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Abstract. In large random graphs with fixed edge density and triangle density, it has been
observed numerically [9] that a typical graph is finite-podal, meaning that it has only finitely
many distinct “types” of vertices. In particular, it seems to be a fundamental property of
such graphs to have large groups of vertices that are all of the same type. In this paper we
describe a mechanism that produces such behavior. By known results on graph limits, the
problem reduces to the study of a constrained maximization problem for symmetric measurable
functions (graphons) on the unit square. As a first step we prove that, under an assumption
that holds for a wide range of parameter values, the constrained maximizers are in some sense
monotone.

1. Introduction and main results

We consider a variational problem on the space G of all symmetric measurable functions
on [0, 1]2 that take values in [0, 1]. Such functions arise in the asymptotic analysis of large
simple graphs, and in this context, they are also called (labeled) graphons.

Consider first simple graphs with vertex set In = {1/n , 2/n , . . . , n/n}. For simplicity we
identify such a graph with its incidence matrix g : In × In → {0, 1}. The edge density of g
is the number of edges divided by

(

n
2

)

, and the triangle density is the number of triangles

divided by
(

n
3

)

. To leading order in n, these two densities are given by

E(g) =

∫∫

g(z) dz , T (g) =

∫∫

g(z)g⋆2(z) dz , (1.1)

where g⋆2(x, y) =
∫

g(x, s)g(s, y) ds. Here the single integral is over In and the double
integrals are over In × In, using normalized counting measure on these sets.

Graphons can be obtained as limits of such graphs, as n → ∞. For precise statements
and results see [5]. Roughly speaking, the values of a graphon represent limits of averages
for graphs. The edge density E(g) and triangle density T (g) of a graphon g ∈ G are defined
as in (1.1). But in this case, and from now on, simple integrals are over the unit interval
I = [0, 1] and double integrals are over the unit square I × I, using Lebesgue measure.
When talking about these densities, a pair of real values (ǫ, τ) will be called accessible if
ǫ = E(g) and τ = T (g) for some graphon g. The set of accessible pairs is known explicitly
[3,5]. It consists of the region ǫ3 ≤ τ ≤ ǫ3/2 and part of the region ǫ(2ǫ− 1) ≤ τ ≤ ǫ3.

Given an accessible pair (ǫ, τ), denote by Zǫ,τ,n,δ the number of simple graphs with n
vertices, whose edge densities belong to [ǫ − δ, ǫ + δ], and whose triangle densities belong
to [τ − δ, τ + δ]. Then the limit limδ→0 limn→∞ n−2 lnZǫ,τ,n,δ exists and agrees with the
maximum value of the entropy

S(g) =
1

2

∫

S
(

g(z)
)

dz , S(g) = −g log(g)− (1− g) log(1− g) , (1.2)
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taken over all graphons g ∈ G that satisfy E(g) = ǫ and T (g) = τ . This was proved
among other things in [8], using ideas and results from [4,7]. Roughly speaking, if n is
large then a typical simple n-vertex graph gn with edge density E(gn) ≃ ǫ and triangle
density T (gn) ≃ τ is close to a graphon g that maximizes the entropy (1.2) subject to the
constraints E(g) = ǫ and T (g) = τ . The notion of closeness used here implies e.g. that if
H is the density function for some other subgraph, then H(gn) ≃ H(g).

Generalizations of the above-mentioned result can be found in [10]. In this paper we
only consider constraints on the densities of edges and triangles.

Definition 1.1. We say that a graphon g0 is a constrained entropy-maximizer if S(g) ≤
S(g0) for every graphon g that satisfies E(g) = E(g0) and T (g) = T (g0).

The simplest constrained entropy-maximizers are those that maximize S subject to a
single constraint E(g) = ǫ. These graphons are constant almost everywhere on I × I, so
T (g) = ǫ3 in this case. In what follows, we will omit qualifiers like “almost everywhere”
when it is clear what null sets should be ignored. Other known constrained maximizers
include those whose density pairs (ǫ, τ) lie on the boundary of the accessible region [6].
Each of these graphons is finite-podal, in the sense that it has only finitely many distinct
types of vertices (outside some set of measure zero).

Definition 1.2. The type of a “vertex” y ∈ I for a graphon g is the function g(., y).

