
ON THE STRUCTURE OF SELMER GROUPS OF p-ORDINARY
MODULAR FORMS OVER Zp-EXTENSIONS

KEENAN KIDWELL

Abstract. We prove analogues of the major algebraic results of [GV00] for Selmer groups
of p-ordinary newforms over Zp-extensions which may be neither cyclotomic nor anticyclo-
tomic, under a number of technical hypotheses, including a cotorsion assumption on the
Selmer groups. The main complication which arises in our work is the possible presence
of finite primes which can split completely in the Zp-extension being considered, resulting
in the local cohomology groups that appear in the definition of the Selmer groups being
significantly larger than they are in the case of a finitely decomposed prime. We give a
careful analysis of the Λ-module structure of these local cohomology groups and identify the
relevant finiteness condition one must impose to make the proof of the key cohomological
surjectivity result [GV00, Proposition 2.1] work in our more general setting.

1. Introduction

Let p be a prime. The study of Selmer groups attached to arithmetic objects relative to
Zp-extensions of number fields has its genesis in the early work of Iwasawa on class groups
(and today bear’s Iwasawa’s name in honor of his pioneering achievements). The Selmer
groups for elliptic curves were defined in Mazur’s seminal paper [Maz72], the motivation of
which was in part to introduce a theory for Mordell-Weil groups analogous to Iwasawa’s for
class groups. Mazur used (essentially) fppf cohomology to define the Selmer groups, but
his definition was translated into the language of Galois cohomology by Manin in [Man71].
Using the Galois-cohomological framework, Greenberg eventually found a description of the
local condition at p used for defining the Selmer groups (in the case of p-ordinary elliptic
curves) which he used in his general definition of Selmer groups for what he called p-ordinary
Galois representations in [Gre89]. Since their inception, Selmer groups of this type (and
generalizations) have been defined and investigated in a wide variety of settings, resulting
in some spectacular applications including Kato’s progress on the conjecture of Birch and
Swinnerton-Dyer (via Mazur’s conjecture on Selmer groups for p-ordinary elliptic curves in
[Maz72], generalized to p-ordinary newforms), to name just one example. Still, the settings
in which deep understanding of Selmer groups has been attained are fairly limited, and there
is indisputably much more one would like to know. In this paper, we prove, under various
technical hypotheses, a number of results on the structure of Selmer groups of p-ordinary
modular forms relative to Zp-extensions of number fields which may be neither cyclotomic
nor anticyclotomic (these being the two classes of Zp-extensions for which the most is known
about Selmer groups).

To be somewhat more precise, we now require that p be an odd prime (as we will in the
main body of the paper). Let F be a number field, and F∞ a Zp-extension of F with Galois
group Γ = Gal(F∞/F ). We assume a pair of technical hypotheses on the ramification and
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decomposition of p in F and F∞, respectively (see §2 for the precise conditions). Let f be a
normalized p-ordinary newform of weight greater than or equal to 2 with Hecke eigenvalues
in the ring of integers O of a finite extension of Qp with uniformizer π and residue field
F. We follow Greenberg ([Gre89]) in our definition of the Selmer group Sel(F∞, A) for f
over F∞, which carries the structure of a cofinitely generated discrete O-torsion Λ-module,
where Λ = O[[Γ]] is the completed group ring of Γ with coefficients in O and A is a cofree
O-module of corank 2 arising from a choice of GF -stable O-lattice in the p-adic Galois repre-
sentation associated to f (see §3 for the precise definition of Sel(F∞, A) and Appendix A for
the basics of such modules over the ring Λ). It is the Λ-module structure of Sel(F∞, A) on
which we focus in this paper, guided by [GV00], which treated the case with F = Q and f
corresponding to an elliptic curve over Q. We carry out our analysis by looking at variants of
Sel(F∞, A) attached to an auxiliary set of primes Σ0 (so-called non-primitive Selmer groups,
see §5) as well as (non-primitive) Selmer groups with coefficients in the residual Galois rep-
resentation associated to f . The interplay between these p-adic and residual (primitive and
non-primitive) Selmer groups can be used to obtain information about the Iwasawa invari-
ants, µ(f) and λ(f), of f , with respect to F∞. These are non-negative integers, the µ and
λ-invariants of the Λ-module Sel(F∞, A) as defined in Definition A.2. One intriguing problem
is to determine the degree to which these invariants are determined by the residual Galois
representation of f . While the residual Selmer group cannot be identified with the π-torsion
of the Selmer group for f in general, due to the fact that the π-torsion of the Selmer group is
not a priori determined by the residual Galois representation, one can establish the desired
relationship for the non-primitive analogues of these Selmer groups. Namely, if the auxiliary
set Σ0 contains the primes dividing the tame level of f and the Galois representation of
f restricted to GF is residually absolutely irreducible, then the residual Σ0-non-primitive
Selmer group for f exactly gives the π-torsion of the Σ0-non-primitive Selmer group for f
(this is the content of Proposition 5.3). Under various technical assumptions on which we
elaborate as they are introduced, this fact can be used to prove a numerical relationship
between the λ-invariants of p-ordinary newforms which are congruent modulo π in the sense
that their residual Galois representations are isomorphic (Theorem 8.1) which is a general-
ization of the theorem stated in [Gre10, p. 237] (originally proved in [GV00]). The other
main results of this paper on the structure of Selmer groups include a surjectivity theorem
for global-to-local maps in the Galois cohomology of A (Theorem 6.1) and the non-existence
of proper Λ-submodules of finite index in a sufficiently non-primitive Selmer group for f
(Theorem 7.4). Theorems of the latter type are of interest because the structure theorem
for finitely generated Λ-modules (Theorem A.1) only holds up to “finite errors,” which can
then be shown in certain cases to in fact vanish with the help of such non-existence results.
These theorems are analogues (in our more general setting) of [GV00, Proposition 2.1] and
[GV00, Proposition 2.5]. The main difference between our setting and that of [GV00] is that,
in the Zp-extensions we consider, finite primes may split completely. Indeed, this work was
largely motivated by a desire to understand the implications of such primes for results along
the lines of those in [GV00]. We therefore have included a thorough analysis of the structure
of the relevant local Galois cohomology groups at these primes inspired by [PW11, Lemma
3.2], where the formula given for the local cohomology module is not quite correct as writ-
ten. Moreover, we have identified the key finiteness assumption necessary for controlling the
size contributions to local cohomology made by these primes whose omission is the source
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of an error in [PW11, Proposition A.2] (see the discussion preceding Theorem 6.1 for more
details).

As we have already indicated, similar results to those in this paper in the case F = Q have
been proved in [GV00] and [Gre10], as well as in [EPW06], and analogues for F an imaginary
quadratic field and F∞ the anticyclotomic Zp-extension are obtained in [PW11]. Our ap-
proach and the formulation of our results follows most closely that of the first two references,
in which the π-torsion of a non-primitive Selmer group is related to a residual Selmer group.
We note that, while this paper does not literally apply to the Galois representations arising
from p-adic Tate modules of p-ordinary elliptic curves over the number field F (since such
elliptic curves do not naively correspond to modular forms such as f when F 6= Q), the
methods do apply to yield the naturally analogous results, even with somewhat simplified
technical hypotheses. Slightly more speculatively, the methods of this paper should apply to
the Selmer groups of all 2-dimensional potentially ordinary p-adic Galois representations of
GF under appropriate analogues of the hypotheses we utilize. In the interest of keeping no-
tation reasonable, and in an effort to curb the proliferation of technical conditions required,
we have focused on the case of classical newforms for GL2(Q).

This work was carried out in its initial form as part of the author’s Ph.D. thesis, and I
would like to thank my advisor Mirela Çiperiani for valuable feedback on initial drafts. I
also wish to thank Robert Pollack for an enlightening discussion regarding the surjectivity
result Theorem 6.1, and Olivier Fouquet for many helpful comments regarding a recurring
technical hypothesis on the finiteness of certain modules of local invariants. Finally, we
should point out that, after this work was completed, we learned of the paper [Hac11] in
which a more refined and general version of Theorem 8.1 is obtained by methods which are
quite different from those in this paper (although the tools utilized, namely local and global
duality theorems for Galois cohomology, are largely the same). Regarding this paper, see
also the remarks following the proof of Theorem 8.1.

We finish this introduction with a description of the individual sections of the main body of
the paper. In §2 we introduce the relevant arithmetic data and set hypotheses and notation
which are in force throughout the paper. In §3 we give the detailed definition of the p-adic
Selmer group Sel(F∞, A) and introduce a condition (Cot) which plays an essential role in all
of our main results. §4 contains results on the structure of the local cohomology modules
which arise in the definition of the Selmer group, including the crucial description in the case
of a prime which splits completely in F∞ (Proposition 4.3). Non-primitive (residual) Selmer
groups are introduced in §5, which also lays the groundwork for relating the Selmer groups
of congruent newforms (cf. especially Proposition 5.3). In §6 we prove our main surjectivity
theorem (Theorem 6.1) for the global-to-local map of Galois cohomology whose kernel equals
the Selmer group and record some useful consequences. §7 utilizes the surjectivity theorem
to deduce our second main theorem on the non-existence of proper finite index Λ-submodules
of appropriate non-primitive Selmer groups (Theorem 7.4), as well as a corollary giving a
criterion for this Selmer group to be O-divisible. Finally, in §8, we establish our final main
result comparing λ-invariants of congruent newforms (Theorem 8.1). We have also included
two brief appendices containing an assortment of basic results on Λ-modules which are cer-
tainly well-known to (and often used by) experts but for which we could find no convenient,
self-contained reference. We felt it was worthwhile to give detailed proofs of these results
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for immediate reference and hope that these appendices may be beneficial for someone just
beginning to delve into the literature on Selmer groups over Zp-extensions.

2. Notation and Standing Hypotheses

Fix an odd prime p and embeddings ιp : Q ↪→ Qp and ι∞ : Q ↪→ C. Fix also a finite
extension F/Q and a Zp-extension F∞/F (for F = Q and, more generally, F totally real,
there is conjecturally only one choice for F∞, but for number fields with complex primes
there are conjecturally infinitely many choices, and this is known e.g. for abelian number
fields as a consequence of Leopoldt’s conjecture). We write Fn for the unique subextension of
F∞/F of degree pn over F and Gn for Gal(Fn/F ). When we speak of primes of an algebraic
extension of Q, we always mean finite primes unless explicitly noted otherwise. If L is an
algebraic extension of F in Q and η is a prime of L, then we write Lη for the direct limit of
the fields L′η, where L′ is a finite subextension of L/F and L′η denotes its completion at the
prime below η. We also write Iη for the inertia group of GLη . We impose the following two
conditions on the set Σp of primes of F above p:

For each p ∈ Σp, µp is a ramified GFp-module, and(Ramp,F )

no prime p ∈ Σp splits completely in F∞.(NSp)

The first condition is used in the proof of one of our main results (Theorem 7.4) and it is
not clear to us whether it can be weakened; it holds for example if the ramification indices
e(p/p) of primes p ∈ Σp are all less than p − 1, but this is not strictly necessary, since, for
example, we allow the possibility that some Fp is Qp-isomorphic to Qp[t]/(t

p− p), which has
absolute ramification index p. The second condition is essential to our method; it holds for
all cyclotomic Zp-extensions, or for example if Σp has only one element, as then this prime
must ramify in F∞, and hence cannot split completely.

