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Topological Information Embodied in Local
Juxtaposition Geometry Provides a Statistical
Mechanical Basis for Unknotting by Type-2 DNA
Topoisomerases
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Topoisomerases may unknot by recognizing specific DNA juxtapositions.
The physical basis of this hypothesis is investigated by considering single-
loop conformations in a coarse-grained polymer model. We determine the
statistical relationship between the local geometry of a juxtaposition of two
chain segments and whether the loop is knotted globally, and ascertain how
the knot/unknot topology is altered by a topoisomerase-like segment
passage at the juxtaposition. Segment passages at a “free” juxtaposition tend
to increase knot probability. In contrast, segment passages at a “hooked”
juxtaposition cause more transitions from knot to unknot than vice versa,
resulting in a steady-state knot probability far lower than that at topological
equilibrium. The reduction in knot population by passing chain segments
through a hooked juxtaposition is more prominent for loops of smaller sizes,
n, but remains significant even for larger loops: steady-state knot probability
is only ∼2%, and ∼5% of equilibrium, respectively, for n=100 and 500 in the
model. An exhaustive analysis of ∼6000 different juxtaposition geometries
indicates that the ability of a segment passage to unknot correlates strongly
with the juxtaposition's “hookedness”. Remarkably, and consistent with
experiments on type-2 topoisomerases from different organisms, the un-
knotting potential of a juxtaposition geometry in our polymer model corre-
lates almost perfectly with its corresponding decatenation potential. These
quantitative findings suggest that it is possible for topoisomerases to disen-
tangle by acting selectively on juxtapositions with “hooked” geometries.
© 2006 Elsevier Ltd. All rights reserved.
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Introduction

An understanding of the topology of covalently
linked molecules1 is important for the study of
molecular biology.2 For DNA, topological entangle-
ments such as knots and catenanes can arise readily
and frequently in vivo.3,4 They are a natural biophy-
sical consequence of conformational energetics
and statistics.5 The efficient resolution of DNA
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entanglements is essential for proper cellular function.
Topoisomerases perform this task by enabling DNA
molecules to interconvert between different topolog-
ical states. They accomplish this by catalyzing the
passage of single-strand or double-helix DNA
segments through each other via a transient
breaking and subsequent resealing mechanism at a
two-segment juxtaposition. These enzymes are
involved in a wide range of cellular processes,
including chromosome condensation and segrega-
tion, transcription, replication, and recombination.6,7
In addition to their essential cellular roles, DNA
topoisomerases are targets of many antibacterial and
anticancer drugs.8–11 Thus, fundamental insights into
how topoisomerases function may lead to improved
understanding of the medical ramifications as well.
d.
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For many years since the discovery of the first
topoisomerase,12 it was widely believed that, be-
sides DNA gyrase and reverse gyrase which intro-
duce supercoiling, other topoisomerases resolve
topological entanglements by converting a DNA
molecule effectively into a phantom chain13 that can
seemingly defy excluded volume and freely pass
through itself. It follows that the function of topo-
isomerases was largely seen as restoration and
maintenance of a distribution of topological states
approximating that at topological equilibrium.14–16
In this context, it was surprising that type-2 topo-
isomerase, which changes DNA linking number in
steps of two and passes segments of DNA double
helix through each other in an ATP-dependent
process, was discovered to be capable of lowering
the steady-state levels of knots and catenanes well
below their corresponding equilibrium values.17
The size of a topoisomerase is substantially smaller
than the DNA molecule on which it is acting. Thus,
the experimental results of Rybenkov et al.17 present
a conceptual challenge: what information can the
topoisomerase utilize to discriminate between dif-
ferent global topologies of the much larger DNA
molecule? What dictates the topoisomerase's pref-
erence to act upon a particular DNA topology?
Several hypothetical scenarios have since been

proposed to account for the apparent ability of type-
2 topoisomerase to discriminate between different
DNA topologies. Most of these proposals presume
that local structural and energetic features of a pre-
existing two-segment DNA juxtaposition do not
contain enough information for a meaningful infer-
ence about the DNA molecule's global topological
state. For example, one of the hypotheses proposes
that the topoisomerase has to first actively deform
the DNA conformation at the binding site to create a
sharp turn; the bias towards unlinked and unknotted
topology can then be realized by allowing only uni-
directional DNA passage through this protein-
induced turn.18,19 Alternatively, other hypotheses
endow topoisomerases with an ability to gather
topological information beyond that which can be
gleaned from a local juxtaposition, with mechanisms
reminiscent of that for other cases of “action at a
distance” in DNA enzymology.20 Proposals in this
category include a “three-binding-sites” model that
states that the topoisomerase first binds and then
actively slides along the DNA contour to find a third
strand;17 a “kinetic proofreading” model that re-
quires two separate topoisomerase–DNA collisions
for segment passage;21,22 and a “three-segment inter-
action” model that stipulates enzyme–DNA inter-
actions between a bound, essentially stationary
topoisomerase with three DNA segments.23 In com-
mon, all these hypotheses are “protein-centric.” That
is, the proposed activities of the type-2 topoisom-
erase prior to segment passage after its binding to the
DNA are essential in creating new, probing infor-
mation about global DNA topology. Then, the
enzyme utilizes this new information that it has
actively generated for selective segment passage (see
Maxwell et al. for a recent review).24
A simpler hypothesis was put forth by Buck and
Zechiedrich.25 It stipulates that topological discrim-
ination can be attained by considering only the local
curvature of the two segments making up a juxtapo-
sition and the resulting angle between them. Rec-
ognizing that DNA juxtapositions are preferred
binding sites of type-2 topoisomerases25,26 (and
references therein), these authors proposed that a
topoisomerase can sense the topological state of a
DNA molecule and achieve disentanglement by
selective segment passages only at pre-existing
“hooked” but not “free” juxtapositions.25 Recent
structural data from X-ray crystallography appear
to lend support to this view.27,28 Additional biological
data are also rationalized by this proposed scenario.29
From a theoretical perspective, we have devised a

systematic statistical mechanical approach to assess
the physical viability of this hooked versus free
hypothesis.30 Our outlook and method are “DNA
juxtaposition-centric.” Starting with a model of
polymer chain conformations, we determine the
distribution of topological states that are consistent
with the existence of a preformed juxtaposition. We
can then ascertain how segment passages at various
juxtaposition geometries alter the topological states
of the conformations.
As a first application of this methodology, we

studied the topological states of catenation/deca-
tenation31,32 by considering the configurations of
two loops (a pair of ring polymers) of various sizes.
Using a coarse-grained lattice polymer model, we
found that two-loop configurations with different
juxtaposition geometries can have very different
topological biases. In particular, an overwhelming
majority of loops with a hooked juxtaposition are
linked, whereas loops with a free juxtaposition are
mostly unlinked. Consequently, segment passages
at hooked juxtapositions tend to decatenate. In
contrast, segment passages at free juxtapositions
tend to catenate. As such, the topological discrim-
inating power of a local juxtaposition is rather
striking; and the discrimination remains significant
even for loops of large sizes. These quantitative
predictions are consistent with original estimates,25
and are potentially critical for the applicability of the
hypothesis to genome-size DNA. Physically, the
model observations imply that different juxtaposi-
tion geometries impose different long-range topo-
logical biases. Although these biases are stronger for
smaller loops than for larger loops, they cannot be
erased by increasing loop size. Taken together, these
results clearly established a statistical mechanical
principle in polymer physics governing how local
juxtaposition geometry is correlated with global
topology. Thus, we have succeeded in demonstrat-
ing that the hooked versus free hypothesis is viable,
at least for the two-loop catenation/decatenation
case,30 even though the detailed manner in which
this principle may apply to real DNA molecules
remains to be elucidated by further experimental
and theoretical efforts.33 Our previous study con-
sidered the linking/unlinking of two loops without
regard to the various knot states of the individual



† http://www.burtleburtle.net/bob/knot/thesis.html
‡ Mathematically, the unknot, which is also called the

trivial knot (01 in Figure 1(a)), refers to an unknotted
circle. Accordingly, throughout this paper, “nontrivial
knot” refers to a knotted circle.
§ http://www.math.toronto.edu/˜drorbn/KAtlas/

Knots/index.html
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loops.30 The results in that study correspond to
conformational properties averaged over all possi-
ble knotted and unknotted two-loop configurations.
As a natural next step of our investigation, and a
crucial one for understanding DNA topology, here
we apply our general approach to address questions
of knotting and unknotting.17,34
As in our previous study, the present evaluation of

the hooked versus free hypothesis consists of two
main components.30 In the first part of our effort, we
determine the conformational populations of vari-
ous knot states under equilibrium conditions. In
particular, we are interested in how the relative
equilibrium populations of knot versus unknot are
affected by preformed juxtapositions of specific
geometries. The methodology for computing the
necessary conformational statistics is detailed in the
next section. This part of our results provides an
indispensable foundation for understanding juxta-
position-based topological discrimination, but it
does not directly address the kinetic effects of type-
2 topoisomerase action. In the second part of our
modeling effort, we investigate directly the out-
comes of topoisomerase-like segment passages at
various juxtaposition geometries (see below). These
model processes correspond to the ATP-driven ac-
tivity of type-2 topoisomerases, and therefore im-
plicitly involve an external energy source. Therefore,
segment passage kinetics at selective juxtaposition
geometries can lead to nonequilibrium situations,
resulting in steady-state population distributions
different from that at topological equilibrium.