Numerical results in [9] suggest that every graphon g that maximizes the entropy S
subject to the constraints E(g) = ǫ and T (g) = τ is in fact finite-podal. Furthermore,
if τ > ǫ3 then the constrained maximizer appears to be two-podal (two distinct types of
vertices). This has been proved recently in [11], in the case where τ > ǫ3 is sufficiently
close to ǫ3, for any given ǫ ∈ (0, 1) different from 1/2 .

A basic property of finite-podal graphons is that they have large groups of vertices
of the same type. As a possible step toward a more global result, we describe here a
mechanism that forces some constrained entropy-maximizers to have this property. We
restrict to a case where we can show that a constrained entropy-maximizer does not take
the values 0 or 1. This case is described in the following lemma. Let I = I × I.

Definition 1.3. We say that g ∈ G and h ∈ G are positively (negatively) correlated if the
product [g(z)− g(z0)][h(z)− h(z0)] is nonnegative (nonpositive) for almost all z, z0 ∈ I.

Denote by G◦ the set of all functions g ∈ G with the property that ess inf g > 0 and
ess sup g < 1. Then we have the

Lemma 1.4. Let g ∈ G be a constrained entropy-maximizer with positive entropy. Assume
that g and g⋆2 are not negatively correlated. Then g belongs to G◦.

Some properties of constrained entropy-maximizers that are not covered by this lemma
will be described later in Theorem 2.1.

Let now g be a constrained entropy-maximizer that belongs to G◦. Then by the
method of Lagrange multipliers, there exist real numbers α and β such that

S′(g) = α+ βg⋆2 . (1.3)



Vertex order in random graphs 3

Notice that S′ is decreasing: S′(g) = log((1− g)/g). Assuming that g is not constant, we
must have β 6= 0. Thus g and g⋆2 are either positively correlated (β < 0) or negatively
correlated (β > 0). A simple argument given in Section 2 shows that β ≤ 0 implies τ ≥ ǫ3.
Presumably the converse is true as well, but we have no proof for this.

Definition 1.5. We say that g ∈ G is ordered if g(x0, y0) ≥ g(x1, y1) for almost all
(x0, y0) ∈ I and (x1, y1) ∈ I that satisfy x0 ≤ x1 and y0 ≤ y1. We say that g can be
ordered if there exists an ordered g∗ ∈ G and a measure-preserving map v : I → I such
that g∗(v(x), v(y)) = g(x, y) for almost all (x, y) ∈ I.

Notice that, if g = g∗◦(v×v) as described above, then E(g) = E(g∗) and T (g) = T (g∗)
and S(g) = S(g∗). Our main results are the following.

Theorem 1.6. Let g ∈ G be a constrained entropy-maximizer with positive entropy.
Assume that g and g⋆2 are not negatively correlated. Then g can be ordered.

This ordering property can be used to prove the

Theorem 1.7. Under the same hypotheses as in Theorem 1.6, there exists a set J ⊂ I
of positive measure such that g(., y1) = g(., y2) whenever y1, y2 ∈ J . In particular, g is
constant on J × J .

The remaining part of this paper is organized as follows. In Section 2 we give a
generalization of Lemma 1.4 and introduce some notation. Section 3 is concerned mainly
with the regularity of graphons that satisfy the variational equation (1.3). In Section 5 we
prove Theorem 1.6, using the results from Section 4 concerning constrained local maxima
of the triangle density T (g). Section 6 is devoted to the proof of Theorem 1.7.

2. Additional observations

The last statement in Theorem 1.7 is a special case of the following fact. Let g be a graphon
with large classes of vertices of the same type; that is, some subset Y ⊂ I admits a partition
{Y1, Y2, . . .} into sets of positive measure, such that for any two points y1, y2 ∈ Y there
exists a set X ⊂ Y of measure |Y | such that g(., y1) = g(., y2) on X whenever y1 and
y2 belongs to the same set Yn. This property does not change if g is modified an a null
set, and the vertex classes Yn stay the same up to null sets. Thus we may assume that g
agrees pointwise with the Lebesgue derivative of the measure A 7→

∫

A
g(z) dz. We may also

assume that each point in Yn is a Lebesgue density point for Yn. Then it is easy to see that
the set X above can be chosen to be independent of y1 and y2. Define Jn = Yn ∩X for all
n. By the symmetry of g we have g(x1, y1) = g(x2, y1) = g(x2, y2) whenever x1, x2 ∈ Jm
and y1, y2 ∈ Jn for some m and n. In other words, g is constant on each of the sets Jm×Jn.

