
Practice Test 3, 427K, 05/01/2014 PRINTED NAME: EID:
No books, notes, calculators, or telephones are allowed.

Every problem is worth an equal number of points.
You must show your work; answers without substantiation do not count.

Answers must appear in the box provided!
No or the wrong answer in the answer box results in no credit!

This does not aim nor claim to be exhaustive! Use this as a guide of what to study and not of
what not to study! Do not expect to find every test problem listed here! Sigh.

Solve y′′ + y = uπ , y(0) = 1, y′(0) = 0.

Solution: A FS for the homogeneous SOLODE is {cos, sin}. The solution for the homogeneous
IVP is yh(t) = cos(t).
The solution for the homogeneous IVP with y(0) = 0 and y′(0) = 1/1 = 1 is yp(t) = sin(t). The
convolution

(sin ∗uπ)(t) =

∫ t

0

sin(t− τ)uπ(τ) dτ

equals zero if t ≤ π and

cos(t− τ)

∣∣∣∣
t

π

= 1− cos(t− π)

for t > π. Hence (sin ∗uπ)(t) = uπ(t)(1− cos(t− π)) and

y(t) = yh(t) + (yp ∗ uπ)(t) = cos(t) + uπ(t)(1− cos(t− π)) .



Let the function g : [0,∞) → R be defined by [drawing it might help]

g(t) def=

{
t for 0 ≤ t ≤ 1,
2− t for 1 ≤ t ≤ 2,
0 for 2 ≤ t < ∞.

Use the Laplace transform to solve the IVP y′′ − y = g, y(0) = 1, y′(0) = 0.

Solution (check the computations!): The usual algebra gives

Y (s) =
sy(0) + y′(0)

s2 − 1
+

G(s)

s2 − 1
=

s

s2 − 1
+

G(s)

s2 − 1
= Y1(s) + Y2(s) .

The Laplace inverse of the first summand Y1(s) is Cosht, the Laplace inverse of Y2(s) is convolution
of g(t) with the solution yaux(t) of y′′ − y = 0, y(0) = 0, y′(0) = 1; since that solution has

Laplace transform
1

s2 − 1
, we have yaux(t) = Sinht, and therefore L−1Y2(t) = (g ∗ Sinh)(t)

=
∫ t

0
g(τ)Sinh(t− τ) dτ . For the computation of this convolution we’ll need the τ–antiderivative

of τSinh(t− τ); it is −τCosh(t− τ)− Sinh(t− τ). Therefore, with I(t) def=
(
yaux ∗ g

)
(t),

I(t) =

∫ t

0

g(τ)Sinh(t−τ) dτ

=

∫ t∧1

0

τSinh(t−τ) dτ +

∫ t∧2

t∧1

(2− τ)Sinh(t−τ) dτ

=
[
− τCosh(t− τ)− Sinh(t− τ)

]t∧1

0

+
[
− 2Cosh(t− τ) + τCosh(t− τ) + Sinh(t− τ)

]t∧2

t∧1

= −2Sinh(t− (t ∧ 1)) + Sinh(t) + Sinh(t− (t ∧ 2))

+ (t ∧ 2− 2)Cosh(t− (t ∧ 2)) + 2(1− t ∧ 1)Cosh(t− (t ∧ 1))

for 0 ≤ t ≤ 1: I(t) = Sinht− t

for 1 ≤ t ≤ 2: I(t) = t− 2 + Sinh(t)− 2Sinh(t− 1)

for 2 ≤ t < ∞: I(t) = Sinh(t) + Sinh(t− 2)− 2Sinh(t− 1)

Alternatively, we can observe that g(t) = t − 2u1(t) · (t − 1) + u2(t)(t − 2), look up its Laplace
transform in the table, multiply that with 1/(s2 − 1), and compute the Laplace–inverse of that
from the table.

Answer: y(t) = Cosht+





Sinht− t for 0 ≤ t ≤ 1;
t− 2 + Sinh(t)− 2Sinh(t− 1) for 1 ≤ t ≤ 2;
Sinh(t) + Sinh(t− 2)− 2Sinh(t− 1) for 2 ≤ t < ∞.

Look at the old quizzes. I might put one similar to them on the test.



Describe the Euler method, the improved Euler method, and the Runge–Kutta method, including
estimates of the local and global errors in terms of the step size, and the number of computations
required.

State Fourier’s theorem.
Describe the Gibbs phenomenon.
Describe the method of separation of variables.
What are even (odd) functions?
How can you get a pure sine (cosine) series for a function f : [0, L] → R from Fourier’s theorem?

Do one of: p449 #1ab-12ab; p456 # 1-12; p461 # 1-12.

Do one of: p610 # 1-6; p575 # 1–21; p585 # 1-24; p592 # 1ab-6ab, 7a-12a; p 600 # 1-26.