Counting Conformations in Various
Knot States

We use lattice modeling for conformational statis-
tics. Many of the details of this method and its
background have been provided before.30 In general,
lattice modeling is a powerful investigative tool that
has long been productive in many aspects of poly-
mer physics35,36 and biomolecular simulation.37 In
the past two decades, this coarse-grained approach
has been applied extensively to the study of pro-
teins,38–45 for which topological entanglement ap-
pears to be rare.46–49 During the same time, lattice
models also have been used widely in the study of
knots and various implications of topological entan-
glement in polymers, including many questions mo-
tivated by DNA topology. These efforts have made
important advances.50–56
Here, we consider single-loop (one ring polymer)

conformations configured on simple cubic lattices.
Each conformation consists of n beads, and a set of n
bonds joining the beads together to form a closed
circuit, which can be knotted or unknotted. We refer
to n as loop size. Each conformation is a self-avoiding
polygon on the lattice, in that no two beads are
allowed to occupy the same lattice site. In thismodel,
every conformation is assigned the same statistical
weight and thus effectively has the same energy, as in
many elementary polymer and biomolecular models
of conformational statistics.57 We do not consider
temperature explicitly because the distribution of
conformational states in the model is temperature-
independent. Nonetheless, the assumption of ambi-
ent temperature allows conformations belonging to
the same knot state to interconvert efficiently and
establish thermodynamic equilibrium. Future work
will augment the basic lattice polymer model with
bending energies to study, for example, the inter-
play between persistence length and local DNA
curvature.
The topological state (knot versus unknot) of each

conformation is determined by evaluating the
HOMFLY polynomial,58 using a modified version
of the algorithm of Jenkins†.59 In addition to Jenkins'
algorithm, we have also implemented type-1 and
type-2 Reidemeister moves60 to simplify each knot
diagram before applying Jenkins' dynamic
programming approach. For our simulations, this
added procedure leads to very significant improve-
ments in computational efficiency because many
trivial crossings in the generated conformations can
be removed by Reidemeister moves. We use exact
enumeration30 for small loop sizes, n≤30, to
account exhaustively for all possible conformations.
We are primarily interested in whether a conforma-
tion is knotted or unknotted‡, without regard to the
topological complexity of the knotted conforma-
tions. It should be noted nonetheless that the
computed HOMFLY polynomial of a conformation
may be used to identify its knot type. Figure 1(a) and
(b) provide example conformations of different knot
types generated by our exact enumeration. In this
figure and subsequent discussion, we adopt the
knot-type notation of Rolfsen§,61 and the customary
practice of adding an asterisk (*) if a given knot is the
mirror image of the version in the Rolfsen table.
To assess the hooked versus free hypothesis in

knotting/unknotting, we pay special attention to
the five 5mer-on-5mer juxtapositions I, IIa, IIb, III,
and IV in Table 1. The hooked (I), free planar (IIa and
IIb), and free nonplanar (III) juxtaposition geome-
tries are the same as those considered in our two-
loop catenation/decatenation study.30 Here, to
broaden the analysis, we also consider the “half-
hooked” juxtaposition (IV), because its geometry
may be viewed as intermediate between that of the
hooked and the free juxtapositions. Thus, an
analysis of its properties can serve to elucidate
how the topological discrimination power of a
juxtaposition may depend on a more general
measure of “hookedness.”
Geometrically, the half-hooked juxtaposition (IV)

bears resemblance to a juxtaposition proposed by
Vologodskii18 as the specific local DNA geometry

http://www.burtleburtle.net/bob/knot/thesis.html
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Figure 1. Examples of statistical mechanically generated unknot and knot conformations and results of smoothing the
diagrams to remove extraneous crossings. (a) An unknot (01) with loop size n=26, (b) a right-handed trefoil knot (31*) with
loop size n=26, and (c) a 6-noded twist knot (61) with loop size n=100. Top: Lattice conformations generated by exact
enumeration (a, b) or Monte Carlo sampling (c). Middle: Intermediate smoothing diagrams of the conformations.
Highlighted in red in each of these conformations is a hooked juxtaposition30 (Table 1). Bottom: Minimal diagrams of top
and middle for better visualization of the knot type. The KnotPlot program by R. G. Scharein was used in the preparation
of this figure [http://www.pims.math.ca/knotplot/].
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before segment passage by a type-2 topoisomerase.
However, it should be noted that the underlying
physical picture of this proposed topoisomerase
mechanism18 is different from the Buck-Zechiedrich
hypothesis25 because the curved segment is postu-
lated to be actively introduced by the topoisomerase,
rather than a pre-existing feature recognized by the
enzyme. This will be discussed further below.
Looking beyond latticemodel studies,we note that

continuum (off-lattice) juxtaposition geometries may
be classified using parameters constructed from
generally defined geometric properties such as
tangent and curvature vectors of the pair of segments
constituting the juxtaposition25,30 (see below). For
example, a recent atomic model study has investi-
gated several hooked DNA juxtapositions with
different segment curvatures.33 Naturally, the likeli-
hood of the occurrence of various juxtapositions in
real DNA conformations as well as their topological
discrimination power would be affected by local and
global persistence lengths and other aspects of DNA
conformational energetics. The impact of these
physical factors on our proposed topoisomerase
mechanism remains to be ascertained in futurework.

http://www.pims.math.ca/knotplot


Table 1. Number of one-loop conformations with a preformed juxtaposition, as a function of intersegment lengths n1,
n2, loop size n, and the knot type, K, of the conformation

We consider in detail 5mer-on-5mer hooked (I), free planar (IIa and IIb), free nonplanar (III), and half-hooked (IV) juxtapositions
configured on the simple cubic lattice. The four endpoints of each juxtaposition are joined by self-avoiding lattice chains
(represented by dashed curves) to complete a single-loop conformation; n1 and n2 are the lengths (numbers of beads) of the two
connecting chains. For the free planar juxtaposition, the endpoints may be joined by either of two nonsymmetric connections
yielding the juxtapositions IIa and IIb. Besides the free planar juxtaposition, each juxtaposition in this table consists of a single
crossing. Following the sign convention of crossings in oriented knot diagrams, the crossing within juxtapositions I, III, and IV can
be either positive (+) or negative (−). As the present study investigates interconversions between knot and unknot irrespective of
nontrivial knot types, it is sufficient to consider only positive juxtapositions I, III, and IV, because, by symmetry, our main results are
identical for the corresponding negative juxtapositions, as we have verified by explicit enumeration using juxtapositions of both
signs for several loop sizes. For all juxtapositions considered in this work, the middle positions (beads) of the two segments making
up the juxtaposition are nearest lattice neighbors, as highlighted by the dotted lines for the examples shown. The tabulated numbers
are obtained by exact enumeration on simple cubic lattices. Each count corresponds to the number of self-avoiding polygons
consistent with the existence of the given juxtaposition at a fixed position and orientation. The counts do not include any
translational, rotational, or inversion transformation of the starting juxtaposition. In addition to the unknot (01), both chiralities of
the trefoil knot (31 and 31*), and the figure eight knot (41) are encountered by the enumeration reported in this table. The numbers of
beads n1 and n2 of the two connecting chains are related by n=n1+n2+n

