
Short History of Numbers

1) When Mother still dwelt in the trees
and counted fingers, bananas, and chil-
dren, she invented the Natural Numbers

{N, +,×,≤} N def= {1, 2, 3, . . .} .

This enabled her to solve equations like

a + x = b , a < b .

2) When she started a small business trad-
ing bananas, she experienced the need to
solve equations like

5 + x = 3 .

This cannot be done in N, so she extended
the number system by adding zero and



negative integers, arriving at the larger
number system

{Z, +,×,≤} Z def= {0, 1,−1, 2,−2, . . .} .

of Integers.
3) When she had a birthday party with
5 kids but bananas only for 3 birthday
cakes, she experienced the need to solve
equations like

5× x = 3 .

Namely, she knew that she must give ev-
ery kid an equal amount x of cake lest she
invite a mutiny. She found it easier to
extend the number system again, to the
Rational Numbers

{Q, +,×,≤} Q def= {m/n : m, n ∈ Z, n 6= 0}.
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4) After the birthday party every piece of
cloth in her hut was soiled, so she washed
all. Since it rained, she decided to hang
up the laudry to dry inside her hut. She
needed a clothesline the length of the di-
agonal of her square hut. Having spent
her free time on a bit of geometry just
for fun, she knew that the length x of the
clothesline, measured in [hutwidths] sat-
isfied the Pythagorean equality

x2 = 2 .

She saw that Q does not contain any num-
ber x with square 2, so what did she do?
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to the Real Numbers

{R, +,×,≤} .

How did she do that?
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to the Real Numbers

{R, +,×,≤} .

How did she do that?
She took for R all the holes in Q and de-
fined +,×,≤ suitably. Then she could send
the oldest to the hardware store to buy a
rope of length

√
2 [hutwidths].

5) Being successful is fun, she was evi-
dently good in mathematics, so she con-
tinued on, and asked herself about the
equation

x2 = −1 .

There is no real number x with square −1,
since the square of any real is positive. so
what did she do?
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to the Complex Numbers

{C, +,×} .

How did she do that?
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to the Complex Numbers

{C, +,×} .

How did she do that?

She put

C def= {(a, b) : a, b ∈ R}
= {a + ib : a, b ∈ R} 1 = (1, 0), i = (0, 1)

and defined addition and multiplication
by

(a, b) + (a′, b′) def= (a + a′, b + b′) and
(a, b)× (a′, b′) def= (aa′ − bb′, ab′ + a′b) .

There is no way to define on C an order
that collaborates with addition and mul-
tiplication as the order on R does. That
is a drawback. But there is at least an
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absolute value

|(a, b)| def=
√

a2 + b2 ,

which makes analysis on C possible (and
quite amazing!). Not only does the equa-
tion

z2 + 1 = 0 , z ∈ C
have a solution, to wit i def= (0, 1), every com-
plex polynomial

p(z) =

N∑
n=0

anzn an ∈ C

has a root, in fact is a product of linear
polynomials.
You can talk about limits of sequences in
C, and about continuity and differentia-
bilty of functions f : C → C, and about
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power series. In fact, every once differen-
tiable function is locally a power series.
Example: Consider the real power series

ex def=

∞∑
n=0

xn

n!
, x ∈ R .

It converges for every x,

satisfies ex+x′ = ex × ex′, and
dex

dx
= ex.

The complex exponential series

ez def=

∞∑
n=0

zn

n!
, z ∈ C

has the same properties:
it converges for every z (same proof as in
R),

satisfies ez+z′ = ez× ez′ (same algebra as in
R),
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and
dez

dz
= ez (same proof as in R).

Let z = ix = (0, x), x ∈ R. Then

eix = 1 + ix
1! +

(ix)2

2! +
(ix)3

3! +
(ix)4

4! +
(ix)5

5! +
(ix)6

6! + · · ·

= 1− x2

2! + x4

4! −
x6

6! ± · · ·

+ i
(x

1! −
x3

3! + x5

5! ∓ · · ·
)

= cos x + i sin x .

This formula,

eix = cos x + i sin x

is called Euler’s formula and will assist
us greatly in solving HCCSOLODE with
strictly negative discriminant. [I was baf-
fled when I first met it.]
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