M 408C

September 1, 2010

1. Just for practice, solve the following inequalities:

$$
\begin{array}{cll}
|x-4|<3, & |2 x+6| \leq 7, & 3|5-x| \geq 4 \\
|x-2|+|x|<9, & |x+9|>-1, & |5 x-2| \leq 0
\end{array}
$$

2. Determine whether the function

$$
f(x)=\left\{\begin{array}{cc}
1, & \text { if } x=0 \\
x^{2} \sin (1 / x), & \text { if } x \neq 0
\end{array}\right.
$$

is continuous. If it isn't continuous, can you change it slightly so that it is?
3. Same question, different function:

$$
f(x)=\left\{\begin{array}{cl}
\frac{\left|x^{2}-3 x-28\right|}{x-7}, & \text { if } x \neq 7 \\
11, & \text { if } x=7
\end{array}\right.
$$

4. Prove that $f(x)=3 x$ is continuous.
5. Is it true that every continuous function looks like a line if you zoom in enough? i.e. is every continuous function locally linear? What about the converse? i.e. is every function that is locally linear also continuous?
6. I walked to class along a straight line from my car. The graph below shows my position (relative to my car) as a function of time. When was I moving away from my car? Toward my car? Standing still? Plot my velocity as a function of time.
7. Is it true that every continuous function looks like a line if you zoom in enough? i.e. is every continuous function locally linear? What about the converse? i.e. is every function that is locally linear also continuous?