The following is a generalization of Lemma 1.4.

Theorem 2.1. Let g ∈ G be a constrained entropy-maximizer with positive entropy.
Suppose that g does not belong to G◦. Then g(z) = 0 or g(z) = 1 on some set of positive
measure. Furthermore, there exists 0 < γ < 1 such that for almost every z ∈ I,
(a) if g(z) = 0 then g⋆2(z) > γ,
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(b) if 0 < g(z) < 1 then g⋆2(z) = γ,
(c) if g(z) = 1 then g⋆2(z) < γ.

Notice that a graphon g with the properties (a), (b), and (c) is negatively correlated
with g⋆2. Our guess is that there are no constrained entropy-maximizer with these prop-
erties, except for densities (ǫ, τ) on the boundary of the accessible region.

Before giving a proof of Theorem 2.1 we introduce some notation and show that
positive correlation implies τ ≥ ǫ3.

By analogy with incidence matrices, a graphon g will sometimes be regarded as the
kernel of an integral operator G. More generally, to a function h ∈ L2(I) we associate
the Hilbert-Schmidt operator H : f 7→

∫

h(., y)f(y) dy on L2(I). The integral kernel of a
product GH will be denoted by g ⋆ h. Notice that the function g⋆2 defined after (1.1) is
simply g ⋆ g. Notice also that T (g) = tr

(

G3
)

.
To come back to a claim made after (1.3), assume that g ∈ G and g⋆2 are positively

correlated. The claim is that the densities ǫ = E(g) and τ = T (g) satisfy τ ≥ ǫ3. Indeed,
using that E(g) = 〈g, 1〉 ≤ 〈g, g〉1/2 for the inner product in L2(I), we obtain

T (g)− E(g)3 ≥ T (g)− 〈g, 1〉〈g, g〉

=
1

2

∫∫∫∫

[

g(z)− g(z0)
][

g⋆2(z)− g⋆2(z0)
]

dzdz0 ≥ 0 .
(2.1)

Finally, let us mention that (1.3) is the equation DFα,β(g) = 0 for a critical point of
the “free energy”

Fα,β(g) = S(g)− 1
2
αE(g)− 1

6
βT (g) . (2.2)

The critical points of interest are in general not maximizers of this free energy: it is not
hard to show that all maximizers of Fα,β for β ≤ 0 are constant [7].

Definition 2.2. A set B ⊂ I is said to be symmetric if it is invariant under the reflection
(x, y) 7→ (y, x). Two sets B0 ⊂ I and B1 ⊂ I will be called projection-disjoint if no vertical
line {x} × I and no horizontal line I × {y} intersects both B0 and B1.

Proof of Theorem 2.1. Let g ∈ G be a constrained entropy-maximizer. For ε ≥ 0
define Iε = {z ∈ I : ε < g(z) < 1 − ε}. Assuming S(g) > 0, the set Iε has positive
measure for ε > 0 sufficiently small. In what follows, we always assume that 0 < ε < 1/2 ,
and we identify functions on Iε with functions on I that vanish outside Iε. For functions
h ∈ L∞(Iε) of norm ‖h‖∞ < ε, and for F ∈ {E, T,S}, define Fε(h) = F (g + h) − F (g).
Notice that Fε is smooth near the origin, as a function from L∞(Iε) to the real numbers.
By assumption, h = 0 maximizes Sε subject to the constraints Eε(h) = Tε(h) = 0.

Suppose that g does not belong to G◦. In other words, |Iε| < 1 for all ε > 0.
Assume for contradiction that the derivatives DEε(0) and DTε(0) are linearly inde-

pendent, for some ε > 0 and thus for all ε > 0 sufficiently small. Then there exits real
numbers α and β (Lagrange multipliers) such that S′(g) = α+βg⋆2 almost everywhere on
Iε. This holds for ε > 0 sufficiently small, with α and β independent of ε. If the set I0 has
measure |I0| = 1 then S′(g) = α+ βg⋆2 almost everywhere on I. Given that S′(r) → +∞
as rց0 and S′(r) → −∞ as rր1, this is possible only if Iε has measure 1 for some ε > 0.
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So we may assume that either Z0 = {z ∈ I : g(z) = 0} or Z1 = {z ∈ I : g(z) = 1} has
positive measure.