Having introduced our field data, we now turn to modular forms and the corresponding
Galois representations. We fix a normalized newform f =

∑
n≥1 anq

n of weight k ≥ 2, level
N , and character χ. We regard the Hecke eigenvalues an and the character values as elements
of the valuation ring of Qp via ιp ◦ ι−1

∞ , and we fix as our field of coefficients a finite extension
K of Qp with ring of integers O, uniformizer π, and residue field F, which contains these
Hecke eigenvalues (it is then a fact that the values of χ are also in O). When discussing
Galois representations, we always write Frob`, Frobv, etc., to denote arithmetic Frobenius
automorphisms, and write ε : GQ → Z×p for the p-adic cyclotomic character, as well as for
the restriction of this character to closed subgroups corresponding to algebraic extensions
of Q and to decomposition groups, which is a harmless abuse of notation as this restriction
is then the p-adic cyclotomic character for the corresponding field. Let ρf : GQ → GL2(K)
be the p-adic Galois representation associated to f ; thus ρf is unramified outside pN , and
is characterized up to Qp-isomorphism by the condition that for a rational prime ` - pN ,

the characteristic polynomial of ρf (Frob`) is X2 − a`X + χ(`)`k−1. Finally, we will denote
by ρ̄f : GQ → GL2(F) the semisimple residual representation associated to f . Our modular
form data is subject to the following assumptions:

f is p-ordinary in the sense that ap is a p-adic unit,(Ordp)

ρ̄f |GF is absolutely irreducible, and(Irr)

for each p ∈ Σp, ρf |GF is ramified at p.(Ramp,f )
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The notion of ordinarity in (Ordp) actually depends on the choice of embedding used to regard
the Fourier coefficients of f as p-adic numbers, but as we have fixed such an embedding, this
will not matter for us. The residual absolute irreducibility (Irr) ensures that the integral
structure on ρf used to define the corresponding Selmer groups is unique up to homothety,
even upon extending the coefficient field of the representation (this way we have a canonical
Selmer group, instead of one which potentially depends upon the choice of GF -stable O-
lattice in the representation space for ρf ). Condition (Ramp,f ) will hold for example if p
is unramified in F , k 6≡ 1 (mod p − 1), and χ is unramified at p. This follows from the
local structure of ρf at p, which is given at the beginning §3 (the restriction of ρf to a
decomposition group at p is potentially ordinary in the sense of Greenberg). This condition
is used to ensure that a sufficiently non-primitive residual Selmer group for f is determined
up to isomorphism by ρf |GF (see Proposition 5.1 and Remark 5.2), which is essential for our
comparison of λ-invariants of p-ordinary forms which are congruent in the sense that their
residual GF -representations are isomorphic (Theorem 8.1).

3. p-adic Selmer groups

Let V be a 2-dimensional K-vector space with GQ-action via ρf , and fix a GF -stable O-
lattice T in V , setting A = V/T . Thus A is a cofree O-module of corank 2 on which GF acts
by ρf , and its Cartier dual A∗ = HomO(A, (K/O)(1)) is a free O-module of rank 2. Since
we have assumed ρ̄f |GF to be absolutely irreducible in (Irr), the lattice T is unique up to O-
scaling, and the residual representation ρ̄f |GF is given by the action of GF on A[π] ' T/πT .

Our assumption that f is p-ordinary implies that for each prime p ∈ Σp, there is a GFp-
stable line Vp ⊆ V such that the GFp-action on Vp is given by the product of εk−1χ and an
unramified character, and the GFp-action on V/Vp is unramified [EPW06, §4.1]. For p ∈ Σp,
we set Ap = im(Vp → A), so that Ap and A/Ap are both O-cofree of corank 1, and the action
of GFp on A/Ap is unramified.

For a prime P of F∞ lying over p ∈ Σp, we define the ordinary submodule H1
ord(F∞,P, A)

of H1(F∞,P, A) to be
ker(H1(F∞,P, A)→ H1(IP, A/AP)),

where AP is defined to be Ap (and so only depends on p). Following [Gre89], we then define
the Selmer group Sel(F∞, A) for f over F∞ as the kernel of the global-to-local restriction
map

H1(F∞, A)→
∏
η-p

H1(F∞,η, A)

H1
ur(F∞,η, A)

×
∏
P|p

H1(F∞,P, A)

H1
ord(F∞,P, A)

,

where η (respectively P) runs over the primes of F∞ not dividing (respectively dividing) p,
and for a prime η of the former type,

H1
ur(F∞,η, A) = ker(H1(F∞,η, A)→ H1(Iη, A))

is the submodule of unramified cohomology classes in H1(F∞,η, A). Note that, since we have
assumed p is odd, the local cohomology groups for the Archimedean primes of F vanish, so
we may, and do, ignore them.

In [Gre89], in addition to the Selmer group for ordinary p-adic Galois representations,
Greenberg also defined the (a priori smaller) strict Selmer group, requiring cocycles to be
trivial away from p instead of unramified (but keeping the same local conditions at primes
dividing p). We can define the strict Selmer group for f over F∞ in the analogous way
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(replacing decomposition groups with inertia groups at the primes not dividing p). For a
prime η of F∞ lying over v /∈ Σp, if v does not split completely in F∞, then GF∞,η/Iη has pro-
order prime to p, and as a result, the restriction homomorphism H1(F∞,η, A)→ H1(Iη, A) is
injective. Thus, for such a prime η, the strict local condition coincides with the unramified
local condition. Therefore the Selmer group for f over F∞ equals the strict Selmer group
when no prime of F splits completely in F∞ (e.g. when F∞ is the cyclotomic Zp-extension
of F ), but these groups may differ otherwise. We do not study strict Selmer groups in this
paper (they are studied under certain conditions in [PW11] and [Hac11]), and will be content
with the following result, which shows that the local conditions for the two groups can only
differ at primes of F∞ lying above a prime of F dividing the prime-to-p part of N (i.e. the
tame level of f). The proof was explained to us by Matthew Emerton.

Proposition 3.1. If v - pN is a prime of F , then ker(H1(Fv, A)→ H1(Iv, A)) = 0. Thus, if
v splits completely in F∞, then for any prime η of F∞ lying over v, the strict local condition
and the unramified local condition at η coincide. In particular, if every prime of F dividing
the level of f is finitely decomposed in F∞, then the Selmer group and the strict Selmer group
coincide.

Proof. The O-corank of H1
ur(Fv, A) = ker(H1(Fv, A) → H1(Iv, A)) is the same as that

of H0(Fv, A). Moreover, since v - pN , A is an unramified GFv -module, so the module
H1

ur(Fv, A) = A/(Frobv−1)A is O-divisible and H0(Fv, A) = AFrobv=1. Now, if ` is the ratio-
nal prime of Q lying below v, then the eigenvalues of Frob` on V are Weil numbers of weight
(k − 1)/2. Since k ≥ 2, we see that, in particular, these eigenvalues are not roots of unity.
The eigenvalues of Frobv on V are powers of the eigenvalues of Frob` since ρf (Frobv) is con-
jugate to a power of ρf (Frob`). Thus 1 is not an eigenvalue of Frobv on V , so V Frobv=1 = 0.
It follows that AFrobv=1 has O-corank zero. The same is then true of H1

ur(Fv, A), which is
therefore O-divisible and finite, and hence trivial, proving the first statement. In light of the
discussion preceding the proposition, it follows that the only primes w of F∞ where the local
conditions for the Selmer group and the strict Selmer group can differ are those lying over a
prime v of F that divides the prime-to-p part of N and splits completely in F∞. So, if there
are no such primes, then the Selmer group and the strict Selmer group must coincide. �

We now introduce the Iwasawa algebra Λ = O[[Γ]] of Γ with coefficients in O (we will use
this notation for the remainder of the paper). The Galois group GF acts (via conjugation)
on the O-module H1(F∞, A) with GF∞ acting trivially, so this action allows us to regard the
global cohomology group as a discrete O-torsion Λ-module. The Selmer group Sel(F∞, A) is a
GF -stable, O-submodule of H1(F∞, A), so it too is a discrete O-torsion Λ-module. Moreover,
if Σ is a finite set of primes of F containing the Archimedean primes, the primes in Σp, and
the primes where A is ramified, then we have an exact sequence

(3.1) 0→ Sel(F∞, A)→ H1(FΣ/F∞, A)→
∏

η|v∈Σ−Σp

H1(F∞,η, A)

H1
ur(F∞,η, A)

×
∏
P|p

H1(F∞,P, A)

H1
ord(F∞,P, A)

.

According to [Gre89, Proposition 3], H1(FΣ/F∞, A) is a cofinitely generated Λ-module, so
the sequence (3.1) implies that Sel(F∞, A) is cofinitely generated as well, i.e., its O-module

Pontryagin dual ̂Sel(F∞, A) = HomO(Sel(F∞, A), K/O) is a finitely generated Λ-module
(for a more thorough discussion of Pontryagin duality in the context of Λ-modules, see the
beginning of Appendix A). The Λ-corank (respectively the µ, λ-invariant) of Sel(F∞, A) is the
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Λ-rank (respectively the µ, λ-invariant) of its Pontryagin dual, as defined in Definition A.2.
We will similarly speak of the Iwasawa invariants of any of the Λ-modules appearing in what
follows. We write µ(f) and λ(f) for the Iwasawa invariants of Sel(F∞, A), and also refer to
them as the Iwasawa invariants of f (over F∞, though we omit F∞ from the notation as it is
fixed). Because we will use the condition on the set Σ in the exact sequence (3.1) repeatedly,
we formalize it here for convenient reference. A finite set Σ of primes of F will be said to
be sufficiently large for A provided Σ contains the Archimedean primes, the primes above p,
and any primes where A is ramified:

(Suff) Σ contains all v | ∞, all p ∈ Σp, and all primes where A is ramified.

All the comparison results for Iwasawa invariants of elliptic curves and modular forms
which inspired this work, and accordingly our comparison result Theorem 8.1, will make use
of the following condition:

(Cot) Sel(F∞, A) is cotorsion over Λ.

(See Definition A.2 for the definition of a cotorsion Λ-module if it is unfamiliar.) When f
corresponds to an elliptic curve E over Q with good, ordinary reduction at the primes of Σp

and F∞ is the cyclotomic Zp-extension of F , (Cot) was conjectured by Mazur in [Maz72].
For F = Q, and more generally F abelian over Q, Mazur’s conjecture follows from deep
work of Kato and Rohrlich. In the case of the anticyclotomic Zp-extension of an imaginary
quadratic F , with p ≥ 5, (Cot) has been proved by Pollack and Weston ([PW11, Theorem
1.3]) for the strict Selmer groups of newforms of weight 2 and trivial character, under some
technical hypotheses on ρ̄f and the factorization of the level of f in F . It appears that
little is known about the validity of (Cot) beyond these cases, but given what is known, it
seems reasonable to expect the condition to hold in some “sufficiently ordinary” situations
beyond the cyclotomic and anticyclotomic cases. In any case, trying to compare structural
invariants of Selmer groups over Zp-extensions for Galois representations with isomorphic
residual representations in the absence of (Cot) will almost definitely require completely new
methods, as the condition seems inextricably central to all currently known strategies for
achieving such comparisons. Certainly this is true of our approach. (Even the matter of
whether or not the naive definition of Iwasawa invariants is the correct one in non-cotorsion
situations is somewhat unclear to the author.)

In order to obtain more refined information about the structure of Sel(F∞, A), we need
more detailed descriptions of the local cohomology groups appearing in its definition. Ac-
quiring these descriptions is the goal of the next section.