(j), where n(j) is the number of beads in the juxtaposition;
n(j)=10 for I, IIa, IIb, III, and IV. Because of the geometric symmetry of these juxtapositions, the conformational count for n1 is
identical with that for n−n(j)−n1. Thus, only counts for n1=2, 4,…, (n−n(j))/2 are provided.
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As stated above, the starting point of our analysis
is a preformed juxtaposition. In this respect, our
methodology is distinct, yet complementary to other
coarse-grained modeling investigations of polymer
entanglement.50–56,62–71 Here, for a range of small
loop sizes, Table 1 gives the exact numbers of con-
formations that resulted from each of these five
preformed juxtapositions. Each count in the table
corresponds to the number of one-loop conforma-
tions with at least one instance of the given juxtapo-
sition. These exact counts are obtained by “growing”
from an end of one of the two segments within a
preformed juxtaposition, and the growing chain is
constrained to join to one end of the other segment as
required by the orientation induced by either the
sign (for I, III, and IV) or segment directions (for IIa
and IIb) of the juxtaposition (Table 1). For juxtaposi-
tions I, III, and IV, we consider only juxtapositions
with a positive crossing. In these three cases, the
requirement of a positive crossingmandates how the
growing chain connects to the other segment. In the
case of juxtapositions IIa and IIb, there is no crossing,
but there are two distinct ways (a and b) for the
growing chain to connect to the other segment.
Conformations of larger loops are generated by

Monte Carlo sampling. Our simulation procedure



‖ http://rumour.biology.gatech.edu/Publications/1998-
2000.shtml
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combines the Madras et al. (MOS)72 and BFACF73,74
algorithms. We have demonstrated that the MOS
algorithm is efficient for sampling two-loop config-
urations with a preformed juxtaposition between
the loops.30 However, for the present one-loop
system, MOS is insufficient to sample all possible
conformations because the MOS chain moves do not
change the lengths of the connecting chains (n1, n2 in
Table 1), but conformations with different (n1, n2)
values can be consistent with a given juxtaposition.
To overcome this problem, we now also include the
BFACF chain move73,74 that changes loop size
(number of beads) by 2. With this additional move,
variation of (n1, n2) can be realized by first
shortening one of the connecting chains, resulting
in, for example, (n1−2, n2). In a subsequent step, the
other connecting chain can be elongated, which
would then result in (n1−2, n2+2). We further
restrict the procedure so that it only samples
conformations of specific loop sizes: for any loop
size nwe choose to study, BFACFmoves that lead to
a larger loop size are forbidden when the loop size is
n, and BFACF moves that lead to a smaller loop size
are forbidden when the loop size is n−2. Hence,
only loop sizes n and n−2 are sampled by our
algorithm, and conformational/topological proper-
ties of interest can be computed separately for n and
n−2. The above described combination of MOS and
BFACFmoves achieves ergodicity in our simulation.
With the BFACF move in place, our overall Monte

Carlo procedure, which maintains detailed balance
(an unbiased conformational exploration), is as
follows. Starting with any one-loop conformation,
a stochastic decision is first made to use either the
BFACF move or the MOS moves. Let the probability
of choosing the BFACF move be pn(−2) if loop
size=n, and pn−2(+2) if loop size=n−2. The co-
rresponding probabilities of choosing the MOS
moves are, respectively, 1−pn(−2) or 1−pn−2(+2). If
a decision to use MOS is made, a pair of beads
within the same connecting chain, as well as the two
endpoints of the juxtaposition segments attached to
the given connecting chain, are chosen randomly
with uniform probability, and the same MOS
procedure as described in our previous study30 is
applied to generate a putative new conformation. If
a decision to use BFACF is made, a bead position, i,
is chosen randomly with uniform probability,
irrespective of whether the bead is part of the
preformed juxtaposition. Then, to generate a puta-
tive new conformation, if loop size=n, a BFACF
move is used to delete two beads between i and i+3;
if loop size=n−2, a BFACF move is used to add two
extra beads between i and i+1 with uniform
probability for the four possible pairs of lattice
positions for the extra beads. After a putative
conformation is produced from either the MOS or
BFACF move, that move is accepted if the new
conformation does not violate excluded volume and
does not alter the preformed juxtaposition. Other-
wise, the move is rejected and the original un-
changed conformation contributes one more time to
the sample.
The procedure described above was carried out
for a wide range of loop sizes (from n=20 to n=
500), with various preformed juxtapositions, using
pn(−2)=pn−2(+2)=0.01. Our BFACF sampling is ef-
ficient. For the largest loop size we have simulated
(n=500), the ratios of the number of accepted BFACF
moves (transitions between loop sizes n and n−2) to
the total number of attempted BFACF moves were
∼0.145, 0.156, 0.158, 0.157, and 0.157, respectively,
for the hooked (I), free planar (IIa and IIb), free
nonplanar (III), and half-hooked (IV) juxtapositions.
A representative knotted conformation generated
by this Monte Carlo procedure is given in Figure
1(c). Although the Monte Carlo procedure – unlike
exact enumeration – is not exhaustive, a wide range
of knot states was sampled. For example, the
number of different HOMFLY polynomials (knot
types) encountered in our n=500 simulation is 24
when no juxtaposition was preformed. The
corresponding number of knot types sampled, 51,
is much higher for n=500 loops with a preformed
hooked juxtaposition (I).
We have performed a self-consistency check by

verifying that results from Monte Carlo sampling of
small loops are in excellent agreement with results
from exact enumeration. To check that the HOMFLY
knot/unknot determination algorithm was imple-
mented correctly, we have chosen >150 conforma-
tions of various loop sizes and verified, by visual
inspection, that conformations determined to have
HOMFLYpolynomials P(l,m)=1 are unknotted, and
those determined to have P(l, m)≠1 are knotted.
Further checking was conducted by evaluating the
Alexander polynomials75 for ∼7000 of the generated
conformations using the algorithm of Harris and
Harvey‖.76 For our diverse set of conformations, we
verified that the knot types determined by the
HOMFLY algorithm are consistent with that deter-
mined by the Alexander polynomial algorithm,
aside from the fact that the Alexander polynomial
cannot distinguish a knot from its mirror image.
Results and Discussion

Conformational counts and knot probabilities

We begin by examining the effects of various
preformed juxtapositions on the probability, pK, that
a one-loop conformation is knotted. For uncon-
strained one-loop conformations, it has long been
known that pK increases with loop size.50,77 Exper-
imental results agree.5,17 For self-avoiding but
otherwise unconstrained loops configured on the
simple cubic lattice, n=24 is the minimum loop size
that allows a knot (a trefoil) to be formed.78
Consistent with the general trend, the exact counts
in Table 1 show that, for small loops, the fractions of
conformations that are knotted are very small.

http://www.rumour.biology.gatech.edu/Publications/1998shtml
http://www.rumour.biology.gatech.edu/Publications/1998shtml
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However, although pK is small for all five preformed
juxtaposition geometries considered, the differences
in pK among them are striking. Take n=30 for
example, after summing up conformational counts
for all possible n1, n2, the knot probability pK|j
conditioned upon a given preformed juxtaposition j
are pK|I = 1,475,176/19,285,003,827 = 7.6 × 10−5,
pK|IIa = 0, pK|IIb = 160/1,368,252,928 = 1.2 × 10−7,
pK|I I I = 96/4 , 5 30 , 852 , 2 41 = 2 . 1 × 10 − 8 , and
pK|IV = 2,546,687/39,927,505,781 = 6.4 × 10−5. In
other words, for this loop size, if a hooked (I) or
half-hooked (IV) juxtaposition is observed, the
conditional probability that the underlying confor-
mation is knotted is at least two to three orders of
magnitude higher than that if one of the free
juxtapositions (IIa, IIb, III) is observed instead.
This behavior implies that substantial topological
information regarding knotting is embodied in local
juxtaposition geometry. It points to the likelihood
that segment passages at specific juxtaposition
geometries can lead to significant topological biases.
Intuitively, segment passage at a hooked juxtaposi-
tion (I) would result in a free nonplanar juxtaposi-
tion (III), and vice versa. Thus, the lower pK|j for
loops with a juxtaposition III than that with a
juxtaposition I suggests that segment passage at a
hooked juxtaposition would tend to unknot.
Figure 2 shows knot probabilities over a wider

