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1. Introduction

Let p be a prime. Recently Greenberg has given a novel representation-theoretic criterion
for an absolutely irreducible representation ρ : GQ → GLn(Fp) with p - | im(ρ)| to admit lifts
GQ → GLn(Zp) with open image (see [Gre16, Proposition 7.1.1] as well as [Gre16, Proposi-
tion 6.1.1] for an alternative approach which applies to reducible residual representations).
A crucial hypothesis for the applicability of Greenberg’s criterion is that the residual repre-
sentation ρ factors through Gal(L/Q) for a finite Galois extension L of Q which is p-rational.
The field L is p-rational if, for LΣp(p) the maximal pro-p extension of L unramified outside
the set Σp of primes above p, the Galois group Gal(LΣp(p)/L) is free pro-p of rank r2(L) + 1,
where as usual r2(L) denotes the number of complex primes of L. This condition on L,
which includes the Leopoldt conjecture for p and L, seems difficult to verify in practice, es-
pecially for number fields of large degree. By contrast, it is simple to exhibit many examples
of finite Galois extensions L/Qp which satisfy the natural local analogue of p-rationality.
Namely, if L(p) denotes the maximal pro-p extension of L, then GL(p) = Gal(L(p)/L) is
free pro-p of rank [L : Qp] + 1 as long as L does not contain a primitive p-th root of unity
([Ser02, Theorem II.5.3]). This observation led us to derive a local analogue of Greenberg’s
result, i.e., a representation-theoretic criterion for an absolutely irreducible representation
ρ : GQp → GLn(Fp) with p - | im(ρ) to admit lifts GQp → GLn(Zp) with open image (in
fact the lifts whose existence is ensured by our criterion have image containing the congru-
ence subgroup Γn(Zp) = ker(GLn(Zp)→ GLn(Fp))). While the assumption that p - | im(ρ)|
seems absolutely essential to our method, we can, in the local case, replace the analogue of

p-rationality (the condition that the splitting field Qp(ρ) = Q
ker(ρ)

p of ρ does not contain a
primitive p-th root of unity) with the weaker condition that the residual representation ρ
is unobstructed in the sense that H2(GQp ,Ad(ρ)) = 0. This condition holds in particular
if L = Qp(ρ) does not contain a primitive p-th root of unity (in addition to the assump-
tion that p - | im(ρ)| = [L : Qp]). When p = 2, every absolutely irreducible representation
ρ : GQp → GLn(F2) is obstructed, so our results only apply to odd primes.

Greenberg’s lifting criterion is proved via a group-theoretic argument in which lifts of ρ
are related to certain continuous homomorphisms from pro-p Galois groups to Γn(Zp) which
are equivariant for the action of a finite Galois group (an idea which originated in Boston’s
thesis, appeared in [BM89] and [Bos91] in the global case, and has been used extensively
by Böckle in the local case to describe the structure of (uni)versal deformation rings of 2-
dimensional mod p representations of GK for K a p-adic field (cf. [Böc00] and [Böc10])). We
note that while the works just cited use this group-theoretic approach to obtain structural in-
formation (e.g. presentations) for (uni)versal deformation rings, as well as constraints on the
shapes of the corresponding (uni)versal deformations, as far as we know, Greenberg’s article
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[Gre16] is the first instance where the approach has been used to prove the existence of lifts
(and Greenberg’s main proofs do not actually make use of deformation-theoretic language).
Our argument is similar to Greenberg’s, but follows the slightly more deformation-theoretic
variant outlined in [Gre16, §7.2] which is applicable in our local setting due to the fact that
the universal deformation ring of an n-dimensional residual representation ρ satisfying our
hypotheses is a power series ring over Zp in n2 + 1 variables (specifically this holds because
ρ is absolutely irreducible and unobstructed). Exploiting the deformation-theoretic point
of view, even in this simple situation in which the universal deformation ring is formally
smooth over Zp, allows us to say somewhat more than we are able to utilizing the purely
group-theoretic argument of Greenberg. Moreover, while the lifting method via either ar-
gument is very much non-constructive, we feel that the deformation-theoretic interpretation
may be more conducive to obtaining additional information about the lifts whose existence
it supplies (e.g. whether or not some of them may satisfy reasonable p-adic Hodge-theoretic
properties).

After presenting our lifting criterion in §2 (Theorem 3), we state in §3 a theorem (The-
orem 4) which furnishes the existence of an abundance of absolutely irreducible residual
representations of GQp of large dimension satisfying the criterion, which therefore admit
(many inequivalent) lifts to characteristic zero having open image.

