. converges with sum $=\frac{9}{2}$ correct
5. converges with sum $=4$
6. converges with sum $=\frac{17}{4}$

Explanation:

An infinite geometric series $\sum_{n=1}^{\infty} a r^{n-1}$
(i) converges when $|r|<1$ and has

$$
\operatorname{sum}=\frac{a}{1-r}
$$

while it
(ii) diverges when $|r| \geq 1$.

Now

$$
\sum_{n=1}^{\infty} \frac{2}{5^{n}}=\sum_{n=1}^{\infty} \frac{2}{5}\left(\frac{1}{5}\right)^{n-1}
$$

is a geometric series with $a=r=\frac{1}{5}<1$. Thus it converges with

$$
\operatorname{sum}=\frac{1}{2},
$$

while

$$
\sum_{n=1}^{\infty} \frac{4^{n}}{5^{n}}=\sum_{n=1}^{\infty} \frac{4}{5}\left(\frac{4}{5}\right)^{n-1}
$$

is a geometric series with $a=r=\frac{4}{5}<1$. Thus it too converges, and it has

$$
\operatorname{sum}=4
$$

Consequently, being the sum of two convergent series, the given series

$$
\text { converges with sum }=\frac{1}{2}+4=\frac{9}{2} \text {. }
$$

keywords: geometric series