4. The Λ-module structure of local cohomology groups

For a prime v - p of F , we define

Hv = Hv(F∞, A) = lim−→
n

∏
w∈Σn,v

H1(Fn,w, A)

H1
ur(Fn,w, A)

,

where Σn,v is the set of primes of Fn lying over v and the limit is taken with respect to the
restriction maps. For a prime p of Σp, we define

Hp = Hp(F∞, A) =
∏

P∈Σ∞,p

H1(F∞,P, A)

H1
ord(F∞,P, A)

,
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where Σ∞,p is the set of primes of F∞ lying over p, which is finite by our assumption (NSp)
that all such p are finitely decomposed in F∞. Note that these torsion O-modules are in fact
discrete Λ-modules. For convenience of notation, we will define Hv = 0 for v Archimedean,
and subsequently forget about Archimedean primes.

Proposition 4.1. For any finite set Σ of primes of F satisfying (Suff), the sequence of
Λ-modules

0→ Sel(F∞, A)→ H1(FΣ/F∞, A)→
∏

v∈Σ−Σp

Hv ×
∏
p∈Σp

Hp

is exact.

Proof. Any cohomology class κ ∈ H1(F∞, A) arises as the restriction of a cohomology class
κn ∈ H1(Fn, A) for some n ≥ 0. If η is a prime of F∞ lying over v /∈ Σp, and w ∈ Σn,v,
then the restriction map H1(Fn,w, A)/H1

ur(Fn,w, A)→ H1(F∞,η, A)/H1
ur(F∞,η, A) is injective

because F∞,η/Fn,w is unramified. The commutative diagram

H1(F∞, A) // H
1(F∞,η, A)

H1
ur(F∞,η, A)

H1(Fn, A)

OO

// H
1(Fn,w, A)

H1
ur(Fn,w, A)

OO

of restriction maps then shows that κ is unramified at η if and only if κn is unramified at w.
This shows that the kernel of H1(F∞, A) →

∏
η|vH

1(F∞,η, A)/H1
ur(F∞,η, A) coincides with

the kernel of H1(F∞, A) → Hv (the latter map sends κ to the natural image of κn in Hv).
In view of the definition of Hp for p ∈ Σp, we conclude that Sel(F∞, A) is exactly the kernel
in question. �

We’ve introduced the modules Hv when v /∈ Σp to deal with the possibility that v splits
completely in F∞. For such a v, the product of the local cohomology groups over all primes
of F∞ lying over v is not easily comprehended as a Λ-module (and if not zero, is probably
hopelessly large). The Λ-module structure of Hv, on the other hand, can be understood.
When v is finitely decomposed in F∞, Hv is just a product of local cohomology groups, and
the structure of these groups has been determined by Greenberg.

Proposition 4.2. For a prime v /∈ Σp of F , let Σ∞,v denote the set of primes of F∞ lying
above v.

(i) For a prime v /∈ Σp that is finitely decomposed in F∞, we have

Hv '
∏

η∈Σ∞,v

H1(F∞,η, A)

as Λ-modules, and Hv is a cofinitely generated, cotorsion Λ-module with µ-invariant
zero and λ-invariant ∑

η∈Σ∞,v

corankO(H1(F∞,η, A)).
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(ii) For a prime p ∈ Σp, Hp is a cofinitely generated Λ-module with Λ-corank [Fp : Qp]
and µ-invariant zero.

Proof. The isomorphism for v /∈ Σp holds because the number of primes in Σn,v is constant
for n sufficiently large (equal to the cardinality of Σ∞,v), as direct limits commute with finite
products, and because H1

ur(F∞,η, A) = 0 for η ∈ Σ∞,v. The assertions about the Λ-module
structure of the products of local cohomology groups are then given by Proposition 1 (for
p ∈ Σp) and Proposition 2 (for v /∈ Σp) of [Gre89]. �

Now consider a prime v /∈ Σp that splits completely in F∞. Then we have an isomorphism
Fv ' F∞,η for any prime η of F∞ lying over v, giving H1(Fv, A) ' H1(F∞, A). The finiteness
of H1(Fv, A[π]) shows that H1(Fv, A)[π] is finite, hence that H1(Fv, A) is a cofinitely gener-
ated O-module. In particular H1(Fv, A)/H1

ur(Fv, A) is a cofinitely generated O-module, and
by the local Euler characteristic formula, we have

(4.1) corankO(H1(Fv, A)/H1
ur(Fv, A)) = rankO(H0(Fv, A

∗)).

(see the beginning of §3 for the definition of the Cartier dual A∗). The O-module structure
of H1(Fv, A)/H1

ur(Fv, A) completely determines the Λ-module structure of Hv.

Proposition 4.3. Let v /∈ Σp be a prime of F that splits completely in F∞, and choose an
isomorphism of O-modules

H1(Fv, A)/H1
ur(Fv, A) ' (K/O)r ⊕

t∑
i=1

O/πmiO

for some r ≥ 0 and mi ≥ 0. Then we have

(4.2) Hv ' Λ̂r ⊕
t∑
i=1

Λ̂/πmiΛ

as Λ-modules, so Hv is a cofinitely generated Λ-module with Λ-corank rankO(H0(Fv, A
∗)),

µ-invariant
∑t

i=1 mi, and λ-invariant zero.

Proof. By definition, Hv = lim−→n

∏
w∈Σn,v

H1(Fn,w, A)/H1
ur(Fn,w, A), with the limit taken with

respect to the restriction maps. Because v splits completely in F∞, and hence also in each
layer of F∞, a choice of prime wn of Fn lying over v gives rise to an O[Gn]-isomorphism∏

w∈Σn,v

H1(Fn,w, A)/H1
ur(Fn,w, A) ' (H1(Fv, A)/H1

ur(Fv, A))⊗O O[Gn]

(recall from §2 that Gn = Gal(Fn/F )). Choosing the primes wn above v compatibly as
n → ∞, these isomorphisms turn the transition maps defining Hv into the maps coming
from corestriction on the right tensor factor (see Appendix A for the definition of the core-
striction maps between the group rings O[Gn]). Thus we have a Λ-module isomorphism
Hv ' lim−→n

(H1(Fv, A)/H1
ur(Fv, A))⊗O O[Gn], and the isomorphism (4.2) follows from Corol-

lary A.8. The Iwasawa invariants of Hv can be read off from this isomorphism, and the
equality

corankΛ(Hv) = rankO(H0(Fv, A
∗))

follows from the isomorphism and (4.1). �
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5. Non-primitive Selmer groups

In this section, following Greenberg-Vatsal [GV00], we introduce non-primitive Selmer
groups. A non-primitive Selmer group is defined by omitting some of the local conditions
at primes of F∞ not dividing ∞ or p. If we omit enough local conditions, the π-torsion
of the resulting non-primitive Selmer group for f can be identified with the corresponding
non-primitive residual Selmer group (to be defined below). To be precise, let Σ0 be a finite
set of primes of F not containing any Archimedean primes or any primes of Σp. The Σ0-
non-primitive Selmer group SelΣ0(F∞, A) is then defined as the kernel of the map

H1(F∞, A)→
∏

η|v/∈Σ0,v-p

H1(F∞,η, A)

H1
ur(F∞,η, A)

×
∏
P|p

H1(F∞,P, A)

H1
ord(F∞,P, A)

.

As there is generally no risk of confusion about Σ0 we will sometimes refer to SelΣ0(F∞, A)
simply as the non-primitive Selmer group (for f over F∞). If Σ is a finite set of primes
of F satisfying (Suff) which also contains Σ0, then by Proposition 4.1 together with the
definitions, we have exact sequences of Λ-modules

0→ SelΣ0(F∞, A)→ H1(FΣ/F∞, A)→
∏

v∈Σ−Σ0

Hv

and

0→ Sel(F∞, A)→ SelΣ0(F∞, A)→
∏
v∈Σ0

Hv.

We will show in Theorem 6.1 below that, under appropriate hypotheses, these sequences are
exact on the right as well.

We now define a non-primitive Selmer group for the residual representation A[π], denoted
SelΣ0(F∞, A[π]), in a manner analogous to the non-primitive Selmer group for A. Its defi-
nition is designed for comparison with the π-torsion of SelΣ0(F∞, A). For a prime P of F∞
lying over some p ∈ Σp, set

H1
ord(F∞,P, A[π]) = ker(H1(F∞,P, A[π])→ H1(IP, A[π]/AP[π])).

(Recall that AP = Ap was defined at the beginning of §3 using the assumption (Ordp)
imposed on our newform f .) Then we define SelΣ0(F∞, A[π]) as the kernel of the map

H1(F∞, A[π])→
∏

η|v/∈Σ0,v-p

H1(F∞,η, A[π])

H1
ur(F∞,η, A[π])

×
∏
P|p

H1(F∞,P, A[π])

H1
ord(F∞,P, A[π])

,

where as before the subscript ur indicates the submodule of unramified cohomology classes.
The next proposition will involve the space A[π]Ip of Ip-coinvariants of A[π]. This is the

largest F[GFp ]-quotient of A[π] on which Ip acts trivially. More explicitly, it is the quotient
of A[π] by the F[GFp ]-submodule generated by elements of the form ga − a for g ∈ Ip and
a ∈ A[π]. It is in the proof of this proposition that we use the assumption (Ramp,f ) that
A[π] is ramified at each prime p ∈ Σp. The idea for the proposition came from the discussion
of the case of elliptic curves over Q in [Gre10, §2].

Proposition 5.1. If p ∈ Σp, then A[π]/Ap[π] = A[π]Ip.
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Proof. Since A and Ap are π-divisible, we have A[π]/Ap[π] = (A/Ap)[π]. By the definition
of Ap, this quotient is an unramified F[GFp ]-module, so we have a surjective homomorphism
A[π]Ip → A[π]/Ap[π]. It follows that A[π]Ip is at least 1-dimensional over F (since A/Ap is
O-cofree of corank 1). Because A[π] is ramified at p by assumption (Ramp,f ), A[π]Ip cannot
be 2-dimensional. Thus the surjection A[π]Ip → A[π]/Ap[π] is an equality. �

Remark 5.2. Proposition 5.1 shows that the local conditions defining SelΣ0(F∞, A[π]) only
depend on A[π] as a GF -module (when a priori they depend on A as a GF -module because
the definition of the subspace Ap[π] ⊆ A[π] for a prime p | p makes reference to the GF -
module structure of A). This is clear at the primes not dividing p, where the local condition
is the unramified one, and Proposition 5.1 shows that at a prime P lying above p ∈ Σp, the
local condition is the kernel of the map

H1(F∞,P, A)→ H1(IP, A[π]Ip)

induced by the quotient map A[π] → A[π]Ip and restriction to IP. The definition of the
quotient A[π]Ip is given entirely in terms of the GF -action on A[π] (even just the GFp-action).
This observation is crucial to our method because it shows that, if we have two modular
forms satisfying the appropriate hypotheses whose residual representations are isomorphic
as GF -modules, then the corresponding residual Selmer groups are isomorphic.

The next proposition shows that, if Σ0 contains the appropriate primes, then our non-
primitive residual Selmer group coincides with the π-torsion in the non-primitive p-adic
Selmer group.

Proposition 5.3. If Σ0 contains all the primes of F dividing the tame level of f , then the
natural map H1(F∞, A[π])→ H1(F∞, A) induces an isomorphism of O-modules

SelΣ0(F∞, A[π]) ' SelΣ0(F∞, A)[π].

