M 408C September 15, 2010

- 1. Find the derivatives of the following: $f(u) = \sqrt{2}u + \sqrt{3u} \quad g(z) = (z^{-2} + z^{-3})(z^5 - 2z^2) \quad h(t) = \csc t(t + \cot t)$ $f(\theta) = \sin \sqrt{\theta} \qquad \qquad g(\theta) = \sqrt{\sin \theta} \qquad \qquad h(\theta) = \tan^2(3\theta)$
- 2. Find an equation of the tangent line to $y = \frac{2x}{x+1}$ at (1,1).
- 3. Find an equation of the tangent line and the normal line to $g(x) = (1+2x)^2$ at (1,9).
- 4. Assuming that we know the derivatives of $\sin x$ and $\cos x$, derive the derivatives of the other four trigonometric functions.
- 5. What is $\frac{dy}{dx}$ at (6,2) when $y^6 + x^2 = 100$? What about at (6,-2)?
- 6. Is it true that all differentiable functions are continuous? Is it true that all continuous functions are differentiable? Is it true that the derivative of a differentiable function is continuous? Give arguments or counterexamples.
- 7. Find $\frac{d}{dx}|x|$ using the piecewise definition of |x|. Find $\frac{d}{dx}|x|$ using the fact that $|x| = \sqrt{x^2}$. Do your answers agree? Find $\frac{d}{dx}|\cos x|$.