range of loop sizes for unconstrained loops (with-
out preformed juxtapositions) and for loops with
preformed juxtapositions: hooked (I), free planar
(IIa, IIb), free nonplanar (III), or half-hooked (IV).
For n=500 unconstrained loops, pK=0.00174, which
agrees with the previously determined value of
0.00151±0.00028.53 The knot probability for loops
Figure 2. Dependence of knot probability, pK|j, on
loop size n, for conformations with a preformed hooked (I,
●), free planar (IIa,▲; or IIb,◇), free nonplanar (III,■), or
half-hooked (IV, ◆) juxtaposition. Corresponding knot
probabilities, pK, for loops with no preformed juxtaposi-
tion, or unconstrained (○), are included for comparison.
Exact enumeration was used for juxtapositions I, IIa, IIb,
III, and IV for n≤30, and also IIb for n=32, and for
unconstrained loops for n≤20. Knot probabilities for
larger n values were computed by Monte Carlo sampling,
with the number of attempted chain moves for each
datapoint varying from 6×109 to 2×1010.
with a hooked juxtaposition (I) is higher than that
with a half-hooked juxtaposition (IV) (for example,
pK|I=0.0139 and pK|IV=0.00683 for n=500), even
though the half-hooked juxtaposition generates
more knots and samples more knot types for
small loops (Table 1). The most likely explanation
for the increased number of knots and increased
knot complexity is that the half-hooked juxtaposi-
tion places less restriction on conformational
freedom.
From our perspective, the most important mes-

sage from Figure 2 is that knot probability of loops
with either a hooked or a half-hooked juxtaposition
is significantly higher than that with any one of the
free juxtapositions, which is similar to the uncon-
strained case. This topological discriminating power
of the juxtapositions is most prominent for smaller
loop sizes. As anticipated,25,30 the effect diminishes
somewhat for larger loops, but it remains significant
for loops as large as n=500.
Intuitively, the topological bias resulting from

preformed juxtapositions may be understood as
follows. If one considers a preformed hooked
juxtaposition, it is quite obvious that the intertwin-
ing of the two segments of the hooked juxtaposition
tends to increase the probability of entanglement. If
the loop size is small, this bias is strong because total
loop length is insufficient for the chains emanating
from the preformed juxtaposition to both “turn
around” to undo the initial topological bias and at
the same time close the loop to form a ring polymer.
The trend resulting from this severe constraint is
clear from the exact enumeration data in Table 1. For
larger loops, it is possible for the chains emanating
from the preformed juxtaposition to accomplish
both. This accounts for the fact that the corres-
ponding topological biases are less prominent than
that for smaller loops. Nonetheless, no matter how
long the total loop length, several bond and torsion
angles have to be restricted before the chains can
establish new growing points that are essentially
free of the constraining effects of the preformed
juxtaposition. Thus, conformational entropy would
be lost. This consideration suggests that no matter
how large the loop size, the topological biases of
certain preformed juxtapositions cannot be entirely
abolished, a trend that appears to have been borne
out in the data shown in Figure 2.

Juxtaposition geometries and knot/unknot
discrimination

The trend in Figure 2 may be understood in a
wider context by considering all possible 5mer-on-
5mer juxtapositions and by characterizing juxtapo-
sition geometries, as done previously,30 using the
dot (scalar) product NY1dN

Y
2 of the curvature vectors

NY1,N
Y
2 of the two segments that comprise a given

juxtaposition, and what we call the “hook para-
meter” H defined by:

H ¼ NY1 d rY12 þNY2 d rY21 ð1Þ
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where rY12, r
Y
21 are the vectors between the two central

positions of the two segments of the juxtaposition
(Figure 3(a)). Our choice of using 5mer-on-5mer
juxtapositions represents a practical balance be-
tween two modeling requirements: computational
tractability and a sufficient coverage of subtle
geometrical effects that can only be captured by
lattice chain segments with more beads. By con-
struction, the sign of H depends on whether the two
segments of the juxtaposition are hooked towards
each other (H>0) or curved away from each other
(H<0), such that H may be viewed as a measure of
the hookedness of the juxtaposition. The correspon-
dence is particularly apparent when the curvature
vectors NY1 andNY2 are pointing away from each
other ðNY1dN

Y
2<0Þ. In that case, when the two seg-

ments are intertwined like a hook, the curvature
vector NY1 of the first segment tends to be aligned
positively with the direction of the vector rY12 from
the central bead of the first segment to the central
bead of the second segment, resulting in a positive
value for the dot product NY1d r

Y
12 [first term in

equation (1)]. The same consideration applies to the
curvature vector NY2 of the second segment and the
vector rY21 [second term in equation (1)]. Thus, an
intuitive sense of hookedness clearly increases for
more positive values of H, with the hooked
juxtaposition (I) reaching the maximum value of
H=2. By a similar consideration, it can be seen that
more negative values of H, on the other hand, are
associated with increasing geometric similarity to
the free juxtapositions IIa, IIb, or III, which take the
minimum value of H=−2.30
A total of 2982 distinguishable 5mer-on-5mer

juxtapositions were considered for the two-loop
study.30 The count of distinguishable 5mer-on-5mer
juxtapositions in the present study of one-loop
conformations is different from that of two-loop
conformations. For two-loop catenation/decatena-
tion, the two segments belong to two different loops.
In that case, the contour direction of each segment
can be reversed without affecting the connectivity
pattern. Thus, juxtapositions related by reversing
the contour direction of one but not both segments
were taken to be equivalent. In contrast, one-
segment reversals in the one-loop case have to be
treated as intrinsically distinct because they repre-
sent different connectivity patterns, as exemplified
by the different knot probabilities for juxtapositions
IIa and IIb (Table 1). It follows that the number of
distinguishable juxtapositions should be approxi-
mately double that in the two-loop study. The
number of 5mer-on-5mer juxtapositions on the
simple cubic lattice that cannot be transformed
into one another by translation, rotation, inversion,
swapping of the two segments, or reversing the
Figure 3. (a) Schematic of an
analytical description of juxtaposi-
tion geometry. YN1 and YN2 are the
curvature vectors of the two chain
segments that make up a given jux-
taposition, while Yr12ð¼ �Yr21Þ is the
vector between the central positions
of the two segments.30 (b, c) Correla-
tion between global knot/unknot to-
pology and local juxtaposition
geometry. The knot/unknot discrim-
ination factor, fK, of all 5899 possible
5mer-on-5mer juxtapositions for
loop size n=100 was determined by
Monte Carlo simulations using
1×108 attempted chain moves for
each datapoint. (b) Scatter plots for
YN1d

YN2, where (○) and (●) represent,
respectively, juxtapositions with
H≥0 and H<0. (c) Scatter plots for
H, where (○) and (●) represent,
respectively, juxtapositions with
YN1d

YN2 z 0 and YN1d
YN2<0. Large

squares with arrows marked by I,
IIa, IIb, III, and IVare, respectively, fK
values for the hooked juxtaposition,
the three free juxtapositions, and the
half-hooked juxtaposition in Table 1.
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contour directions of both segments is 5899. This
number is very nearly 2×2982=5964. The two
numbers are not exactly equal because, for a small
number of highly symmetric juxtapositions such as
juxtapositions I and III, reversing the contour
direction of one, but not the other segment only
yields an equivalence of the original juxtaposition.
Figure 3(b) and (c) examines the knot/unknot

discrimination factor, fK, of all 5899 5mer-on-5mer
juxtapositions. Similar to the linked/unlinked dis-
crimination factor, fL, we defined previously,30 the
factor fK=(pK|j)/ (pU|j)= (pK|j)/(1−pK|j) is the ratio
of knot to unknot probabilities. It quantifies the
information encapsulated in a local juxtaposition j
about the global knot/unknot state of the entire one-
loop conformation. Similar to the corresponding
results in the catenation/decatenation study (Figure
9 of Liu et al.),30 the scatter plots in Figure 3 provide
the variation of fK with respect to the geometrical
characteristics of a juxtaposition. Figure 3 shows
that even for a relatively large loop size n=100, the
variation of fK is extensive. Although all fK values
plotted are small (≪1) because knot probabilities are
generally low for the loop sizes we have examined
(Figure 2), the fK values for different juxtapositions
can differ by more than two orders of magnitude,
indicating that local juxtaposition geometry pro-
vides significant discrimination about whether the
conformation is globally knotted.
The diversity in fK decreases with increasing

absolute value of NY1dN
Y
2, except for a few

NY1dN
Y
2 V 0;Hz0 juxtapositions (open circles in Fig-

ure 3(b)). The spread increases with H (Figure 3(c)).
The minimum fK value is not sensitive to either
NY1dN

Y
2 (Figure 3(b)) or H (Figure 3(c)). Notably,

however, the maximum fK value is strongly corre-
lated with the hook parameter H. Generalizing the
trends in Figure 2, higher knot probabilities are seen
here as associated with juxtaposition geometries
with positive hookedness (H>0) and curvature
vectors that tend to point away from each other
ðNY1dN

Y
2 V 0Þ. The hooked juxtaposition (I) and the

free nonplanar juxtaposition (III) are either at or
near the two extremes of the spectrum of fK values.
Consistent with the knot probability trend dis-
cussed above, the fK value for III is lower than that
of the free planar juxtaposition (IIb), but is higher
than that of the free planar juxtaposition (IIa). As
expected from its half-hooked geometry and con-
sistent with Figure 2, the behavior of juxtaposition
IV is intermediate between that of the hooked and
free juxtapositions.