Proof. We have a commutative diagram

H1(F∞, A) //
∏

η|v/∈Σ0,v 6=pH
1(Iη, A)×

∏
P|pH

1(IP, A/AP)

H1(F∞, A[π])

OO

//
∏

η|v/∈Σ0,v-pH
1(Iη, A[π])×

∏
P|pH

1(IP, A[π]/AP[π])

OO

with the vertical maps coming from the respective inclusions of π-torsion A[π] ↪→ A and
A[π]/Ap[π] = (A/Ap)[π] ↪→ A/Ap, and the horizontal maps coming from restriction. Note
that the kernel of the top (respectively bottom) horizontal map is SelΣ0(F∞, A) (respec-
tively SelΣ0(F∞, A[π])). Since A[π] is an irreducible F[GF ]-module by assumption (Irr),
H0(F,A[π]) = 0, which implies that H0(F∞, A[π]) = 0 as F∞/F is a pro-p extension. Thus
the kernel of H1(F∞, A[π])→ H1(F∞, A), which is a quotient of H0(F∞, A), is zero. So the
left-hand vertical map is injective. Its image is H1(F∞, A)[π] by the long exact sequence in
cohomology arising from multiplication by π on A. The commutativity of the diagram shows
that this vertical map takes SelΣ0(F∞, A[π]) into SelΣ0(F∞, A)[π]. To see that the image is
precisely SelΣ0(F∞, A)[π], it therefore suffices to prove that the right-hand vertical arrow is
injective. We do this by considering each factor map on the right. First consider a prime η
of F∞ which divides v /∈ Σ0, v - p. Since η does not divide the level of f (as v /∈ Σ0), A is un-
ramified at η, and the kernel of the map H1(Iη, A[π])→ H1(Iη, A) is AIη/πAIη = A/πA = 0
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(A is a divisible O-module). Similarly, if P is a prime of F∞ dividing p, then, since
A/AP is unramified at P, the kernel of the map H1(IP, A[π]/AP[π]) → H1(IP, A/AP) is
(A/AP)/π(A/AP) = 0, because A/AP is a divisible O-module. �

Combining Proposition 5.3 with Remark 5.2, we conclude that for Σ0 containing the
primes dividing the tame level of f , the O-module SelΣ0(F∞, A)[π] only depends on A[π] as
an F[GF ]-module.

6. Global-to-Local Maps

In this section we establish the surjectivity of a global-to-local map of Galois cohomology
(under appropriate hypotheses) which allows us to compare the Iwasawa invariants of the
non-primitive and the primitive Selmer groups of f (though we have not explicitly introduced
Iwasawa invariants for non-primitive Selmer groups, they are defined as for any cofinitely
generated discrete O-torsion Λ-module according to Definition A.2).

Recall that, by Proposition 4.1, we have an exact sequence of Λ-modules

(6.1) 0→ Sel(F∞, A)→ H1(FΣ/F∞, A)
γ−→

∏
v∈Σ−Σp

Hv ×
∏
p∈Σp

Hp.

By [Gre89, Proposition 3],

corankΛ(H1(FΣ/F∞, A)) ≥
∑
v real

d−v (V ) + 2r2,

where the first sum is over the real primes of F , d−v (V ) is the dimension of the −1-eigenspace
for a complex conjugation above v acting on V (the K-representation space of the Galois
representation ρf ), and r2 is the number of complex primes of F . Because ρf is odd, that is,
the determinant of ρf of any complex conjugation is −1, d−v (V ) = 1 for any any real prime
v, as otherwise the determinant of ρf of a complex conjugation would be 1. So, letting r1

denote the number of real primes of F , the inequality above becomes

corankΛ(H1(FΣ/F∞, A)) ≥ r1 + 2r2 = [F : Q].

The Λ-coranks of the factors comprising the target of the map γ of (6.1) are determined
by the corresponding primes as follows:

• if v /∈ Σp is finitely decomposed in F∞, then Hv is Λ-cotorsion;
• if v /∈ Σp is split completely in F∞, then

corankΛ(Hv) = rankO(H0(Fv, A
∗));

• if p ∈ Σp, then
corankΛ(Hp) = [Fp : Qp].

The first and third assertions are restatements of parts of Proposition 4.2, while the second
is a restatement of part of Proposition 4.3. (Recall that the module A∗ appearing in the
second assertion is the Cartier dual HomO(A, (K/O)(1)) of A.) It follows that the target of
the map γ has Λ-corank at least ∑

p∈Σp

[Fp : Qp] = [F : Q],

and if H0(Fv, A
∗) vanishes (equivalently, is finite) for each prime v ∈ Σ that splits completely

in F∞, this is exactly the Λ-corank of the target of γ.
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In proving the next theorem, many versions of which have appeared in the literature, we
follow the proof of [Wes05, Proposition 1.8]. In order for the technique of proof, which is
originally due to Greenberg as far as we can tell, to succeed in our setting, we require the
hypothesis alluded to above that H0(Fv, A

∗) vanishes for each v ∈ Σ which splits completely
in F∞ (and this hypothesis accordingly is made in all the subsequent results which rely on
Theorem 6.1). This hypothesis does not arise in [Wes05] because the Zp-extensions consid-
ered there are cyclotomic, so all finite primes are finitely decomposed. However, another
version of this result is given as Proposition A.2 of [PW11], and in the generality of loc.
cit., the proof sketched there (which is based on the same arguments as our proof below)
requires a variant of this vanishing hypothesis in order to be complete. Indeed, in the setup
of this result (as well as ours), if the relevant hypothesis fails to hold, the surjectivity of the
map of Galois cohomology is impossible due to an inequality of Λ-coranks. Our proof of
Theorem 6.1 will make it apparent where the argument breaks down in the absence of this
condition. With the condition though, the same argument applies to prove the more general
result of [PW11]. Regarding the hypothesis itself, it was explained to us in an exchange
with Olivier Fouquet that, in our setting of classical modular forms, it can only fail when
the weight k is 2 and the local factor at the prime below v of the cuspidal automorphic
representation corresponding to f is Steinberg. In particular, in weight bigger than 2, the
hypothesis is automatic (but for more general Galois representations, one certainly cannot
expect the hypothesis to hold automatically).

We will use the observation that irreducibility of the F[GF ]-module A[π] (which is our
assumption (Irr)) implies that

H0(F∞, A
∗ ⊗O K/O) = 0.

Indeed, the π-torsion of H0(F,A∗ ⊗O K/O) is the space of GF -equivariant elements of
HomF(A[π],F(1)), which is zero since A[π] and F(1) are irreducible of different F-dimension.
Thus there are no GF∞-invariants either, since F∞/F is a pro-p extension.

Theorem 6.1. Let Σ be a finite set of primes of F satisfying (Suff). Assume that

(i) the condition (Cot) holds, and
(ii) for each prime v ∈ Σ that splits completely in F∞, H0(Fv, A

∗) = 0.

Then the sequence

0→ Sel(F∞, A)→ H1(FΣ/F∞, A)
γ−→

∏
v∈Σ−Σp

Hv ×
∏
p∈Σp

Hp → 0

is exact.

Proof. We need to prove that γ is surjective, i.e. that coker(γ) = 0. We will do this by
considering similar global-to-local maps at the finite levels Fn of F∞ and passing to the
limit. To ensure that the kernels and cokernels of the finite level global-to-local maps are
finite and trivial, respectively, we will twist the Galois module structures under consideration
by a character. Let κ : Γ ' 1 + pZp be an isomorphism of topological groups, which we also
regard as a character of GF and of Gal(FΣ/F ). If S is a discrete torsion O-module with
a continuous (i.e. smooth) O-linear Gal(FΣ/F )-action, then St will denote S ⊗O O(κt) for
t ∈ Z, where O(κt) is a free rank-one O-module with Gal(FΣ/F )-action via κt (the latter
notation is consistent with the notation for twisting of Λ-modules in Appendix B). This is
also a discrete torsion O-module with a continuous O-linear Gal(FΣ/F )-action, and if S is a
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discrete O-torsion Λ-module, St is as well (with Λ-module structure induced by the diagonal
Γ-action). We have S ' St as O[Gal(FΣ/F∞)]-modules, and if S is a discrete O-torsion

Λ-module, then St is isomorphic to the Pontryagin dual of Ŝ(κ−t) (see the beginning of
Appendix A for generalities on Pontryagin duality and the paragraph above Definition B.1
for the definition of the twist of a Λ-module by a character such as κt).

For each t ∈ Z, we define a Selmer group Sel(F∞, At) for At as the kernel of the map

H1(FΣ/F∞, At)
γt−→

∏
v∈Σ−Σp

Hv(F∞, At)×
∏
p∈Σp

Hp(F∞, At),

where the factors of the target are defined just as for A, setting At,p = (Ap)t for p ∈ Σp

(see the beginning of §4). With this definition, Sel(F∞, At) ' Sel(F∞, A)t as Λ-modules,
and similarly for the local cohomology modules. Because A ' At as Gal(FΣ/F∞)-modules,
we have coker(γ) ' coker(γt) as O-modules. It therefore suffices to prove that coker(γt)
vanishes for some t ∈ Z.

We will prove vanishing of some coker(γt) by working with Selmer groups over Fn for n ≥ 0
and taking a limit. For t ∈ Z, n ≥ 0, and a prime p of Fn dividing p0 ∈ Σp, we set

H1
ord(Fn,p, At) = ker(H1(Fn,p, At)→ H1(Fn,p, At/At,p)),

where At,p = At,p0 . Note that this is stronger than the analogous ordinary local condition
over F∞ as we are using decomposition groups instead of inertia groups. But because we
are using decomposition groups, we can apply Poitou-Tate global duality to each finite level
Selmer group Sel(Fn, At), defined as the kernel of the map

H1(FΣ/Fn, At)
γn,t−−→

∏
w|v∈Σ−Σp

H1(Fn,w, At)

H1
ur(Fn,w, At)

×
∏
p|p

H1(Fn,p, At)

H1
ord(Fn,p, At)

,

where the products run over primes of Fn. Upon taking the direct limit of the maps γn,t
over n ≥ 0, we get maps γ∞,t with source H1(FΣ/F∞, At), such that coker(γt) is a Λ-module
quotient of coker(γ∞,t) (it is a quotient because we used decomposition groups to define the
local conditions at the primes dividing p for the finite level Selmer groups). We will prove
that for an appropriate choice of t, the O-modules coker(γn,t) are trivial for all n ≥ 0. The
desired result will follow from this.

We will impose several conditions on the integers t under consideration. Because Sel(F∞, A)
is Λ-cotorsion by hypothesis, Proposition B.3 implies that for all but finitely many t the
O-modules Sel(F∞, At)

Γn ' Sel(F∞, A)Γn
t will be finite for all n ≥ 0. Similarly, because

H0(F∞, A) is Λ-cotorsion and H0(F∞, A)t = H0(F∞, At), for all but finitely many t, the
O-modules H0(Fn, At) = H0(F∞, At)

Γn will be finite for all n ≥ 0. We assume from now on
that t satisfies these conditions, which imply the following one:

(i) ker(γn,t) = Sel(Fn, At) is finite for all n ≥ 0.

To see this, observe that the restriction map H1(Fn, At) → H1(F∞, At) takes ker(γn,t)
into Sel(F∞, At)

Γn , which we have assumed is finite. The kernel of the restriction map
is H1(F∞/Fn, H

0(F∞, At)), which has the same O-corank as H0(Fn, At), also assumed finite.
So, indeed, ker(γn,t) is finite for all n ≥ 0. We now wish to impose three additional conditions
on t:

(ii) for n ≥ 0 and w ∈ Σn,v with v - p, H0(Fn,w, A
∗
t ) is finite,

(iii) for n ≥ 0 and p | p0 ∈ Σp, H
0(Fn,p, At/At,p) and H0(Fn,p, (At/At,p)

∗) are finite, and
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(iv) for n ≥ 0 and p | p0 ∈ Σp, H
0(Fn,p, (At,p)

∗) is finite.