Consider first the case |Z0| > 0. Consider a small perturbation g + sf of g, where
f is the indicator function of Z0. Pick ε > 0 such that DEε(0) and DTε(0) are linearly
independent. If s > 0 is sufficiently small, then there exists hs ∈ L∞(Iε) such that
Eε(sf + hs) = 0 and Tε(sf + hs) = 0. This follows from the implicit function theorem. In
fact, we get ‖hs‖∞ = O(s) as sց0. Now notice that S(g+ sf + hs) = S(g+ sf) + Sε(hs)
and that

S(g + sf)− S(g) ∼ s ln(1/s) , (2.3)

where u(s) ∼ v(s) means that u(s)/v(s) converges to a positive constant as sց0. Thus,
S(g + sf + hs) > 0 for s > 0 sufficiently small, contradicting the assumption that g is
a constrained local entropy-maximizer. A similar contradiction is obtained in the case
|Z1| > 0. So the derivatives DEε(0) and DTε(0) must be linearly dependent for all ε > 0.

At this point we have established that the function g⋆2 is constant a.e. on I0. If
|I0| = 1 then g is constant a.e. as well and we are done. So we may assume that |Z0| > 0
or |Z1| > 0. Our goal is to use again a perturbation sf satisfying (2.3), and to compensate
for the resulting change in T with another perturbation th.

Assume for contradiction that there is no positive γ < 1 for which (a) and (b) and
(c) hold. Then g and g⋆2 are not negatively correlated. Thus, restricting to Lebesgue
points for g, we can find symmetric sets J0 ⊂ I and J1 ⊂ I of positive measure such that
g(z0) < g(z1) and g⋆2(z0) < g⋆2(z1) for all z0 ∈ J0 and z1 ∈ J1. Clearly J0 ∩ Z1 and
J1 ∩ Z0 have zero measure. And since g⋆2 is constant in I0, either J0 ∩ Z0 or J1 ∩ Z1

has positive measure. Consider first the case where |J0 ∩ Z0| > 0. If ε > 0 is sufficiently
small then we can find a symmetric set A1 ⊂ J1 of positive measure such that g > ε on
A1. In addition we choose symmetric sets B ⊂ I0 and A0 ⊂ J0 ∩ Z0 of positive measure.
Clearly the sets B, A0, and A1 can be chosen in such a way that B and A0 ∪ A1 are are
projection-disjoint. Now define f = |A1|f0 − |A0|f1, where f0 and f1 are the indicator
function of A0 and A1, respectively. Since g

⋆2(z0) < g⋆2(z1) for all z0 ∈ A0 and all z1 ∈ A1

we have

T (g + sf) = T (g) + 3bs+O
(

s2
)

, b = 〈g⋆2, f〉 < 0 , (2.4)

for s > 0 sufficiently small. Notice that sf has average zero and satisfies (2.3).
Our next goal is to undo the decrease in T with another perturbation th. To this

end, we choose symmetric sets B0 ⊂ B and B1 ⊂ B that are projection-disjoint and have
positive measure. Let h0 and h1 be the indicator function of B0 and B1, respectively.
Define h = |B1|h0 − |B0|h1 if this makes DS0(g)h ≥ 0, or else define h = |B0|h1 − |B1|h0.
Since B0 and B1 are projection-disjoint, we have h0 ⋆ h1 = h1 ⋆ h0 = 0. Furthermore,
〈g⋆2, h〉 = 0 since g⋆2 is constant on B. Thus, T (g + th)− T (g) = 3at2 +O

(

t3
)

with

a = 〈g, h⋆2〉 = |B1|
2〈g, h⋆2

0 〉+ |B0|
2〈g, h⋆2

1 〉 > 0 . (2.5)

Using that t 7→ S(g + th) is analytic near t = 0, there exists c > 0 such that

S(g + th)− S(g) = tDS0(g)h+ 1
2
t2D2S0(g)h

2 +O
(

t3
)