2. The Lifting Criterion

Although the terminology is somewhat abusive, we will say that a residual representation
ρ : GQp → GLn(Fp) is tame if p - | im(ρ)|. Recall that a residual representation (tame or
not) is said to be unobstructed if H2(GQp ,Ad(ρ)) = 0. When ρ is absolutely irreducible and
unobstructed, we have the following well-known structural result for its universal deformation
ring Rρ.

Proposition 1. If ρ : GQp → GLn(Fp) is absolutely irreducible and unobstructed, then Rρ

is isomorphic as a Zp-algebra to Zp[[T0, . . . , Tn2 ]].

Proof. The fact that the universal deformation ring Rρ is a power series ring over Zp follows
from the general formalism of deformation theory of Galois representations. That the relative
dimension of Rρ over Zp is n2 + 1 follows from an application of Tate’s formula for the local
Euler-Poincaré characteristic of Ad(ρ) ([Ser02, Theorem II.5.5]), taking into account that
H2(GQp ,Ad(ρ)) = 0 and that H0(GQp ,Ad(ρ)) = Fp (the former being the definition of
“unobstructed,” and the latter being a consequence of the absolute irreducibility of ρ). �

If ρ : GQp → GLn(Fp) is any residual representation, the splitting field Qp(ρ) of ρ is the

fixed field Q
ker(ρ)

p of the kernel of ρ.

Proposition 2. Let ρ : GQp → GLn(Fp) be tame with splitting field L. If L does not contain
a primitive p-th root of unity, then ρ is unobstructed.

Proof. Let L(p) be the maximal pro-p extension of L, and GL(p) = Gal(L(p)/L). The
assumption that L does not contain a primitive p-th root of unity implies that GL(p) is free
pro-p ([Ser02, Theorem II.5.3]). Note that since GL acts trivially on Ad(ρ), we also have
an induced (trivial) action of GL(p) on Ad(ρ). By [Ser02, Proposition II.5.20], the inflation
map H2(GL(p),Ad(ρ)) → H2(GL,Ad(ρ)) is an isomorphism, which implies that the target
H2(GL,Ad(ρ)) vanishes because the source does (the latter vanishing due to the fact that
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GL(p) is free pro-p, cf. [Ser02, Corollary I.4.2]). Finally, since we have made the assumption
that the index of GL in GQp is of order prime to p (because GQp/GL = Gal(L/Qp) ' im(ρ)),
the restriction map H2(GQp ,Ad(ρ))→ H2(GL,Ad(ρ)) = 0 is injective by [Ser02, Proposition
I.2.9], which proves that ρ is indeed unobstructed. �

We now state our main lifting theorem.

Theorem 3. Let ρ : GQp → GLn(Fp) be absolutely irreducible, tame, and unobstructed, with
splitting field L. Assume there exists a surjective Fp[Gal(L/Qp)]-module homomorphism

Fp[Gal(L/Qp)]→ Ad(ρ).

Then there exist uncountably many Zp-inequivalent lifts ρ : GQp → GLn(Zp) of ρ with
Γn(Zp) ≤ im(ρ). In particular these lifts have open image in GLn(Zp).

Proof. We follow the strategy outlined in [Gre16, §7.2]. Let L̃ be the maximal abelian
extension of L of exponent p, which is of finite degree over L by local class field theory (in

fact the local reciprocity map yields a canonical isomorphism L×/(L×)p ' Gal(L̃/L)). Since
Gal(L/Qp) has order prime to p due to the tameness assumption on ρ, the exact sequence

(2.1) 1→ Gal(L̃/L)→ Gal(L̃/Qp)→ Gal(L/Qp)→ 1

splits by the Schur-Zassenhaus theorem. By the same result (or using standard results in
representation theory of finite groups), we may choose a lift ν : Gal(L/Qp) → GLn(Zp)
of ρ via which Gal(L/Qp) acts on any closed normal subgroup of GLn(Zp) by conjugation.

The Fp[Gal(L/Qp)]-module Gal(L̃/L) ' L×/(L×)p has a submodule of Fp-dimension 2 or 1
according as L does or doesn’t contain a primitive p-th root of unity, and the corresponding
quotient is isomorphic to the regular representation Fp[Gal(L/Qp)] ([Böc00, Theorem 4.1]).
On the other hand, Ad(ρ) is isomorphic as an Fp[Gal(L/Qp)]-module to the Frattini quotient

Γ̃n(Zp) = Γn(Zp)/Γ
2
n(Zp)

of Γn(Zp), where Γ2
n(Zp) = ker(GLn(Zp) → GLn(Z/p2Z)). We have a canonical injection

Γ̃n(Zp) ↪→ GLn(Z/p2Z) whose image is the image in GLn(Z/p2Z) under the reduction map
GLn(Zp) → GLn(Z/p2Z) of the congruence subgroup Γn(Zp). Thus an Fp[Gal(L/Qp)]-
module surjection as in the statement of the theorem yields a Gal(L/Qp)-equivariant homo-
morphism