Segment passage and steady-state distribution
of topoisomers

The strong dependence of a juxtaposition's topo-
logical biases on its geometry, under equilibrium
conditions considered above, suggests that the
outcome of segment passage at juxtapositions with
different geometries could also be different. Now, to
study directly the nonequilibrium kinetics of type-2
topoisomerase-like unknotting, we analyze segment
passages at juxtapositions of various geometries. We
use “virtual” segment passage operations30 to
change the sign of a crossing. The procedure is
depicted schematically in Figure 4. These hypothet-
ical operations are designed to change the local
geometry of the juxtaposition while leaving the rest
of the conformation and its overall shape intact. One
possible way to achieve this, as introduced in our
previous study,30 is to swap the positions of the two
center beads, one on each of the two segments of a
juxtaposition, and subsequently reroute the chain
through the pair of exchanged positions, as in Figure
4(a). Here, to cover a broader range of possible local
actions of a type-2 topoisomerase, we consider a
generalization of this procedure, whereby a segment
passage is defined by changing the sign of the
crossing of a juxtaposition, provided the juxtaposi-
tion has a crossing. This generalized procedure
includes the previously defined operation of swap-
ping only one bead from each segment, but it can
also entail swapping the positions of two or three
(but not more) beads on each segment, which
effectively changes the positions of four or six
beads (Figure 4(b) and (c)). We refer to these
segment-passage operations as virtual because they
are only executed conceptually to calculate the
resulting change, or lack thereof, of the knot state
of the conformation, without our being concerned
that the product conformation is not configured
entirely on the simple cubic lattice. We simply invert
juxtapositions to determine the global topological
outcome, which may, in theory, mimic type-2
topoisomerase activity.
Not all juxtaposition geometries in our model can

undergo type-2 topoisomerase-like segment pas-
sages. Many lattice juxtapositions lack a crossing,
because substantial fractions of the two segments
are parallel or lying on the same plane.30 As a result,
they do not permit virtual segment passage opera-
tions (Figure 4(d)). Among the 5899 5mer-on-5mer
juxtapositions, 680 have a crossing that can undergo
segment passage. Out of these 680 juxtapositions,
175 can undergo segment passage by swapping two
beads, one bead from each segment of the juxtapo-
sition (Figure 4(a)), whereas 505 juxtapositions can
undergo segment passage by swapping four or six
beads (Figure 4(b) and (c)). Hence, in the discussion
below, for the purpose of exploring ramifications of
our model predictions for type-2 topoisomerase
action, we focus only on these two restricted sets of
juxtapositions.
Type-2 topoisomerases can drive the DNA

conformational ensemble away from equilib-
rium18,19 if their action is sensitive to DNA local
geometry such that segment passage is effected
only at one particular juxtaposition geometry (or a
selective set of juxtaposition geometries), but not
others. In other words, local geometric selectivity of
type-2 topoisomerases can result in a shift in the
steady-state knot/unknot conformational distribu-
tion, and their ATP-driven enzymatic action can
maintain a distribution different from that at a
topological equilibrium.



Figure 4. Modeling nonequilib-
rium kinetic effects of segment pas-
sage. (a)–(d)Virtual segmentpassage
at various juxtapositions. The trans-
formations depicted here mimic
type-2 topoisomerase activity, and
thus require energy input implicitly.
These local conformational changes
are distinct from, and not part of the
chainmoves used in theMonteCarlo
equilibrium sampling. In (a)–(d),
beads on the two segments of a
juxtapositions are depicted as open
circles and solid dots for clarity. Left:
Examples of original juxtaposition
geometries before segment passage.
Right: Corresponding juxtaposition
geometries aftervirtual segmentpas-
sage. Middle: Projection of the juxta-
position before segment passage in
the left-pointing direction indicated
by the hollow arrow. The middle
projection is identicalwith that of the
juxtaposition after segment passage
in the right-pointing direction indi-
cated by the solid arrow. For juxta-
position I in (a), virtual segment
passage may be defined as exchang-
ing the central bead in eachof the two
segments. For the juxtapositions in
(b) and (c), virtual segmentpassage is
defined as swapping the positions,
respectively, of two and three inside
beads in each of the two segments.
There isone,andonlyone,crossing in
the projection diagram in each of the
examples in (a), (b), and (c). The sign
of this crossing changes upon virtual
segment passage. However, for the
examplein(d),whichrepresentsboth
juxtaposition IIa and IIb, there is no
crossing in the projection diagram
and, thus, virtual segment passage is
not allowed. It may be noted that the

schematic drawings of juxtaposition configurations after segment passage (Right) resemble conformations in certain bond
fluctuatingmodels,65 but not that in our simple cubic latticemodel. This illustrative feature is of no concern to our analysis30

because thesesegment-passageoperationsareonlyvirtual (see the text). (e)Schematic for theanalysisof thechange insteady-
state knot/unknot population ratio as a result of segment passage at a given juxtaposition. The total population of knot and
unknot conformations are represented by the left and right big circles. Flow between the two topologically distinct
populations (thick, solid arrows) is assumed to be possible only via segment passages at a given juxtaposition geometry j
(illustrated by hooked juxtapositions, in red). Accordingly, the flow can only occur for a subpopulation PK

(j) of the knot
conformations and a subpopulation PU

(j) of the unknot conformations, which are separated schematically from the rest by
dotted demarcations. Conformations may interconvert freely within the knot population (increasing or decreasing knot
complexity) and likewise within the unknot population (as indicated by the dotted arrows), such that the fractions of
conformations with the juxtaposition j in these two populations, cK

(j) =PK
(j)/PK and cU

(j) =PU
(j)/PU, are constants. Segment

passages can also leave the knot state of a conformation unchanged (large hollow arrows); the corresponding knot to
knot and unknot to unknot transition probabilities are denoted by TK→K

(j) and TU→U
(j) .
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We now model scenarios of enzymatic kinetics in
which segment passage is only allowed at one
particular juxtaposition geometry. Our goal is to
determine how the resulting segment passage-
induced change in the relative knot/unknot popu-
lation depends upon juxtaposition geometry. Figure
4(e) summarizes our formulation. It shows the
kinetic connectivities among various topological
states (which pairs of states can interconvert
directly) and how their populations are governed
by a set of transition rates. This modeling approach
to population dynamics is often referred to as a
master equation method.79,80 Here, we use PK and
PU to represent, respectively, the knot and unknot
conformational populations. Under the condition
that these populations can only be changed by
segment passages at a specific juxtaposition geom-
etry, j, and the simplifying assumption that the rate
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of segment passage is independent of the position of
the juxtaposition and overall loop conformation, the
rate of change of PK with respect to time, t, is given
by:

dPK

dt
¼ b PðjÞ

U TðjÞ
UYK � PðjÞ

K TðjÞ
KYU

� �
ð2Þ

where PU
(j) and PK

(j) are, respectively, the unknot and
knot conformational populations with at least one
instance of juxtaposition j in each conformation.
The quantity TU→K

(j) is the transition probability that,
given that the initial conformation is an unknot,
segment passage at the juxtaposition changes it to a
knot; similarly, TK→U