≥ −ct2 (2.6)
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for t > 0 sufficiently small.
Notice that f and h both have average zero, so that E(g+ sf + th) = E(g). Further-

more, since f ⋆ h = h ⋆ f = 0 we have

T (g + sf + th) = T (g) + 3bs+ 3at2 +O
(

s2
)

+O
(

t3
)

, (2.7)

for s, t > 0 with s + t small. Recall that b < 0 < a. So T (g + th + sf) = T (g) along
some continuous curve s = σ(t) = |b|−1at2 + O

(

t3
)

, for t > 0 sufficiently small. But
S(g+sf+th) ≥ S(g+sf)−ct2 and S(g+sf) satisfies (2.3). Thus S(g+σ(t)f+th) > S(g)
for t > 0 sufficiently small, contradicting the assumption that g is a constrained local
maximizer of S. A similar contradiction is obtained in the case |Z1| > 0. This concludes
our proof of Theorem 2.1. QED

3. Regularity

In this section we describe regularity properties of the function g⋆2 associated with a
graphon g ∈ G. Later we will restrict to functions g that satisfy the relation (1.3) for
β 6= 0. Then g will have the same regularity as g⋆2.

In what follows, g and h are fixed but arbitrary functions in L∞(I). Let Y be the
set of all points y ∈ I for which x 7→ h(x, y) is measurable. By Fubini’s theorem Y is
measurable and |Y | = 1.

Proposition 3.1. Let f = g ⋆ h. Then there exist measurable sets J1 ⊂ J2 ⊂ . . . ⊂ I with
|I \ Jm| → 0 as m → ∞, such that the following holds for each m. The function f(., y) is
uniformly continuous when restricted to Jm, uniformly in y for y ∈ Y . Each point in Jm
is a Lebesgue density point for Jm and a Lebesgue point for f(., y) if y ∈ Y .

Proof. We may assume that ‖g‖∞ ≤ 1 and ‖h‖∞ ≤ 1.
Let n be a fixed but arbitrary positive integer. By Lusin’s theorem there exists a closed

set F ⊂ I such that the restriction of g to F is continuous, and such that U = I \ F has
measure |U | ≤ 4−n. Since F is compact, the restriction of g to F is uniformly continuous.
Denote by νn the modulus of continuity of this restriction. Define In = {x ∈ I : |Ux| <
2−n} where Ux = {y ∈ Y : (x, y) ∈ U}. For every x ∈ I \ In we have |Ux| ≥ 2−n, and thus
|I \ In| ≤ 2−n. Consequently |In| ≥ 1 − 2−n. Let Fx = {y ∈ Y : (x, y) ∈ F}. Then for
every x, x0 ∈ In and every y ∈ Y we have

∣

∣f(x, y)− f(x0, y)
∣

∣ ≤

∫

∣

∣g(x, z)− g(x0, z)
∣

∣

∣

∣h(z, y)
∣

∣ dz

≤ |Ux ∪ Ux0
|+

∫

Fx∩Fx0

∣

∣g(x, z)− g(x0, z)
∣

∣

∣

∣h(z, y)
∣

∣ dz

≤ 21−n + νn(|x− x0|) .

(3.1)

Denote by Zm the set of points in
⋂

n>m In that are not Lebesgue density points for this
set, and let Z =

⋃

m Zm. Setting X = Y \ Z and Xn = In ∩X define

Jm =
⋂

n>m

Xn , ωm(r) = inf
n>m

[

21−n + νn(r)
]

. (3.2)
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Then every point in Jm is a Lebesgue density point for Jm. Furthermore |Jm| → 1 as
m → ∞. By (3.1) we have

∣

∣f(x, y)− f(x0, y)
∣

∣ ≤ ωm(|x− x0|) , x, x0 ∈ Jm , y ∈ Y . (3.3)

Notice also that ωm(r) → 0 as r → 0. Thus x 7→ f(x, y) is uniformly continuous on Jm,
uniformly in y for y ∈ Y .