τ2 : Gal(L̃/L)→ GLn(Z/p2Z)

with image Γ̃n(Zp). Using a splitting of the exact sequence (2.1) above, we may extend τ2

to Gal(L̃/Qp) and inflate to obtain a continuous homomorphism

ρ2 : GQp � Gal(L̃/Qp)→ GLn(Z/p2Z)

which lifts ρ and has image containing Γ̃n(Zp). The strict equivalence class of this lift
corresponds to a unique local Zp-algebra homomorphism ψ2 : Rρ → Z/p2Z, where Rρ is
the universal deformation ring of ρ. Due to the description of Rρ as a power series ring of
relative dimension n2 + 1 over Zp from Proposition 1, it is clear that there are uncountably
many distinct local Zp-algebra homomorphisms ψ : Rρ → Zp which lift ψ2. Each such ψ
corresponds by specialization of the universal deformation to a lift ρ : GQp → GLn(Zp) of ρ2

(hence also of ρ), in fact an entire strict equivalence class of such liftings. Moreover, because
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the reduction modulo p2 of such a ρ has image containing Γ̃n(Zp), the image of such a ρ
itself contains Γn(Zp) by [DdSMS91, 1.9 Proposition]. This completes the proof. �

3. Residual representations satisfying the lifting criterion

In seeking residual representations ρ : GQp → GLn(Fp) which satisfy the hypotheses of
Theorem 3, we have not attempted an exhaustive enumeration of all the possibilities. (This
might be feasible however, as the finite Galois groups whose representation theory must be
analyzed are metacyclic, and in fact can always be assumed to be split metacyclic. The irre-
ducible Fp-representations of such groups are all induced from explicit characters of explicit
subgroups, and can be parametrized in a pleasantly number-theoretic manner. By Galois
descent one obtains a parameterization of the irreducible Fp-representations. See [Dal16,
§2] for a lucid exposition.) Instead, we sought cases in which the numerology governing the
structure of the Galois group and its representations was such that (a) the Galois group
would admit an irreducible Fp-representation of the maximal possible dimension and (b) the
(ultimately numerical) representation-theoretic condition imposed on the adjoint represen-
tation in Theorem 3 could be verified directly. The family of representations which we found
is described in the following theorem.

Theorem 4. Let (e, f) be a pair of integers where e = `d is a power of an odd prime `,
f = ϕ(`d) = `d−1(`− 1), and suppose that

(1) p 6= `,
(2) p - `− 1, and
(3) p is a primitive root modulo `d (i.e. the residue class of p in Z/`dZ generates the

cyclic group (Z/`dZ)×).

Set L = Qp(ζpf−1, p
1/e). Then L is a Galois extension of Qp of degree ef prime to p and

its Galois group Gal(L/Qp) admits a unique absolutely irreducible Fp-representation τcan

of dimension f . If ρ : GQp → GLf (Fp) is the inflation of τcan to GQp, then ρ satisfies
the hypotheses of Theorem 3, and therefore admits uncountably many Zp-inequivalent lifts
ρ : GQp → GLf (Zp) with Γf (Zp) ≤ im(ρ). In particular these lifts have open image in
GLf (Zp).

Proof. We only give an outline of the proof here. Let H = Gal(L/Qp) and let T =
Gal(L/Qp(ζpf−1)) be the inertia subgroup of H (which is cyclic and normal). The exis-
tence and uniqueness of τcan is a consequence of the classification of mod p representations of
H described in [Dal16, §2]. Since p - |H|, ρ is tame, and since L does not contain a primitive
p-th root of unity (as p− 1 does not divide the ramification index e = `d of L over Qp), ρ is
unobstructed by Proposition 2.

Thus it remains to verify the representation-theoretic condition in Theorem 3 for Ad(ρ).
Note that we are viewing the adjoint as a representation of Gal(L/Qp), and that we may
work with L instead of the (potentially smaller) splitting field of ρ, as the condition on
the adjoint is insensitive to this change. Moreover, due to the semisimplicity of the mod p
representation theory of H and the behavior of irreducible Fp-representations of H under
extension of scalars to a finite extension k of Fp which is a splitting field for H (i.e. for
which every irreducible k-representation of H is absolutely irreducible), we may verify the
representation-theoretic condition after extending scalars to such a field k (we take k to be
the extension of the residue field Fpf of L obtained by adjoining a primitive f -th root of
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unity). Then τcan can be realized explicitly as IndHT (θ), where θ : T → k× is the canonical
faithful character of order e which sends t ∈ T to the image of t(p1/e)/p1/e in k× (this is
only canonical up to the choice of the uniformizer p for Qp, but the terminology still seems
reasonable to us).