All three of these conditions will hold for all but finitely many t. For (iii) and (iv), this
follows from Proposition B.3 applied to the Iwasawa algebra of the image of GFp0

in Γ,
which is non-trivial as we have assumed that no prime dividing p splits completely in F∞
(we are using that the modules of coinvariants and invariants of a Λ-module that is finitely
generated over O have the same O-rank). Note that the conditions involving finiteness of
the local invariants at each level of the Cartier dual modules are equivalent to the vanishing
of the local invariants, since the Cartier dual modules are finite free over O. That condition
(ii) holds for all but finitely many t follows from Proposition B.3 for as before, except when
v is a prime that splits completely in F∞, in which case H0(Fn,w, A

∗
t ) can be identified with

H0(Fv, A
∗), which vanishes by hypothesis (we cannot argue that H0(Fv, A

∗) has to vanish
for such v as before because the image of GFv in Γ is trivial).

For n ≥ 0 and w | v ∈ Σ a prime of Fn, v /∈ Σp, Tate local duality and the local Euler
characteristic formula give

(6.2) corankO

(
H1(Fn,w, At)

H1
ur(Fn,w, At)

)
= rankO(H0(Fn,w, A

∗
t )) = 0,

the last equality coming from condition (ii). Similarly, (iii) implies that H1(Fn,p, At/At,p)
has O-corank equal to [Fn,p : Qp] for n ≥ 0 and p | p a prime of Fn. Condition (iv) then
implies that

(6.3) corankO

(
H1(Fn,p, At)

H1
ord(Fn,p, At)

)
= [Fn,p : Qp]

for all n ≥ 0 and all such p as well.
A modification of the Poitou-Tate exact sequence gives the exact sequence

0 // Sel(Fn, At) // H1(FΣ/Fn, At)
γn,t

ss∏
w|v∈Σ−Σp

H1(Fn,w, At)

H1
ur(Fn,w, At)

×
∏

p|p
H1(Fn,p, At)

H1
ord(Fn,p, At)

// H1,n
// H2,n

// 0

whereH1,n is dual to a submodule ofH1(FΣ/Fn, A
∗
t ) andH2,n is a submodule ofH2(FΣ/Fn, At).

The global Euler characteristic formula shows that

(6.4) corankO(H1(FΣ/Fn, At)) = pn[F : Q] + corankO(H2(FΣ/Fn, At)).
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Equations (6.2) and (6.3) give, for all n ≥ 0,

corankO

( ∏
w|v∈Σ−Σp

H1(Fn,w, At)

H1
ur(Fn,w, At)

×
∏
p|p

H1(Fn,p, At)

H1
ord(Fn,p, At)

)
= corankO

(∏
p|p

H1(Fn,p, At)

H1
ord(Fn,p, At)

)
=
∑
p|p

[Fn,p : Qp]

=
∑
p0∈Σp

∑
p|p0

[Fn,p : Fp0 ][Fp0 : Qp]

=
∑
p0∈Σp

[Fp0 : Qp]

(∑
p|p0

[Fn,p : Fp0 ]

)
=
∑
p0∈Σp

[Fp0 : Qp]p
n = pn[F : Q].

Therefore, since Sel(Fn, At) is finite for all n ≥ 0 by (i), the exact sequence above combined
with (6.4) gives that

corankO(H1(FΣ/Fn, At)) = pn[F : Q]

and
corankO(H2(FΣ/Fn, At)) = 0.

In particular, coker(γn,t) and H2,n are finite, and hence so is H1,n. Moreover, the order of
coker(γn,t) is bounded above by that of H1,n, which, being finite, is dual to a submodule of
H1(FΣ/Fn, A

∗
t )[π

∞]. The O-torsion submodule of H1(FΣ/Fn, A
∗
t ) is a quotient of the module

H0(Fn, A
∗
t ⊗K/O), which in turn is a submodule of

H0(F∞, A
∗
t ⊗O K/O) = H0(F∞, A

∗ ⊗O K/O).

But the latter group is trivial by the remarks preceding the theorem. Thus coker(γn,t) = 0
for all n ≥ 0. �

Corollary 6.2. Let Σ be a finite set of primes of F satisfying (Suff). Assume that

(i) the condition (Cot) holds, and
(ii) for each prime v ∈ Σ that splits completely in F∞, H0(Fv, A

∗) = 0.

If Σ0 is a subset of Σ not containing any Archimedean primes or any primes above p, then
SelΣ0(F∞, A) is Λ-cotorsion and the sequences

0→ SelΣ0(F∞, A)→ H1(FΣ/F∞, A)→
∏

v∈Σ−Σ0−Σp

Hv ×
∏
p∈Σp

Hp → 0

and
0→ Sel(F∞, A)→ SelΣ0(F∞, A)→

∏
v∈Σ0

Hv → 0

are exact.

Proof. The first sequence is exact by the definition of the non-primitive Selmer group together
with Theorem 6.1. The second sequence is also exact by definition except for the surjectivity
of the final map. The hypotheses together with Propositions 4.2 and 4.3 imply that the
target of that map is Λ-cotorsion. Thus the fact that Sel(F∞, A) is cotorsion implies the
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same for SelΣ0(F∞, A). Finally, since SelΣ0(F∞, A) is exactly the inverse image of
∏

v∈Σ0
Hv

in H1(FΣ/F∞, A), the second sequence is exact on the right as well. �

Remark 6.3. The most interesting case of the preceding corollary is when Σ consists of Σ0

together with the Archimedean primes and the primes above p.

7. Divisibility of the non-primitive Selmer group

The main result in this section is that, under the hypotheses of Theorem 6.1, the Σ0-non-
primitive Selmer group for Σ0 containing the primes dividing the tame level of f has no proper
Λ-submodules of finite index. First we deduce the corresponding result for H1(FΣ/F∞, A),
where Σ satisfies (Suff).

Proposition 7.1. Let Σ be a finite set of primes of F satisfying (Suff). Assume that

(i) the condition (Cot) holds, and
(ii) for each prime v ∈ Σ that splits completely in F∞, H0(Fv, A

∗) = 0.

Then the Λ-corank of H1(FΣ/F∞, A) is [F : Q], and H1(FΣ/F∞, A) has no proper Λ-
submodules of finite index.

Proof. By Theorem 6.1 and the hypothesis that Sel(F∞, A) is cotorsion, we have

corankΛ(H1(FΣ/F∞, A)) = corankΛ

( ∏
v∈Σ−Σp

Hv ×
∏
p∈Σp

Hp

)
.

The discussion at the beginning of §6 shows that, in the presence of our hypothesis (ii),

corankΛ

( ∏
v∈Σ−Σp

Hv ×
∏
p∈Σp

Hp

)
= corankΛ

( ∏
p∈Σp

Hp

)
=
∑
p∈Σp

[Fp : Qp] = [F : Q].

This proves the first assertion. Now we invoke [Gre89, Propositions 3-5]. Proposition 3
implies that H2(FΣ/F∞, A) is Λ-cotorsion, while Proposition 4 implies that H2(FΣ/F∞, A)
is Λ-cofree. Thus H2(FΣ/F∞, A) = 0, and now Proposition 5 implies that H1(FΣ/F∞, A)
has no proper Λ-submodules of finite index. �

The next lemma will allow us to deduce the desired property of the non-primitive Selmer
group from the corresponding property of H1(FΣ/F∞, A).

Lemma 7.2. Let Y be a finitely generated Λ-module, Z a free Λ-submodule. If Y contains
no non-zero, finite Λ-submodules, then the same is true for Y/Z.

Proof. See [GV00, Lemma 2.6]. �

Lemma 7.3. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of finitely generated
Λ-modules with M free over Λ and M ′′ finitely generated and free over O. Then M ′ is free
over Λ.

17



Proof. A finitely generated Λ-module is free if and only if its module of invariants vanishes
and its module of coinvariants is O-free ([NSW08, Proposition 5.3.19 (ii)]). Thus it suffices to
show that (M ′)Γ = 0 and that M ′

Γ is O-free. Applying the snake lemma to the endomorphism
of the short exact sequence 0 → M ′ → M → M ′′ → 0 given by multiplication by γ − 1,
where γ ∈ Γ is a topological generator, we get an exact sequence

(7.1) 0→ (M ′)Γ →MΓ → (M ′′)Γ →M ′
Γ →MΓ →M ′′

Γ → 0.

Since M is Λ-free, MΓ = 0, and it follows that (M ′)Γ = 0. Taking N = im(M ′
Γ → MΓ), we

deduce from (7.1) and the vanishing of MΓ the exact sequence

(7.2) 0→ (M ′′)Γ →M ′
Γ → N → 0.

Because M ′′ (respectively MΓ) is finitely generated and O-free, so is its submodule (M ′′)Γ

(respectively N). Thus the sequence of O-modules (7.2) splits, and we find that M ′
Γ is O-free,

being isomorphic to a direct sum of O-free modules. �

In the proof of the next theorem, we closely follow the argument for [GV00, Proposition
2.5].

Theorem 7.4. Let Σ0 be a finite set of primes of F not containing any Archimedean primes
or any primes of Σp. Assume that

(i) Σ0 contains the primes dividing the tame level of f ,
(ii) the condition (Cot) holds, and

(iii) for each prime v ∈ Σ0 that splits completely in F∞, H0(Fv, A
∗) = 0.

Then SelΣ0(F∞, A) has no proper Λ-submodules of finite index.

Proof. Let Σ be the union of Σ0, Σp, and the set of Archimedean primes. Then Σ is satisfies
(Suff), and the hypotheses of Corollary 6.2 hold, so we have an exact sequence of Λ-modules

0→ SelΣ0(F∞, A)→ H1(FΣ/F∞, A)→
∏
p∈Σp

Hp → 0.

Since H1(FΣ/F∞, A) has no proper Λ-submodules of finite index by Proposition 7.1, if we
can prove that

∏
p∈Σp
Hp is Λ-cofree, the result will follow from Lemma 7.2, wherein we take

Y = ̂H1(FΣ/F∞, A), Z =
∏

p∈Σp
Ĥp, and Y/Z ' ̂SelΣ0(F∞, f). Following the proof of [GV00,

Proposition 2.5], we will prove that for each p ∈ Σp,

Hp =
∏
P|p

H1(F∞,P, A)/H1
ord(F∞,P, A)

is Λ-cofree.
Fix p ∈ Σp and let D = A/Ap. We first prove that H1(Fp, D) is O-cofree. The long

exact cohomology sequence associated to map given by multiplication by π on D yields an
injection

(7.3) H1(Fp, D)/πH1(Fp, D) ↪→ H2(Fp, D[π]).

The target of (7.3) is Cartier dual (as a finite p-group) to H0(Fp,Hom(D[π], µp)). If we had
a non-zero, hence surjective GFp-equivariant homomorphism ϕ : D[π] → µp, then because
D[π] is unramified at p, µp would be unramified at p as well. But this contradicts our
assumption (Ramp,F ) that µp is a ramified GFp-module. So the module of GFp-invariants of
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Hom(D[π], µp) must vanish, and thus H2(Fp, D[π]) = 0. By (7.3), we infer that H1(Fp, D) is
O-divisible. Since it is cofinitely generated as an O-module, it is then O-cofree, as desired.
As for the corank of this O-module, by the local Euler characteristic formula, we have

corankO(H1(Fp, D)) = [Fp : Qp] + corankO(H0(Fp, D)) + corankO(H2(Fp, D))

= [Fp : Qp] + corankO(H0(Fp, D)),

where the last equality holds because the vanishing of H2(Fp, D[π]) implies that of H2(Fp, D)
(the π-torsion of the latter is a homomorphic image of the former).