Consider the function f0(x) = f(x, y) with y ∈ Y fixed. Let m ≥ 1 and x0 ∈ Jm. Let
γ = f0(x0) and ε > 0. Since f0 is continuous on Jm we have f0 ≥ γ − ε on Q ∩ Jm for
every sufficiently small interval Q centered at x0. Since x0 is a Lebesgue density point for
Jm we have |Q ∩ Jm|/|Q| → 1 as |Q| → 0. Thus the average of f0 on Q is larger than
γ − 2ε if |Q| is sufficiently small. This shows that x0 is a Lebesgue point for f0. QED

Consider now the special case h = g. From (3.3) we obtain
∣

∣g⋆2(x, y)− g⋆2(x0, y0)
∣

∣ ≤ ωm(|x− x0|) + ωm(|y − y0|) , x, y, x0, y0 ∈ Jm . (3.4)

In other words, the restriction of g⋆2 to Jm × Jm is uniformly continuous, for each m.
With the sets Xn and Jm as described in the above proof, define

Ĩ = lim inf
n

Xn =
⋃

m

Jm , Ĩ = Ĩ × Ĩ . (3.5)

Notice that |I \ Jm| ≤ 2−m, and that I \ Ĩ has measure zero. Furthermore, every point in
Ĩ is a Lebesgue density point for Ĩ.

Corollary 3.2. Every point in Ĩ is a Lebesgue point for g⋆2.

Proof. Since every point in Jm is a Lebesgue density point for Jm, every point in Jm =
Jm × Jm is a Lebesgue density point for Jm, and every point in Ĩ is a Lebesgue density
point for Ĩ.

Let x0, y0 ∈ Ĩ. Then (x0, y0) belongs to Jm for sufficiently largem. Let γ = g⋆2(x0, y0)
and ε > 0. Since g⋆2 is continuous on Jm, we have g⋆2 ≥ γ − ε on Q ∩ Jm, for every
sufficiently small square Q centered at (x0, y0). Since (x0, y0) is a Lebesgue density point
for Jm we have |Q∩Jm|/|Q| → 1 as |Q| → 0. Thus the average of g⋆2 on Q is larger than
γ − 2ε if |Q| is sufficiently small. Similarly, the average of g⋆2 on Q is smaller than γ + 2ε
if |Q| is sufficiently small. This shows that (x0, y0) is a Lebesgue point for g⋆2. QED

Corollary 3.3. If g satisfies (1.3) then every point in Ĩ is a Lebesgue point for g.

Assume now that g ∈ G◦ is ordered. For 0 < x < 1 and y ∈ Ĩ define the limits
g(x±, y) = limε↓0 g(x ± ε, y) along points x ± ε in Ĩ. To simplify notation let g(x, y) =
g(0+, y) for x ≤ 0 and g(x, y) = g(1−, y) for x ≥ 1. Define δ1g(x, y) = g(x+, y)−g(x−, y).
Similarly define δ1g

⋆2(x, y) = g⋆2(x+, y)− g⋆2(x−, y). Notice that δ1g ≤ 0. By monotone
convergence we have

δ1g
⋆2(x, y) =

∫

δ1g(x, z)g(z, y) dz , x ∈ I , y ∈ Ĩ . (3.6)
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Assume also that g satisfies (1.3) with β 6= 0. Using (3.6) we see that if x 7→ g(x, y) is
continuous at x0 for some y ∈ Ĩ, then x 7→ g(x, y) is continuous at x0 for every y ∈ Ĩ. This
proves the following

Proposition 3.4. Assume that g ∈ G◦ is ordered and satisfies (1.3). Then g can be
modified on a set of measure zero in such a way that the following holds. There exists
a countable set Z ⊂ (0, 1) such that for every y ∈ I \ Z, the function x 7→ g(x, y) is
continuous on I, except for jump discontinuities at points x ∈ Z.

4. Local extrema

First we relate the constrained maximization problem for S to a constrained maximiza-
tion problem for T . This is useful for the following reason: if w is a measure-preserving
isomorphism of I, then E(g ◦w) = E(g) and S(g ◦w) = S(g). Lemma 3.2 below describes
a situation where T (g ◦ w) > T (g).