The fact that p is a primitive root modulo `d ensures that IndHT (θ) is self-dual, so we can
realize the adjoint representation as IndHT (θ) ⊗k IndHT (θ), which decomposes according to
Mackey’s tensor product decomposition theorem ([CR81, (10.18)]) as the direct sum of the
representations IndHT (θ1+i), where i runs through the integers in [1, e − 1] relatively prime
to e. The problem now is to show that the multiplicity of any irreducible k-representation
of H in this direct sum is bounded above by its multiplicity in the regular representation,
which is the dimension of the representation (since k is a splitting field for H). Using a
variant of Frobenius reciprocity ([CR81, (10.21) Proposition]) together with Mackey’s the-
orem on the decomposition of the restriction of an induced representation to a subgroup
([CR81, (10.13)]), we can give the decomposition of IndHT (θ1+i) into irreducible representa-
tions and show in particular that IndHT (θ1+i) is multiplicity-free. Finally, using the usual
form of Frobenius reciprocity, we can show that the number of summands IndGT (θ1+i) in
which a given irreducible k-representation of H may appear is at most its dimension (and
indeed this bound cannot be improved as we have explicit examples where it is attained).
Combining this with the fact that each summand IndHT (θ1+i) is multiplicity-free gives the
desired bound. �

Remark 5. Although the majority of the work in proving Theorem 4 depends only on
standard results on induced representations of finite groups, the fact that the multiplicity
bounds we are able to obtain for the adjoint cannot generally be improved suggests that
our choice to focus on pairs (e, f) of the form in the theorem, the corresponding tamely
ramified Galois extension, and what we have called the canonical representation of H, is
a fairly judicious one. This choice is informed by the aforementioned elementary number-
theoretic qualities of the parameterization of irreducible k-representations of H described
in [Dal16, §2] and our desire to have representations of large dimension. An additional
feature of the canonical representation of H which distinguishes it from general irreducible
k-representations of H is that it is induced from T , a normal subgroup of H. This normality
simplifies the applications of Mackey’s theorems which are essential to the proof.

Remark 6. Although we do not know whether or not, for a fixed (odd) prime p, a pair (e, f)
as in Theorem 4 always exists, if we instead fix a pair (e, f) of the form (`d, `d−1(`− 1)) for
an odd prime `, then the set of odd primes p satisfying the three conditions in Theorem 4
relative to this pair has positive density by Chebotarev.

We close with a corollary which follows from using the representations of Theorem 4 as
inputs to Theorem 3.

Corollary 7. For p ∈ [3, 31], the set of integers n for which there exist residually absolutely
irreducible representations ρ : GQp → GLn(Zp) with Γn(Zp) ≤ im(ρ) is unbounded. More
generally, this holds for any odd prime p such that there exists an odd prime ` 6= p, p - `− 1,
for which p is a primitive root modulo `d for all d ≥ 1. (Note that if p is a primitive root
modulo `, then it will also be a primitive root modulo `d for all d ≥ 1 provided p`−1 is not
congruent to 1 modulo `2.)
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Proof. If p is an odd prime for which there exists an odd prime ` 6= p as in the statement of
the corollary, then by Theorem 4, the set of integers in question contains `d−1(`− 1) for all
d ≥ 1, and hence is clearly unbounded. For the first assertion of the theorem, one can easily
check that for each p ∈ [3, 31], there is a prime ` ∈ [3, 31] with the necessary properties. �

Remark 8. It’s clear from Corollary 7 that the coarse quantitative properties of the set
of representations ρ : GQp → GLn(Zp) with Γn(Zp) ≤ im(ρ) whose existence we have
established depend on elementary (but presumably not known) properties of primitive roots
modulo primes (and prime powers). It seems reasonable to expect that the condition in
Corollary 7 holds for every odd prime p, although as far as we know, this is unknown. Also
relevant to this issue is a special case of Artin’s conjecture on primitive roots which asserts
that for a fixed (odd) prime p, the set of odd primes ` 6= p such that p is a primitive root
modulo `, is infinite (and even has positive density). It is known by work of Heath-Brown
([HB86]) that there are at most two primes p for which the infinitude in Artin’s conjecture
may fail (GRH has been shown to imply that there are no such exceptional primes). However,
even for the non-exceptional primes p, it is not immediately clear to us whether the set of
(odd) primes ` 6= p modulo which p is a primitive root and for which p - `− 1 is still infinite.
If this holds for a given prime p, then we would again obtain the unboundedness statement
in Corollary 7 for p, even restricting to dimensions of the form `− 1 for primes `.
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