(j) is the transition probability
that, given that the initial conformation is a knot,
segment passage at the juxtaposition changes it to
an unknot; and b>0 is a constant that sets the time
scale of our model system and effectively converts
these transition probabilities to transition rates.
Equation (2) states that the rate of change of total
knot population (left side) is equal to the rate of
gain in knot population from unknot population
(first term on the right side) minus the rate of loss
in knot population to unknot population (second
term on the right side). Because of population
conservation, PK+PU is constant. Thus, once a
solution for PK is obtained from equation (2), PU is
also known.
Assuming that unknot and knot conformations

can, within their separate ensembles, equilibrate
thermally (Figure 4 and discussion below)¶, the
unknot and knot populations with at least one
juxtaposition j are, respectively, given by cU

(j)PU and
cK
(j)PK. Equation (2) may then be rewritten as:

dPK

dt
¼ b cðjÞU PUT

ðjÞ
UYK � cðjÞK PKT

ðjÞ
KYU

� �
ð3Þ

Because the steady-state unknot and knot popula-
tions, (PU)st and (PK)st, respectively, satisfy the
equation: dPK=dt¼0, it follows from equation (3)
that:

cðjÞU ðPUÞstTðjÞ
UYK ¼ cðjÞK ðPKÞstTðjÞ

KYU ð4Þ

The terms in the above expression, equation (4),
are readily related to quantities obtained from our
model computation. Using the methods described
above, our juxtaposition-centric simulations deter-
mine directly the probabilities of knot to unknot and
unknot to knot transition via segment passage at a
¶ The present treatment assumes a finite temperature.
Physically, equation (2) assumes that thermal equilibration
of conformations within the knot or unknot state is fast
compared to the rate of type-2 topoisomerase-mediated
segment passage. Transitions between the knot and
unknot states can only be achieved by type-2 topoisome-
rase-mediated segment passage, i.e., there is no thermal
equilibration between the knot and unknot states.
given juxtaposition geometry. Let these directly
simulated probabilities, which are normalized by
all segment-passage events, be denoted, respective-
ly, by J ðjÞ

KYU andJ ðjÞ
UYK. By definition:

TðjÞ
KYU ¼

J ðjÞ
KYU

ðPðjÞ
K Þeq

¼
J ðjÞ

KYU

cðjÞK ðPKÞeq
ð5Þ

where (PK
(j))eq and (PK)eq are, respectively, the knot

population under conditions of topological equilib-
rium with and without the constraint of having at
least one instance of the given juxtaposition geom-
etry j. In equation (5), these quantities are normal-
ized by the total knot and unknot population, thus
they correspond, respectively, to the pK|j and pK
values in Figure 2 with and without the constraint of
a preformed juxtaposition. A similar equation
applies for the U→K transitiona.
Hence, combining equation (4) and equation (5):

ðPUÞst
ðPKÞst

¼ RK
ðPUÞeq
ðPKÞeq

ð6Þ

where

RK ¼
J ðjÞ

KYU

J ðjÞ
UYK

ð7Þ

is the knot reduction factor that depends on
juxtaposition geometry (j). This factor quantifies
how much the steady-state unknot/knot population
ratio is increased by segment passages relative to the
corresponding equilibrium ratio, and can be com-
pared with experimental measurements.17 It is
noteworthy that factors of cU

(j), and of cK
(j), cancel in

equation (6), such that the knot reduction factor can
be obtained in our formulation without knowledge
of the equilibrium unknot/knot population ratio
(PU)eq/(PK)eq.
We should point out that the above formulation

is an approximation in the sense that segment
passage-induced transitions between trefoils and
more complex knot types in the PK ensemble are
not taken into consideration in the determination of
RK, because our treatment entails only a binary
choice between an unknot state and a knot state. In
principle, juxtaposition-mediated transitions be-
tween different nontrivial knot types can be
modeled by a general master equation formalism
that accounts for more than two conformational
states.79,80 Nonetheless, we have taken a simpler
a It is important to note that although the conforma-
tional enumeration and Monte Carlo sampling part of our
computation in obtaining J ðjÞ

KYU and J ðjÞ
UYK was con-

ducted under conditions of topological equilibrium, the
transition probabilities TK→U

(j) and TU→K
(j) in equation (5)

are generally applicable and independent of any assump-
tion of topological equilibrium. By definition, these
quantities involve averaging over conformations only
within the knot state (TK→U

(j) ) or only within the unknot
state (TU→K

(j) ), but not both.



Figure 5. (a) Simulated probabilities J ðjÞ of various
interconversions between topological states upon virtual
segment passage at the hooked juxtaposition (I) of a
conformation, as function of loop size n. Unknot to unknot
(U→U, □), unknot to knot (U→K, ■), knot to knot
(K→K,○), and knot to unknot (K→U,●) are shown. The
difference between U→K and K→U probabilities (filled
symbols) dictates knot reduction. (b) Transition probabil-
ities T (j) when the initial conformation before segment
passage is in the designated initial topological state. For
example, TK→U

(j) gives the conditional probability of
changing a knot to an unknot conformation provided
the initial conformation is a knot. (c) Same transition
probabilities plotted using a linear scale to show clearly
the difference between T (j) values for U→U and K→U.
Results presented in (a)–(c) for n≤30 are obtained by exact
enumeration; whereas results for n≥30 are obtained by
Monte Carlo simulation, with the number of attempted
chain moves for each datapoint varying from 1.2×1010 to
1.8×1010. (Both exact enumeration and Monte Carlo
sampling are used here and in Figure 6 for n=30 with
excellent agreement between the two methods.)
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approach because ∼97% of nontrivial knots are
trefoils in conformations without a preformed
juxtaposition for the largest loop size n=500 in
the present study. Topological complexity is higher
among n=500 knotted loops with a preformed
hooked juxtaposition (I); but still ∼91% are trefoils.
The corresponding trefoil percentages are even
higher for smaller loop sizes (Table 1).

Juxtaposition-driven topological transitions and
knot reduction

Figure 5 applies the above formulation to analyze
knot reduction by segment passage at the hooked
juxtaposition (I) as a function of loop size n. The
quantities J ðjÞ

UYU, J ðjÞ
KYU, J ðjÞ

UYK, and J ðjÞ
KYK are plot-

ted in Figure 5(a). Almost all segment passages take
an unknot to an unknot (J ðjÞ

UYUc1) because, for the
loop sizes we have examined, an overwhelming
majority of the conformations are not knotted. The
general trend of dependence on n of the other
three J ðjÞ values are similar to the pK|I trend for
the hooked juxtaposition in Figure 2. However,
Figure 5 shows that it is much more likely, by
approximately one order of magnitude or more, for
a segment passage at a hooked juxtaposition to
change a knot to an unknot than either changing an
unknot to a knot or failing to unknot a knot
(J ðjÞ

KYUHJ ðjÞ
UYK and J ðjÞ

KYUHJ ðjÞ
KYK). The power of

segment passage at a hooked juxtaposition to
unknot is shown even more clearly by the transition
probabilities in Figure 5(b) and (c). These results
show that if a conformation is initially unknotted, it
is practically certain that it would remain unknotted
after a segment passage at a hooked juxtaposition
(T

U→U
(j) ≈1, and thus TU→K

(j) ≈0). On the other hand, if
a conformation is initially knotted, there is a very
high probability that it would be unknotted by a
segment passage at a hooked juxtaposition. This is
practically a certainty for small loops, and this
probability decays only very slowly with increasing
loop size n. Even for n=500, the unknotting
transition probability TK→U

(j) ≈0.9. In other words,
there is only a small probability TK→K

(j) (=1−TK→U
(j) )

that a knotted conformation with n≤500 would
remain knotted after segment passage at a hooked
juxtaposition.
The data in Figure 5 can now be used in equation

(7) to compute the knot reduction factor RK as a
function of loop size n for the hooked (I), free non-
planar (III), and half-hooked (IV) juxtapositions
(Figure 6). Consistent with intuition, segment pas-
sage at a hooked juxtaposition reduces the knot
population substantially. In contrast, segment pas-
sage at a free juxtaposition increases the knot popu-
lation by approximately two orders of magnitude
relative to that at equilibrium. Segment passage at
the half-hooked juxtaposition also reduces the knot
population for n≥26, but the knot reduction factor
RK is smaller than that of the hooked juxtaposition—
by approximately one order of magnitude for loop
size n=500, for example. For smaller loops, the
differences in RK among the three juxtapositions are



Figure 6. Loop size dependence of the knot reduction
factor RK for the hooked (I), free nonplanar (III), and half-
hooked (IV) juxtapositions. Curves through the datapoints
are merely a guide for the eye. Results for n≤30 are
obtained by exact enumeration, whereas results for n≥30
are obtained by Monte Carlo simulation. The number of
attempted chain moves for each Monte Carlo datapoint
varies from 1.2×1010 to 1.8×1010. The smallest n for a
conformation with a juxtaposition I, III, and IV to be a knot
is, respectively, n=26, 30, and 26. The corresponding
minimum n for a finite log RK value is n=28, 30, and 26.
For juxtaposition I, TK→U

(j) >0 but TU→K
(j) =0 when n=26,

thus log RK→∞. For juxtaposition III with n=24, 26, and
28, and juxtaposition IV with n=24, TU→K

(j) >0 but a knot to
unknot transition is impossible; hence log RK→−∞. For
juxtaposition IV, log10 RK≈0.079 for n=26 and attains a
maximum value of ≈0.48 around n=40–50.