Now fix a prime P of F∞ lying over p, let Γp ⊆ Γ be the decomposition group for p (which
is non-trivial because p does not split completely in F∞ by (NSp)), and let Λp = O[[Γp]]
be the Iwaswawa algebra of Γp. Because Γp has cohomological dimension 1, we have an
inflation-restriction sequence

0→ H1(F∞,P/Fp, D
GF∞,P )→ H1(Fp, D)→ H1(F∞,P, D)Γp → 0.

The O-corank of H1(F∞,P/Fp, D
GF∞,P ) is the same as the O-corank of H0(Fp, D), and from

this and the computation of corankO(H1(Fp, D)) above, it follows that H1(F∞,P, D)Γp is
O-cofree of corank [Fp : Qp] (that it is O-cofree follows from the fact that it is a quotient
of H1(Fp, D)). By [Gre89, Proposition 1], the Λp-corank of H1(F∞,P, D) is also [Fp : Qp].
An application of Nakayama’s lemma now shows that H1(F∞,P, D) is Λp-cofree of corank
[Fp : Qp].

As GF∞,P has p-cohomological dimension 1 ([Gre01, pg. 433]), the long exact coho-
mology sequence arising from the quotient map A → D implies that the homomorphism
H1(F∞,P, A)→ H1(F∞,P, D) is surjective. We therefore have

HP = H1(F∞,P, A)/H1
ord(F∞,P, A) ' im(H1(F∞,P, D)→ H1(IP, D)).

Since D is unramified at p, the kernel of the restriction map to IP is H1(GF∞,P/IP, D). If
p is unramified in F∞, then GF∞,P/IP has pro-order prime to p, so the restriction map is
injective, from which it follows that

HP ' H1(F∞,P, D),

so HP is Λp-cofree because H1(F∞,P, D) is. If instead p is ramified in F∞, then GF∞,P/IP is

isomorphic to Ẑ, and so H1(GF∞,P/IP, D) is a quotient of D, hence O-cofree. Thus we have
an exact sequence of finitely generated Λp-modules

0→ ĤP → ̂H1(F∞,P, D)→ ̂H1(GF∞,P/IP, D)→ 0

satisfying the hypotheses of Lemma 7.3, which therefore implies that HP is Λp-cofree. Thus,
in either case, HP is Λp-cofree.

Finally we explain why Hp is cofree over Λ. The choice of a prime P of F∞ above p gives

rise to an isomorphism of Λ-modules Ĥp ' ĤP ⊗Λp Λ. Since we have proved that HP is
Λp-cofree, we conclude that Hp is Λ-cofree. �

Remark 7.5. The proof of Theorem 7.4 is the only instance where we make use of assump-
tion (Ramp,F ), but we do not see a way to remove this assumption.

Corollary 7.6. Let Σ0 be a finite set of primes of F not containing any Archimedean primes
or any primes of Σp. Assume that
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(i) Σ0 contains the primes dividing the tame level of f ,
(ii) the condition (Cot) holds, and

(iii) for each prime v ∈ Σ0 that splits completely in F∞, H0(Fv, A
∗) = 0.

Then the µ-invariant of SelΣ0(F∞, A) vanishes if and only if SelΣ0(F∞, A[π]) is finite, in
which case SelΣ0(F∞, A) is O-divisible with

λ(SelΣ0(F∞, A)) = dimF(SelΣ0(F∞, A[π])).

Proof. By Proposition 5.3, SelΣ0(F∞, A[π]) ' SelΣ0(F∞, A)[π] as O-modules. The struc-
ture theorem for Λ-modules now implies that the finiteness of the residual Selmer group is
equivalent to the vanishing of the µ-invariant of SelΣ0(F∞, A), and that when this happens,
SelΣ0(F∞, A) is a cofinitely generated O-module. By Theorem 7.4, the O-torsion submodule
of the Pontryagin dual of SelΣ0(F∞, A) must vanish. Thus SelΣ0(F∞, A) is O-cofree of corank
equal to its λ-invariant, which now visibly coincides with

dimF(SelΣ0(F∞, A)[π]) = dimF(SelΣ0(F∞, A[π])).

�

8. Algebraic λ-invariants

In this final section we use the structural results for Selmer groups established in the
preceding sections to prove a result on the behavior of λ-invariants under congruences. In
order to state the precise result we require some notation. Let f1, f2 be p-ordinary newforms
(i.e. satisfying (Ordp)) of weight greater than or equal to 2 (not necessarily the same weight),
and tame levels N1 and N2, and assume that the Hecke eigenvalues of f1 and f2 are contained
in K. We assume moreover that the 2-dimensional Galois representations associated to f1

and f2 satisfy the conditions (Irr) and (Ramp,f ), i.e., that the residual representations on
GF are absolutely irreducible and ramified at each p ∈ Σp. Choose GF -stable lattices T1, T2

in the associated K-representation spaces of f1, f2 and let A1, A2 be the resulting discrete
O-torsion GF -modules. Let Sel(F∞, A1) and Sel(F∞, A2) denote the Selmer groups for f1 and
f2 over F∞ as defined in §3, with the corresponding Iwasawa invariants denoted µ(f1), λ(f1)
and µ(f2), λ(f2).

Let Σ0 be the set of primes of F dividing N = N1N2, and let Σ consist of the primes in Σ0

together with the primes of F dividing∞ or p. We may write NOF = (NOF )f (NOF )s, where
(NOF )f is divisible only by primes that are finitely decomposed in F∞ and (NOF )s is divisible
only by primes that split completely in F∞. For a prime v /∈ Σp (respectively p ∈ Σp), denote
by Hv,i (respectively Hp,i) the analogue for Ai of the Λ-module Hv (respectively Hp) defined
in terms of local cohomology groups in the beginning of §4. By Proposition 4.2 (i), if
v | (NOF )f , Hv,i is a cotorsion Λ-module; let λv,i be its λ-invariant (which is simply its O-
corank since it has µ-invariant zero by loc. cit.). Finally, let the λ-invariant of SelΣ0(F∞, Ai)
be denoted by λ(Σ0, fi) for i = 1, 2.

Theorem 8.1. For i = 1, 2, assume that Hv,i = 0 if v | (NOF )s. Suppose A1[π] ' A2[π] as
F[GF ]-modules. Then Sel(F∞, A1) is Λ-cotorsion with µ(f1) = 0 if and only if Sel(F∞, A2)
is Λ-cotorsion with µ(f2) = 0. In this case, we have

λ(f1)− λ(f2) =
∑

v|(NOF )f

λv,2 − λv,1.
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Proof. First note that the hypothesis on the vanishing of the modules Hv,i for v | (NOF )s

implies that H0(Fv, A
∗
i ) = 0 for i = 1, 2 and v | (NOF )s (because the O-corank of H0(Fv, A

∗
i )

is the Λ-corank of Hv,i, by Proposition 4.3). Suppose that Sel(F∞, A1) is Λ-cotorsion with
µ(f1) = 0. Then the hypotheses of Corollary 6.2 are satisfied for A1 with our choices of Σ0

and Σ, and we therefore have an exact sequence of Λ-modules

(8.1) 0→ Sel(F∞, A1)→ SelΣ0(F∞, A1)→
∏

v|(NOF )f

Hv,1 → 0,

taking into account the assumption thatHv,1 = 0 for v | (NOF )s. The target of the surjective
map in (8.1) is Λ-cotorsion with µ-invariant zero by Proposition 4.2, and as we have assumed
the same for Sel(F∞, A1), we conclude that SelΣ0(F∞, A1) is also Λ-cotorsion with µ-invariant
zero. Corollary 7.6 now implies that SelΣ0(F∞, A1) is O-divisible with SelΣ0(F∞, A1[π]) finite
of F-dimension equal to the λ-invariant λ(Σ0, f1) of SelΣ0(F∞, A1).

By Remark 5.2, the non-primitive residual Selmer groups SelΣ0(F∞, Ai[π]), i = 1, 2, are
determined up to O-module isomorphism by the F[GF ]-module structures of A1[π] and A2[π],
respectively. Since we have assumed that these F[GF ]-modules are isomorphic, it therefore
follows that we have Λ-module isomorphisms

(8.2) SelΣ0(F∞, A1)[π] ' SelΣ0(F∞, A1[π]) ' SelΣ0(F∞, A2[π]) ' SelΣ0(F∞, A2)[π],

where the first and last isomorphisms come from Proposition 5.3. In particular, because
SelΣ0(F∞, A1[π]) is finite, the same is true of SelΣ0(F∞, A2)[π]. This implies that SelΣ0(F∞, A2)
is Λ-cotorsion with µ-invariant equal to 0, and since Sel(F∞, A2) ⊆ SelΣ0(F∞, A2), the same
is true of Sel(F∞, A2). The hypotheses of Corollary 6.2 are therefore satisfied for A2, so we
have an exact sequence of cotorsion Λ-modules

(8.3) 0→ Sel(F∞, A2)→ SelΣ0(F∞, A2)→
∏

v|(NOF )f

Hv,2 → 0.

The additivity of λ-invariants in short exact sequences of cotorsion Λ-modules applied to the
sequences (8.1) and (8.3) gives

(8.4) λ(f1) +
∑

v|(NOF )f

λv,1 = λ(Σ0, f1)

and

(8.5) λ(f2) +
∑

v|(NOF )f

λv,2 = λ(Σ0, f2).

The isomorphism (8.2) together with Corollary 7.6 gives λ(Σ0, f1) = λ(Σ0, f2). Thus the
right-hand sides of (8.4) and (8.5) are equal, so upon equating the left-hand sides and rear-
ranging, we obtain

λ(f1)− λ(f2) =
∑

v|(NOF )f

λv,2 − λv,1,

as desired. �

The essential content of the theorem is that, under the various hypotheses, the λ-invariants
of the respective modular forms depend only on the residual representations along with data
coming from local cohomology at primes dividing the product of the tame levels. This result
is formally and thematically similar to [EPW06, Theorem 4.3.3, 4.3.4], [Wes05, Theorem
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3.1, 3.2], and [PW11, Theorem 7.1], which apply in the cases F = Q, F∞ a cyclotomic Zp-
extension, and F∞ the anticyclotomic Zp-extension of an imaginary quadratic F , respectively
(the results in these references are stated in a somewhat different form from ours, using the
framework of Hida families or Galois deformations, and while [EPW06] and [PW11] consider
representations associated to modular forms as we do, [Wes05] considers higher-dimensional
“nearly ordinary” Galois representations). The theorem is a direct generalization of (and was
motivated by) [Gre10, p. 237], which addresses the case F = Q and f corresponding to an
elliptic curve, modulo the caveat that Greenberg assumes the p-torsion representations of the
elliptic curves with which he works are merely irreducible instead of absolutely so. But this is
to be expected, as for elliptic curves, one has a canonical choice of lattice in the corresponding
p-adic Galois representation furnished by the Tate module, whereas an (essentially) unique
integral structure in the general modular form case is only guaranteed under the hypothesis
of residual absolute irreducibility. As mentioned in §1, the arguments in this paper work in
the elliptic curve case (i.e. for the p-adic Tate modules of p-ordinary elliptic curves defined
over the base field F ) under the weaker residual irreducibility hypothesis, with some of the
technicalities simplified.