Let f : [−π, π] → R be the function defined by [drawing it might help]

f(x) =





−π − x for −π ≤ x ≤ −π/2
x for −π/2 ≤ x ≤ π/2

π − x for π/2 ≤ x ≤ π

(a) Find the Fourier series f̃ of f . (b) At which points x is f(x) = f̃(x)? (Give reasons)

Solution: We first remark for later that
∫
x · sin(nx) dx =

−x · cos(nx)

n
+

sin(nx)

n2
.

f is odd, so an = 0 for n = 0, 1, 2, 3 . . .. Also,

bn =
1

π

∫ π

−π

f(x) · sin(nx) dx =
2

π

∫ π

0

f(x) · sin(nx) dx

=
2

π

∫ π/2

0

x · sin(nx) dx+
2

π

∫ π

π/2

(π − x) · sin(nx) dx

=
2

π
·
[−x · cos(nx)

n
+

sin(nx)

n2

]π/2
0

+
2

π
·
[−π

n
cos(nx) +

x · cos(nx)

n
−

sin(nx)

n2

]π
π/2

=
2

π
·
[−π/2 · cos(nπ/2)

n
+

sin(nπ/2)

n2

]

+
2

π
·
[−π

n

(
cos(nπ)− cos(nπ/2)

)
+

π · cos(nπ)− π/2 · cos(nπ/2)

n
−

sin(nπ)− sin(nπ/2)

n2

]

=
4 sin(nπ/2)

πn2
.

Note that bn = 0 when n is even, as should be the case.
Therefore

Answer: (a) f̃(x) =

∞∑

n=1

4 sin(nπ/2)

πn2
sin(nx)

and (b) at all points, because f is continuous.



Do one of p620 # 1-8, 9-13; p632 # 1-8; p645 # 1-5; p632 # 1-8
Solve the heat conduction problem ut = 7uxx in an insulated rod of length π whose ends are
maintained at 0◦ Celsius at all times and whose initial temperature u(x, 0) is given by u(x, 0) =
f(x) ∀ x ∈ [0, 2π], where

f(x) def=

{
x for 0 ≤ x ≤ π/2,
π − x for π/2 ≤ x ≤ π.

Solution: Separation of variables shows that u(x, t) can be found of the form

u(x, t) =

∞∑

n=1

bn e−7n2t sin(nx) ,

provided the constants bn are chosen so that

u(x, 0) = f(x) =

∞∑

n=1

bn sin(nx) .

Fourier’s theorem says that this representation holds, if we choose

bn =
2

π

∫ π

0

f(x) sin(nx) dx .

These integrals were computed in another problem:

bn =
4 sin(nπ/2)

πn2
.

Consequently

Answer: u(x, t) =

∞∑

n=1

4 sin(nπ/2)

πn2
· e−7n2t · sin(nx)



Do a similar wave equation problem: let

f(x) def=

{
x for 0 ≤ x ≤ π/2,
π − x for π/2 ≤ x ≤ π.

Solve the wave equation utt = 81uxx for a string of length π with initial conditions u(0, x) = f(x)
and ut(0, x) = 0.

Solution:

u(t, x) =
f̌(x+ 9t) + f̌(x− 9t)

2
,

where f̌ is the 2π–periodic extension of the odd extension of f .

Do a similar Laplace equation problem: Let

f(x) def=

{
x for 0 ≤ x ≤ π/2,
π − x for π/2 ≤ x ≤ π.

Then solve the Laplace equation on a square sheet of side π with the boundary conditions u(0, y) =
u(x, 0) = u(π, y) = 0 and u(x, π) = f(x).

Solution: In lecture 23 we saw that the solution is

u(x, y) =

∞∑

n=1

bn sin(nx)Sinh(ny)

with bn =
1

Sinh(nπ)

2

π

∫ π

0

f(x) sin(nx) dx

by earlier problem =
4 sin(nπ/2)

πn2Sinh(nπ)
.

Do one of: p610 # 1-14; p620 # 1-14; p632 # 1-8.



Solve the damped wave equation

utt + γut = α2uxx

with side conditions u(t, 0) = u(t, L) = 0 ,

and initial conditions u(0, x) = f(x) , ut(0, x) = g(x) .

Solution 1: The method of separating variables applies:
With u(t, x) = T (t)X(x), the PDE turns into

T ′′(t)X(x) + γT ′(t)X(x) = α2T (t)X ′′(x)

=⇒
T ′′(t) + γT ′(t)

α2T t
=

X ′′(x)

X(x)
= σ , X(0) = X(L) = 0 .

=⇒ Xn(x) = sin(λnx) σ = −λ2

n , where λn
def=

nπ

L
.

and T ′′(t) + γT ′(t) + α2λ2

nT (t) = 0 .

This constant coefficient HSOLODE for T (t) has characteristic polynomial r2 + γr + α2λ2

n with
roots

r =
−γ ±

√
γ2 − 4α2λ2

n

2
.

We pick a fundamental set {yn, yn} such that yn(0) = 1 , y′n(0) = 0 and yn(0) = 0 , y′n(0) = 1.

In the underdamped case that αλ1 > γ/2

we have rn = −γ/2± iµn , where µn
def=

√
α2λ2

n − γ2/4 ,

yn(t) = e−γt/2
(
cos(µnt)−

γ

2µn
sin(µnt)

)

and yn(t) = e−γt/2 1

µn
sin(µnt) .

In general
un(t, x) =

[
anyn(t) + bnyn(t)

]
× sin(λnx)

solves the three green conditions and has its variables separated, and

u(t, x) =
∞∑

n=1

un(t, x) =
∞∑

n=1

[
anyn(t) + bnyn(t)

]
× sin(λnx)

still solves the three green conditions even though its variables are not separated. The initial
conditions

u(0, x) =

∞∑

n=1

an sin(λnx) = f(x) and ut(0, x) =

∞∑

n=1

bn sin(λnx) = g(x)

are accommodated by

an =
2

L

∫ L

0

f(x) sin(λnx) dx and bn =
2

L

∫ L

0

g(x) sin(λnx) dx