280 Knot Topology & Juxtaposition Geometry
larger. Remarkably, however, the RK values are quite
stable for n>200, and vary only slightly through the
largest loop size n=500 we have studied.
We have also considered 5mer-on-3mer juxtaposi-

tions (data not plotted). The shortened version of the
half-hooked juxtaposition (IV) that possesses a
three-bead straight segment instead of a five-bead
straight segment has the highest RK value among all
5mer-on-3mer juxtapositions. However, its RK is
smaller than that of the 5mer-on-5mer half-hooked
juxtaposition (IV). For example, for n=100, the RK
values for the 5mer-on-3mer and 5mer-on-5mer
versions of the half-hooked juxtapositions are 1.69
and 2.55, respectively. The corresponding RK values
for n=500 are 1.60 and 2.15.
At this juncture, it is instructive to compare the

steady-state knot reduction factor in our model to
that deduced from the “active bending model” of
Vologodskii and coworkers.18,19 The active bending
model stipulates that the topoisomerase first intro-
duces a sharp turn along the DNA chain at the
binding site, forming a hairpin-shaped segment.
Then it waits for another part of the DNA chain to
drift into the proximity of the hairpin, and drives
segment passage only in one direction, in a manner
similar to the segment passage operation at our
juxtaposition (IV). As pointed out above, this
proposed mechanism is physically different from
that of Buck and Zechiedrich,25 who envision the
topoisomerase to act on pre-existing hooked, and to a
lesser extent, half-hooked juxtapositions. Nonethe-
less, mathematically, our formulation for computing
steady-state knot population is quite similar to that
in the active bending model because both formula-
tions use simple rate equations to account for
population changes driven by segment passages.
Because the active bending model proposes that

DNA conformational distribution is altered by
topoisomerase binding before segment passage,
conformational properties of DNA ensembles with
the topoisomerase-induced hairpin have to enter
into the calculation of the steady-state knot
population. In particular, the unknot and knot
conformational populations constrained to contain
the given hairpin (i.e., half-hooked single segment
of a potential juxtaposition), denoted here as PU

[j/2]

and PK
[j/2] respectively, have to be determined. This

consideration is not necessary in our formulation. A
simple analysis (details not shown) indicates that
the knot reduction factor in the previous studies18,19
is equal to our RK in equation (7) multiplied by a
factor of [PU

[j/2]/PK
[j/2]]/[(PU)eq/(PK)eq] if the juxtapo-

sition geometry before segment passage in the two
proposed mechanisms are identical. This rela-
tionship implies that although the knot reduction
factors in the two models are different, practically
they can be similar because PU

[j/2] /PK
[j/2]≈ (PU)eq/

(PK)eq. For instance, for loop size n=100 in our
model, PU

[j/2]/PK
[j/2] =1.12×104 and (PU)eq/(PK)eq=

1.16×104. Because segment passages in the active
bending model mechanism18,19 occur at a juxtaposi-
tion geometry similar to that of our half-hooked
juxtaposition (IV) (see above), if one applied the
active bending model mechanism to our lattice
model, the resulting steady-state knot reduction
factor would be very similar to our RK in Figure 6
for juxtaposition IV. Consistent with earlier find-
ings,18,19 segment passages at the half-hooked juxta-
position (IV) reduce knot population (log RK>0), but
our results also show that juxtaposition IV is far less
effective in driving unknotting than the hooked jux-
taposition (I).

Knot reduction by segment passage correlates
with juxtaposition hookedness

Figure 7 extends our analysis of knot reduction
factors to encompass all 680 5mer-on-5mer juxtapo-
sition geometries that permit virtual segment
passages. A conspicuous feature of this comprehen-
sive survey is that most of the datapoints in the
scatter plots lie below the horizontal dashed lines for
RK=1 (log RK=0), indicating that segment passage
at a majority of juxtaposition geometries leads to a
knot population increase (log RK<0), rather than a
decrease. Only 7–15% of juxtaposition geometries
can drive unknotting (log RK>0). This observation
implies that, to achieve unknotting by segment
passage, a rather stringent selection of juxtaposition
geometry is necessary.
Figure 7 shows that the largest knot reduction

among the 680 juxtapositions is achieved by the



Figure 7. Correlations between
the knot reduction factor RK and
juxtaposition geometries with well-
defined virtual segment passages
(cf. Figure 4), for loops of size
n=100. The meaning of the symbols
is the same as that in Figure 3.
Upper panels: 175 juxtapositions
that satisfy a stringent segment-
passage criterion, with a crossing
and admitting a central-bead swap,
as for the examples in Figure 4(a).
Lower panels: All 680 juxtapositions
that have a crossing, as for the
examples in Figure 4(a)–(c). Results
are obtained from Monte Carlo
sampling using 4×108 attempted
chain moves for each datapoint.
Horizontal dashed lines mark the
RK=1 level; virtual segment pas-
sages of the juxtapositions at this
level will not change the knot/
unknot population ratio from that
of the equilibrium value. Only 27/
175=15.4% and 45/680=6.6% of the
juxtapositions in the upper and

lower panels, respectively, have RK>1. Dotted lines are least-squares fits. The Pearson correlation coefficients are
r=0.88 (upper), 0.87 (lower) for YN1d

YN2< 0, r=0.72 (upper), 0.62 (lower) for YN1d
YN2>0, and r=0.81 (upper), 0.71 (lower)

overall.
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hooked juxtaposition (I), which, at H=2, has the
most hooked geometry. In comparison, although the
free nonplanar juxtaposition (III), which has H=−2,
does not have the smallest RK; its RK value is lower
than that of all except a few juxtapositions. The half-
hooked juxtaposition (IV) has an intermediate hook
parameter H=1 that is closer to the hooked jux-
taposition than to the free juxtaposition and a knot
reduction factor RK>1 (log RK>0) that is substan-
tially lower than that of the hooked juxtaposition.
Interestingly, for these three juxtapositions, log RK
varies essentially linearly with H. Furthermore, our
comprehensive survey reveals that this contrast
among the hooked (I), free nonplanar (III), and
half-hooked (IV) juxtapositions is part of a larger
pattern of behavior that appears to govern the
relationship between knot reduction and juxtaposi-
tion hookedness. Here, the right panels of Figure 7
indicate that, despite the datapoints being somewhat
scattered, there is good correlation between the
logarithmic knot reduction factor and H (see figure
caption). The log RK versus H correlation is particu-
larly strong among juxtapositions with their two
segments curving away fromeach other (YN1d

YN2 <0),
which include both the hooked and free juxtaposi-
tions. As far as a general positive correlation between
knot reduction effectiveness and juxtaposition hook-
edness is concerned, this trend is also in line with the
fact that the variation of H among YN1d

YN2 <0
juxtapositions captures more closely one's intuitive
sense of hookedness than the variation of H in
general (cf. Figure 8 of Liu et al.30).
The scatter in the log RK versus H plots in Figure