The hypothesis that the modules Hv,i vanish for those v which split completely in F∞,
which is of course vacuous if all primes dividing N are finitely decomposed in F∞, seems
(unfortunately) unavoidable in our approach to Theorem 8.1 (note that the assumption
used repeatedly in earlier results of the vanishing of H0(Fv, A

∗
i ) for v splitting completely

in F∞ is equivalent to the weaker condition that the corresponding Hv,i be Λ-cotorsion by
Proposition 4.3). The point is that our comparison method, based on that of [GV00], breaks
down in the presence of a positive µ-invariant for the Selmer groups under consideration.
The modules Hv,i, if finite but non-zero, will have positive µ-invariant by Proposition 4.3,
which, given the second exact sequence of Corollary 6.2, would force SelΣ0(F∞, A) to have
positive µ-invariant. When this occurs, we cannot naively read off the λ-invariant of this
non-primitive Selmer group from its π-torsion (which is in fact infinite). As indicated in
[PW11, Theorem 1.1], it is possible (at least in the anticyclotomic setting, in contrast to
what is expected for the cyclotomic setting) for the Selmer group to have a positive µ-
invariant, which appears to come directly from the local cohomology at primes which are
split completely in F∞. The theorem suggests that, in this setting, to compare invariants, one
should instead look at the aforementioned strict Selmer group, and indeed, Proposition 3.1
shows that in a precise sense such primes which divide the relevant level account completely
for the difference between the strict Selmer group and Greenberg’s (which we have used).
We emphasize, however, that Theorem 8.1 is the only instance where we are forced to use
this hypothesis. It seems very likely that one could work systematically with strict Selmer
groups using the methods of this paper and obtain an analogue of Theorem 8.1 without the
hypothesis, but we have not written down the details. As we learned after the completion of
this work, a comparison theorem for λ-invariants accommodating positive µ-invariants has
been established in [Hac11] by initially working with strict Selmer groups, but the method of
loc. cit. is quite different from ours and depends on higher congruences (i.e. isomorphisms
of residual representations modulo possibly larger powers of π).
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Appendix A. Iwasawa invariants of direct limits of discrete Λ-modules

In this appendix we establish some results about the structure of direct limits of certain
discrete Λ-modules and their Pontryagin duals.

Let Γ be a free pro-p group of rank one (i.e. Γ is topologically isomorphic to the additive
group Zp), O the ring of integers in a finite extension K of Qp with uniformizer π, and let
Λ = O[[Γ]] be the completed group ring of Γ with coefficients in O ([NSW08, Definition
5.2.1]). Unlike in the main body of the paper, we do not require that p be odd. The

Pontryagin dual of a discrete O-torsion Λ-module M is M̂ = HomO(M,K/O), equipped with

the compact-open topology (taking the discrete topology on K/O); M̂ is then a profinite
topological O-module with Λ-module structure determined by letting any γ ∈ Γ act on a
homomorphism χ : M → K/O by (γχ)(m) = χ(γ−1m). This gives an O[Γ]-module structure
which extends uniquely to a topological Λ-module structure by continuity. (Alternatively, one
can simply take the Λ-action defined by (λχ)(m) = χ(λm) and twist it by the automorphism

of Λ induced by inversion on Γ.) Recall that such a Λ-module M is cofinitely generated if M̂
is a finitely generated Λ-module. In a similar manner (taking continuous homomorphisms)
we can define the Pontryagin dual of a finitely generated Λ-module X (such an X carries a
unique profinite topology for which the Λ-action is continuous by e.g. [NSW08, Proposition

5.2.23], namely the max-adic topology from the Noetherian local ring Λ); in this case X̂
is a discrete O-torsion Λ-module, and Pontryagin duality sets up an anti-equivalence of
categories between cofinitely generated discrete O-torsion Λ-modules and finitely generated
Λ-modules, with the usual double duality isomorphisms Λ-linear. As we will deal exclusively
with cofinitely generated discrete O-torsion Λ-modules and their Pontryagin duals (which are
then finitely generated), we can essentially ignore topological considerations, e.g. continuity
of Λ-module homomorphisms between modules of either of these types is automatic (this
being apparent in the discrete case and a consequence of loc. cit. in the finitely generated
case). Note also that a map between arbitrary Hausdorff topological Λ-modules is a Λ-
module homomorphism if and only if it is an O[Γ]-module homomorphism, i.e., O-linear and
Γ-equivariant. This follows from the density of the abstract group ring in Λ, and we will use
it without comment in what follows. We begin by recalling the structure theorem for finitely
generated Λ-modules.

Theorem A.1. If X is a finitely generated Λ-module, then there is a pseudo-isomorphism

X → Λr ⊕
t∑
i=1

Λ/πmiΛ⊕
s∑
j=1

Λ/p
ej
j ,

where r, t, s ≥ 0 (with the convention that if one of these is zero, the summand doesn’t
appear), the mi and ej are positive integers, and the pj are (not necessarily distinct) height
one prime ideals of Λ, all uniquely determined by X (a pseudo-isomorphism is a Λ-module
homomorphism with finite kernel and cokernel).

Proof. See [NSW08, 5.3.8]. �

Using the data of Theorem A.1, we make the following definition of the Iwasawa invariants
of X and its dual.

Definition A.2. If X is a finitely generated Λ-module and we choose a pseudo-isomorphism
as in Theorem A.1, then the integer r is the Λ-rank of X, and the non-negative integers
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∑t
i=1mi and

∑s
j=1 rankO(Λ/p

ej
j ) are the µ-invariant and the λ-invariant of X, respectively.

These are denoted rankΛ(X), µ(X), and λ(X). If M = X̂, we define the Λ-corank of M to be
corankΛ(M) = rankΛ(X), and the µ and λ-invariants of M to be µ(M) = µ(X), and λ(M) =
λ(X). We say that M is Λ-cotorsion if X is Λ-torsion, i.e. if corankΛ(M) = rankΛ(X) = 0.

For n ≥ 0, let Γn = Γp
n
, Gn = Γ/Γp

n
, and for m ≥ 1, let Λn,m = (O/πmO)[Gn] and

Λn = O[Gn]. These are finitely generated Λ-modules, the former being discrete and O-
torsion. For fixed m, the Λn,m form an inverse system and a directed system of Λ-modules.
The transition maps for the inverse system are the natural restriction maps resn,m : Λn+1,m →
Λn,m induced by resn,m(g′) = g′|Gn for g′ ∈ Gn+1, where g′|Gn denotes the canonical image
of g′ in Gn. The transition maps for the directed system are the natural corestriction maps
corn,m : Λn,m → Λn+1,m induced by corn,m(g) =

∑
g′∈Gn+1,resn,m(g′)=g g

′. Similarly the modules
Λn form an inverse system and a directed system via restriction maps resn : Λn+1 → Λn and
corestriction maps corn : Λn → Λn+1 defined by the same formulas. Of course, Λ = lim←−n Λn

by definition. Our first result concerns the self-duality of Λn,m.

Proposition A.3. For n ≥ 0,m ≥ 1, there are canonical Λ-module isomorphisms

ϕn,m : Λ̂n,m → Λn,m

under which r̂esn,m = corn,m and ĉorn,m = resn,m. More precisely, we have the equalities
corn,m ◦ϕn,m = ϕn+1,m ◦ r̂esn,m and resn,m ◦ϕn+1,m = ϕn,m ◦ ĉorn,m.

Proof. The assertion is that there are isomorphisms ϕn,m making the diagrams

Λ̂n,m

̂resn,m//

ϕn,m

��

Λ̂n+1,m

ϕn+1,m

��
Λn,m corn,m

// Λn+1,m

and

Λ̂n+1,m

̂corn,m //

ϕn+1,m

��

Λ̂n,m

ϕn,m

��
Λn+1,m resn,m

// Λn,m

commute. We have Λ̂n,m = HomO(Λn,m, K/O). Since πm kills Λn,m, this is the same as

HomO/πmO(Λn,m, π
−mO/O) ' HomO/πmO(Λn,m,O/π

m) ' Λn,m,

where the first isomorphism comes from [πm] : π−mO/O → O/πmO and the second isomor-
phism sends χ : Λn,m → O/πmO to

∑
g∈Gn χ(g)g. We define ϕn,m to be the composite of

these isomorphisms. So, explicitly, ϕn,m sends χ : Λn,m → K/O to
∑

g∈Gn [πm](χ(g))g. It is

24



clear that ϕn,m is an O-module isomorphism, and we have, for h ∈ Gn,

ϕn,m(hχ) =
∑
g∈Gn

[πm]((hχ)(g))g

=
∑
g∈Gn

[πm](χ(h−1g))g

=
∑
g∈Gn

[πm](χ(g))(hg)

= h

( ∑
g∈Gn

[πm](χ(g))g

)
= hϕn,m(χ).

Thus the map is Gn-equivariant, and therefore is a Λ-module isomorphism.
Now for the diagrams, beginning with the first. Going horizontally then vertically sends

χ ∈ Λ̂n,m to
∑

g′∈Gn+1
[πm](χ(resn,m(g′)))g′. If instead we go vertically first, χ is sent to∑

g∈Gn [πm](χ(g))g, and then applying corn,m gives∑
g∈Gn

[πm](χ(g)) corn,m(g) =
∑
g∈Gn

[πm](χ(g))

( ∑
g′∈Gn+1,resn,m(g′)=g

g′

)
∑
g∈Gn

( ∑
g′∈Gn+1,resn,m(g′)=g

[πm](χ(resn,m(g′)))g′

)
=

∑
g′∈Gn+1

[πm](χ(resn,m(g′)))g′.

Thus the first diagram commutes.

For the second diagram, given χ ∈ Λ̂n+1,m and going horizontally, we get χ ◦ corn,m, and
then going vertically gives ∑

g∈Gn

[πm](χ(corn,m(g)))g.

Going vertically first gives
∑

g′∈Gn+1
[πm](χ(g′))g′, and then taking resn,m, we obtain

∑
g∈Gn

( ∑
g′∈Gn+1,resn,m(g′)=g

[πm](χ(g′))

)
g.

The definition of corn,m gives

corn,m(g) =
∑

g′∈Gn+1,resn,m(g′)=g

g′,

so [πm](χ(corn,m(g))) =
∑

g′∈Gn+1,resn,m(g′)=g[π
m](χ(g′)), which finishes the proof. �

Corollary A.4. If Sm = lim−→n
Λn,m, with the limit taken with respect to the corestriction

maps, then there is a canonical isomorphism of Λ-modules Ŝm ' (O/πmO)[[Γ]] ' Λ/πmΛ.
In particular, Sm is a cofinitely generated, cotorsion Λ-module with λ-invariant zero and
µ-invariant m.
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Proof. As Sm is a discrete O-torsion Λ-module, by standard results on Pontryagin duality,

Ŝm is canonically isomorphic as a Λ-module to lim←−n Λ̂n,m, with the limit taken with respect

to the maps ĉorn,m. By Proposition A.3, this can be identified with the inverse limit of
the Λn,m taken with respect to the restriction maps, i.e., with (O/πmO)[[Γ]]. The second
isomorphism is the inverse of the isomorphism given by passage to the quotient of the natural
map Λ→ (O/πmO)[[Γ]] (the kernel of the latter surjection is πmΛ). �

Now, instead of taking limits over n ≥ 0, we want to take limits over m ≥ 1. We will
consider the discrete O-torsion Λ-modules Sn = lim−→m

(O/πm)[Gn], where the transition maps

[π]n,m : Λn,m → Λn,m+1 are induced by the injective O-module maps O/πmO → O/πm+1O
given by multiplication by π.

Proposition A.5. Under the isomorphisms ϕn,m : Λ̂n,m ' Λn,m, [̂π]n,m = θn,m, where
θn,m : Λn,m+1 → Λn,m is induced by the natural O-module map βm : O/πm+1O → O/πmO.

More precisely, θn,m ◦ ϕn,m+1 = ϕn,m ◦ [̂π]n,m.