7 (right) is markedly reduced relative to that in the
log fK versus H plot in Figure 3(c). At least two
factors may be pertinent to the reduced scatter.
First, some of the juxtapositions in Figure 3 that
contributed to the wide spread in fK lack a
crossing. For example, the two H=2 datapoints
in Figure 3 that have significantly lower fK than
that of the hooked (I) are from juxtapositions
without a crossing, and thus are not considered in
the RK analysis. Second, RK provides different
information from that of fK. Among juxtapositions
with a crossing, the correlation between log fK and
log RK is not strong (Pearson coefficient r≈0.5,
detailed data not shown). For example, even
though the fK values of two juxtapositions, each
with a crossing, are slightly higher than that of the
hooked (I) in Figure 3(b) and (c), the RK of the
hooked (I) clearly surpasses that of all other
juxtapositions in Figure 7.
Two additional considerations are noteworthy in

the interpretation of ourmodel predictions. First, our
conformational simulations are performed for juxta-
positions with a positive crossing (Table 1). As such,
they model directly segment passages at positive
juxtapositions. Nonetheless, for highly symmetric
geometries such as that of the hooked (I), free
nonplanar (III), and half-hooked (IV) juxtapositions,
the RK values we have computed apply also to the
situation in which segment passages are carried out
at these juxtapositions without regard to the sign of
the crossing. Second, the high RK of the hooked
juxtaposition and the diversity in RK values among
different juxtapositions (Figure 7) decrease with
increasing loop size n (Figure 6). But for n>200,
these decreases are very gradual. The knot reduction
factor RK remains substantial at n=500 and there is
no obvious reason to assume that it will approach



Figure 8. Correlations between the knot reduction
factor RK and the link reduction factor RL. (a) Only
juxtapositions I (○), III (□), and IV (◇) with loop sizes
varying from n=26 to n=500 are analyzed (cf. Figure 6).
Results are obtained using Monte Carlo sampling, with
the number of attempted chain moves for each single-loop
system (for RK) ranging from 1.2×1010 to 1.8×1010, and for
each two-loop system (for RL) ranging from 3×109 to
1.8×1010. (b) Knot and link reduction factors for all 680
juxtapositions with a crossing (same as those in the lower
panels of Figure 7) and loop size n=100 are plotted as
solid triangles (▴) overlaid onto data from (a). The
extensive set of results was obtained from Monte Carlo
sampling using 4×108 and 6×108 attempted chain moves,
respectively, for each single- and two-loop system. The
horizontal and vertical dashed lines mark the RK=1 and
RL=1 levels, respectively. Dotted straight lines are least-
squares fits to the datapoints. The corresponding Pearson
correlation coefficients are (a) r=0.997, (b) r=0.947 for the
solid triangles, alone, and r=0.962 for all RK and RL values
plotted.
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unity (log RK→0) even for much larger n. As for the
decatenation case,30 our results suggest strongly that
the local geometry and sterics of a given juxtaposi-
tion always impose an intrinsic conformational bias
with global topological consequences that cannot be
abolished by increasing loop size.

Unknotting and decatenating effects of a
juxtaposition are related

Experiments indicate that the discrimination of a
type-2 topoisomerase to unknot is correlated with its
discrimination to decatenate.17 Figure 8 examines
the correlation between the knot reduction factor RK
and a similarly defined link reduction factor RL that
we computed here by applying virtual segment
passage operations to the results from our previous
catenation/decatenation study.30 Figure 8(a) con-
siders the effects of segment passages at the three
special juxtapositions I, III, and IVon one- and two-
loop systems of different sizes n. Figure 8(b) extends
the comparison to include unknotting and decatena-
tion data on loops of size n=100 for all 5mer-on-5mer
juxtaposition geometries that permit segment pas-
sage. There is a striking correlation between log RK
and logRL in both cases.
To relate our knot and link reduction factors to the

ratio of equilibrium to steady-state fractions of
knots (Rkn) and catenanes (Rcat) defined in the ex-
perimental study of Rybenkov et al.,17 it is straight-
forward to show that:

Rkn ¼
ðPKÞeq
ðPKÞst

¼
RK þ ½ðPKÞeq=ðPUÞeq�
1þ ½ðPKÞeq=ðPUÞeq�

ð8Þ

and that an analogous relationship holds for Rcat
and RL. Because the equilibrium knot to unknot
ratio [(PK)eq/(PU)eq]≪1 for our model loop sizes
and also for the plasmid DNA used in the
experiments:17

RkncRK ð9Þ
and thus we may compare the experimental Rkn
with our model RK.
Our model is highly simplified and coarse-

grained. Nonetheless, the general trends exhibited
in Figure 8 are in remarkable agreement with
existing experimental data. First, RK of the hooked
juxtaposition (I) decreases with increasing loop size
n in our model. Provided that type-2 topoisomerases
act on certain types of hooked juxtapositions,25,30
this prediction is consistent with the finding17 that
the action of (type-2) topoisomerase IV from
Escherichia coli on the 7 kb (kilobase) pAB4 plasmid
DNA leads to Rkn≈90, whereas the action of the
same topoisomerase on the larger 10 kb P4 DNA
results in a smaller Rkn≈50. Second, the strong
correlation between the experimental log Rkn and
log Rcat resulting from the action of type-2 topoi-
somerases from different organisms on the 7 kb
plasmid DNA17 may be explained by the strong
correlation between log RK and log RL in Figure 8(b).
In this regard, if one assumes that Rcat≈RL, our
model prediction of the scaling relationship
RK≈ (RL)2 (Figure 8(b)) is in reasonable agreement
with the Rkn≈ (Rcat)1.6 reported in Figure 3(a) of
Rybenkov et al.17 Third, the experimental Rkn≈90
and Rcat≈16 for the pAB4 DNA17 are within the
ranges of RK and RL values, respectively, of our
hooked juxtaposition (I) for the various loop sizes
we examined. Interestingly, the corresponding RK
and RL values of the half-hooked juxtaposition (IV)
show little variation with loop size for n≤500, and
are too small to match the experimental Rkn and Rcat
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values. Although further analysis is necessary, this
model result should be relevant in assessing the
viability of the active bending model.18,19 Indeed,
the active bending model is insufficient for produc-
ing the experimentally observed level of un-
knotting.21 For example, an application of that
model to a 7 kb DNA19 yielded a knot reduction
factor ∼10 (=Pk/(Ck/Cu) in Table 1 of Vologodskii et
al.19)b, and a link reduction factor ∼4; both are
substantially lower than the corresponding values of
90 and 16 achieved experimentally.17
Concluding Remarks

An open question in understanding how type-2
topoisomerases perform their crucial biological
functions has been how does an enzyme that is
much smaller than its DNA substrate preferentially
decatenate or unknot rather than catenate or knot
DNA. Here, as in our previous work on decate-
nation,30 we address this fundamental question in
general terms. The extension from decatenation30 to
unknotting represents an important step forward
because while the special role of hooked juxtaposi-
tions in decatenation may be grasped intuitively by
considering catenanes of perfect circles,25 the special
role of hooked juxtaposition in unknotting is less
straightforward. Our work has shown that discrim-
inatory topological information is embodied in local
juxtaposition geometries such that selective segment
passages at hooked juxtapositions can be a highly
successful strategy for disentangling, rather than
entangling, both catenanes and knots.
Whether type-2 topoisomerases have made use of

the statistical mechanical principles uncovered by
our model simulations is a question that can only be
answered by further experimental investigation.
Nonetheless, our work has highlighted a remarkable
physical trend. Our model predictions with regard
to the magnitude of type-2 topoisomerase-driven
unknotting and the near-perfect correlation between
logarithmic decatenating and unknotting factors are
in excellent agreement with existing experiments.
Future prospects are exciting. The juxtaposition-
centric framework, and the general predictions of
our model should guide experimental work to
b The steady-state knot reduction factor relative to that
at topological equilibrium in the active bending model
should be defined as the ratio of the equilibrium proba-
bility of knotting, Pk=0.014, to the steady-state fraction of
knots, Ck/(Ck+Cu)≈ (Ck/Cu)=0.0014 for the “hairpin G
segment” process in that model. The knot/unknot ratio of
0.020, which is approximately equal to the knot prob-
ability, for the “straight G segment” process19 should not
be used instead of Pk. Indeed, the fact that Pk<0.020
implies that the “straight G segment” process in
Vologodskii et al.19 increases knotting relative to topolo-
gical equilibrium. This trend is consistent with our
finding that the 5mer-on-5mer juxtaposition with two
straight segments at a 90° cross angle ðYN1d

YN2,H ¼ 0Þ also
increases knotting, with RK=0.18 for n=100.
contribute to the deciphering of type-2 topoisome-
rase action.
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