Proof. The assertion is that the diagram

Λ̂n,m+1

̂[π]n,m //

ϕn,m+1

��

Λ̂n,m

ϕn,m

��
Λn,m+1

θn,m

// Λn,m

commutes. Beginning with χ ∈ Λ̂n,m+1, going along the top horizontal map gives χ ◦ [π]n,m,
and then traveling vertically gives

∑
g∈Gn [πm](χ([π]n,m(g)))g. Going the other way gives∑

g∈Gn βm([πm+1](χ(g)))g. To see that these coincide, fix g ∈ Gn, and let r ∈ π−m−1O

represent χ(g) ∈ π−m−1O/O. Then χ([π]n,m(g)) = χ((π + πm+1O)g) = πr + O ∈ π−mO/O,
so [πm](χ([π]n,m(g))) = πm+1r + πmO; since [πm+1](χ(g)) = πm+1r + πm+1O, this is exactly
βm([πm+1](χ(g))). Thus the diagram commutes. �

Corollary A.6. There is a canonical Λ-module isomorphism Ŝn ' O[Gn].

Proof. By Proposition A.5 and Pontryagin duality, Ŝn ' lim←−m Λn,m, where the limit is taken

with respect to the maps given on coefficients by βm : O/πm+1O → O/πmO. These can
be identified with the natural maps O[Gn]/(πm+1) → O[Gn]/(πm), and taking the inverse
limit of this system of modules produces O[Gn] because O[Gn] is a finite, hence π-adically
complete O-module. �

Finally, we want to identify the Pontryagin dual of the discrete O-torsion Λ-module

S = lim−→
n

Sn,

where the transition maps are ψn = lim−→m
corn,m : lim−→m

Λn,m → lim−→m
Λn+1,m. This makes

sense because the corestriction maps commute with the transition maps defining Sn and
Sn+1.

Corollary A.7. There is a canonical Λ-module isomorphism Ŝ ' Λ.
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Proof. As before, we have Ŝ ' lim←−n Ŝn, where the limit is taken with respect to the maps

ψ̂n. Under the isomorphism Ŝn ' lim←−m Λn,m coming from Pontryagin duality and Proposi-

tion A.3, the transition maps ψ̂n = ̂lim−→m
corn,m for the modules Ŝn become lim←−m resn,m (again

by Proposition A.3). That is, the diagram

Ŝn+1

'
��

ψ̂n // Ŝn

'
��

lim←−m Λn+1,m
lim←−m

resn,m

// lim←−m Λn,m

commutes. As alluded to in the proof of Corollary A.6, the inverse system consisting of the
modules lim←−m Λn,m and the transition maps lim←−m resn,m can be identified with the inverse

system consisting of the modules O[Gn] and the transition maps resn : O[Gn+1] → O[Gn].

Thus Ŝ can be identified with lim←−n O[Gn] = Λ. �

Corollary A.8. Let M be a cofinitely generated O-module, M ' (K/O)r ⊕
∑t

i=1 O/πmiO.

Then there is a Λ-module isomorphism lim−→n
M ⊗O O[Gn] ' Λ̂r ⊕

∑t
i=1 Λ̂/πmiΛ, where the

limit in the source is taken with respect to the maps idM ⊗ corn and Λ acts on the right
tensor factor of each M ⊗O O[Gn]. In particular, lim−→n

M ⊗O O[Gn] is a cofinitely generated

Λ-module with corank corankO(M), λ-invariant zero, and µ-invariant
∑t

i=1mi.

Proof. For each n ≥ 0, we have a canonical isomorphism of Λ-modules

(
(K/O)r ⊕

t∑
i=1

O/πmiO
)
⊗O O[Gn] ' (K/O ⊗O O[Gn])r ⊕

t∑
i=1

Λn,mi .

These isomorphisms are compatible with the natural transition maps on both source and
target as n varies (all coming from corestriction), and since direct limits commute with ⊗O

and finite direct sums, in the limit over n we obtain

(lim−→
n

K/O ⊗ O[Gn])r ⊕
t∑
i=1

lim−→
n

(Λn,mi).

For the factor on the right, Pontryagin duality together with Corollary A.4 shows that the

limit is
∑t

i=1 Λ̂/πmiΛ. For the left factor, we have, for each n,

K/O ⊗ O[Gn] ' lim−→
m

Λn,m = Sn,

where we use that K/O = lim−→m
π−mO/O ' lim−→O/πmO, the second limit over m ≥ 1 taken

via the injections induced by multiplication by π. As n varies, under these identifications,
the transition maps for the modules K/O ⊗O [Gn] coming from corestriction become the
transition maps ψn : Sn → Sn+1 used to define the module S of Corollary A.7. That
corollary, along with another application of Pontryagin duality, shows that, upon taking the

limit, we obtain Λ̂. �
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Appendix B. Twisting of Λ-modules and characteristic polynomials

In this appendix we analyze the effect of twisting by a character on the characteristic
polynomial of a finitely generated torsion Λ-module (see Definition B.1 below). We retain
the notation of Appendix A. Let q = p if p is odd and q = 4 if p = 2, and let κ : Γ→ 1 + qZp

be a continuous character. Since the source and target of κ are isomorphic to Zp, κ is either
trivial or injective, and in the latter case, it induces an isomorphism of Γ onto its necessarily
open image.

Once we fix a topological generator γ of Γ and identify Λ with O[[T ]] via γ 7→ 1 + T as in
[NSW08, Proposition 5.3.5], we can associate to κ a continuous O-algebra endomorphism ϕκ
of Λ, determined uniquely by the requirement that ϕκ(T ) = κ(γ)(1 + T ) − 1. This is valid
because κ(γ) is a principal unit, and thus κ(γ)(1 +T )−1 lies in the unique maximal ideal of
Λ. The map ϕκ is an automorphism because ψ = ϕκ−1 satisfies (ψ ◦ϕ)(T ) = T = (ϕ◦ψ)(T ),
and the only continuous O-algebra endomorphism of Λ fixing T is the identity.

Now, if X is any Λ-module, we define a new Λ-module X(κ) whose underlying O-module
is X, but with Λ-action twisted by ϕκ, i.e., we define λ · x = ϕκ(λ)x for λ ∈ Λ and x ∈ X.
We call X(κ) the twist of X by κ. Since ϕκ is an automorphism of Λ, it is clear that X is
finitely generated (respectively torsion) if and only if X(κ) is. In particular, if X is finitely
generated and torsion, then so is X(κ). In this case, we can consider the characteristic
polynomials, in the sense of the following definition, for all twists of X.

Definition B.1. Let X be a finitely generated torsion Λ-module and set XK = X ⊗O K,
a finite-dimensional K-vector space with an action of O[[T ]] via the chosen isomorphism
Λ ' O[[T ]]. Then the characteristic polynomial of X (with respect to the chosen topological
generator γ inducing the O-algebra isomorphism Λ ' O[[T ]]) is the polynomial in O[t]
defined by

πµ(X) det((t idXK −T )|XK),

except in the case that XK = 0 (i.e. X = X[π∞]), where we simply define the characteristic
polynomial to be πµ(X).

The characteristic polynomial of a finitely generated torsion Λ-module X is of degree λ(X)
and is monic precisely when µ(X) = 0. We wish to describe the effect that twisting by κ
has on the characteristic polynomial, i.e., to give a formula for the characteristic polynomial
for X(κ) in terms of the characteristic polynomial of X. We will assume vanishing of the
µ-invariant as this is the only case needed for our desired application.

Proposition B.2. Let X be a finitely generated torsion Λ-module. Let F (t) ∈ O[t] be
the characteristic polynomial of X, and assume µ(X) = 0. Then µ(X(κ)) = 0 and the
characteristic polynomial of X(κ) is

κ(γ)λ(X)F (κ(γ)−1(1 + t)− 1).

Proof. The vanishing of µ(X) is equivalent to finiteness of X[π∞] (essentially by definition
of the µ-invariant). Since X and X(κ) have the same underlying O-module, it follows that
µ(X(κ)) = 0 as well. If X ⊗O K = 0, then X(κ) ⊗O K = 0, and both characteristic
polynomials are equal to 1, which is consistent with the formula in the statement of the
proposition. Assume then that X⊗OK 6= 0 and let x1, . . . , xd ∈ X be elements whose images
in X/X[π∞] form an O-basis (so d = rankO(X) = λ(X)). Then x1⊗1, . . . , xd⊗1 ∈ X⊗O K
form a K-basis, and because µ(X) = 0, if [T ] is the matrix for the endomorphism T of X⊗OK
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with respect to the chosen basis, then F (t) = det(It − [T ]), where I is the d × d identity
matrix over K. Since X(κ)⊗O K has the same underlying K-vector space as X ⊗O K, the
xi⊗1 constitute a K-basis for this space as well. By definition, the action of T on X(κ)⊗OK
coincides with the action of κ(γ)(1 +T )− 1 on X ⊗O K. In other words, if [κ(γ)(1 +T )− 1]
is the matrix for the endomorphism κ(γ)(1 + T )− 1 acting on X ⊗O K with respect to the
chosen basis, then the characteristic polynomial of X(κ) is det(It− [κ(γ)(1 + T )− 1]). We
have

It− [κ(γ)(1 + T )− 1] = It− κ(γ)I − κ(γ)[T ] + I

= I(t− κ(γ) + 1)− κ(γ)[T ]

= κ(γ)(I(κ(γ)−1t− 1 + κ(γ)−1)− [T ])

= κ(γ)(I(κ(γ)−1(1 + t)− 1)− [T ]).

Thus the characteristic polynomial of X(κ) is

det(κ(γ)(I(κ(γ)−1(1 + t)− 1)− [T ])) = κ(γ)dF (κ(γ)−1(1 + t)− 1),

where d = λ(X), as claimed. �

Continuing to assume that X is finitely generated and torsion with characteristic poly-
nomial F (t), but not necessarily with µ-invariant zero, one can prove using the structure
theory for such Λ-modules that XΓn (the module of Γn-coinvariants of X) is finite if and
only if F (t) has no zeros in K of the form ζ − 1, where ζ is a pn-th root of unity. We use
this observation together with our calculation of the characteristic polynomial of a twist in
Proposition B.2 to establish the next result.

Proposition B.3. Assume κ is non-trivial. Then for all but finitely many i ∈ Z, X(κi)Γn

is finite for all n ≥ 0.

Proof. To begin, it follows from the structure theorem for finitely generated Λ-modules that
for all i ∈ Z and n ≥ 0, X(κi)Γn is finite if and only if (X(κi)/X(κi)[π∞])Γn is finite.
Combining this fact with the exactness of twisting, we see that it is no loss of generality to
assume that µ(X) = 0 (so µ(X(κi)) = 0 for all i). Let Fi(t) = κ(γ)iλ(X)F (κ(γ)−i(1 + t)− 1),
where, again, F (t) is the characteristic polynomial of X. By Proposition B.2, this is the
characteristic polynomial of X(κi). Suppose that i, j ∈ Z are distinct integers for which
there exist n1, n2 ≥ 0 with X(κi)Γn1

and X(κj)Γn2
infinite. Then there are ζ ∈ µpn1 (K)

and ζ ′ ∈ µpn2 (K) such that Fi(ζ − 1) = 0 = Fj(ζ
′ − 1). This means that κ(γ)−iζ − 1 and

κ(γ)−jζ ′ − 1 are roots of F . If these roots are the same, then κ(γ)−iζ = κ(γ)−jζ ′, whence
κ(γ)j−i = ζ−1ζ ′. The right-hand side of this last equation is visibly a root of unity, but the
left-hand side is an element of 1 + qZp, which is torsion-free. Thus κ(γ)j−i = 1, which forces
i = j (because κ is non-trivial), contrary to assumption. So the roots of F are distinct. It
follows that we may define an injective map from the set of integers i ∈ Z for which X(κi)Γn

is not finite for some n to the set of roots of F (t), which is finite as F (t) 6= 0. The former
set is therefore finite as well. �
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