Given any nonnegative real number r < 1/2 , denote by Gr the set of all functions g ∈ G
satisfying r < g < 1− r almost everywhere on I. If F is a real-valued function defined on
a domain D ⊂ Gr, we say that g0 ∈ D is a Lp-local maximizer of F on D if there exists
δ > 0 such that F (g0) ≥ F (g) whenever g ∈ D and ‖g − g0‖p < δ. Here ‖.‖p denotes the
norm in Lp(I). Define Gr

ǫ = {g ∈ Gr : E(g) = ǫ} and

Θr
ǫ,τ =

{

g ∈ Gr
ǫ : T (g) = τ

}

, Σr
ǫ,σ =

{

g ∈ Gr
ǫ : S(g) = σ

}

. (4.1)

Proposition 4.1. Let 0 < s < r < ǫ < 1− r. Let g be a non-constant function in Gr
ǫ . Set

τ = T (g) and σ = S(g). Assume that g is a L2-local maximizer of S on Θs
ǫ,τ with β < 0.

Then g is a L2-local maximizer of T on Σr
ǫ,σ.

Proof. Under the given hypotheses we can find a function h ∈ L∞(I) with E(h) = 0 such
that DS(g)h > 0. By the variational equation (1.3) we also have DT (g)h < 0.

Assume for contradiction that g is not a L2-local maximizer of T on Σr
ǫ,σ. Then there

exist functions g1, g2, . . . ∈ Σr
ǫ,σ with gn → g in the L2 sense, such that τn = T (gn) is larger

than τ for all n. For t 6= 0 near zero we have

S(gn + th)− σ = t
[

DS(gn)h+O(t)
]

, (4.2)

with an O(t) bound that is uniform in n. So there exist n′ and t′ > 0 such that S(gn+th) >
σ whenever n ≥ n′ and 0 < t ≤ t′. We also have

T (gn + th)− τ = (τn − τ) + t
[

DT (gn)h+O(t)
]

, (4.3)

with an O(t) bound that is uniform in n. By choosing t′ > 0 sufficiently small we can
make the term [. . .] in this equation negative and bounded away from zero, for all n ≥ n′

and 0 < t ≤ t′. Thus, if n is sufficiently large, then the right hand side of (4.3) is negative
for t = t′. Given that both sides are positive for t = 0 if follows that for n sufficiently
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large, there exists 0 < tn < t′ such that gn + tnh belongs to Θs
ǫ,τ . At the same time

S(gn + tnh) > σ, as described above. This contradicts the assumption that g is a L2-local
maximizer of S on Θs

ǫ,τ . QED

The next lemma plays a crucial role in our proof of Theorem 1.6. To make it more
transparent, we first formulate an analogue for matrices. Since this matrix version will not
be used we state it here without proof:

Let A be a symmetric square matrix with entries Aij ≥ 0. Pick two distinct rows of A,
say Ak. and An.. To simplify the description assume that Aij = 0 for i, j ∈ {k, n}. Replace
Ak. by the pointwise max(Ak., An.) and A.n by the pointwise min(Ak., An.). Similarly
for the columns A.k and A.n. Unless the resulting matrix agrees with A, this operation
increases tr

(

A3
)

.

Let now x0 and x1 be distinct points in (0, 1), and let δ0 be half the smallest distance
between any two distinct points in {0, x0, x1, 1}. Given any positive δ < δ0 define J0 =
[x0 − δ, x0 + δ] and J1 = [x1 − δ, x1 + δ] and J = J0 ∪ J1. Then define u : I → I by setting
u(x) = x−x0+x1 if x ∈ J0, and u(x) = x−x1+x0 if x ∈ J1, and and u(x) = x if x ∈ Jc.
To simplify notation we write u(x) = x′. Let g ∈ G and define

fδ(x) =

∫∫

Px×Nx

g(y, z)
∣

∣g(x′, y)− g(x, y)
∣

∣

∣

∣g(x′, z)− g(x, z)
∣

∣ dydz , (4.4)

for x ∈ J , where where

Px =
{

y ∈ Jc : (x′ − x)[g(x′, y)− g(x, y)] > 0
}

,

Nx =
{

z ∈ Jc : (x′ − x)[g(x′, z)− g(x, z)] < 0
}

.
(4.5)

Notice that fδ(x) is a decreasing function of δ.

Lemma 4.2. Assume that there exists a positive δ < δ0 such that x0 is a Lebesgue point
for fδ and fδ(x0) > 0. Then T (g ◦ w) > T (g), where w : I → I is defined by

w(x, y) =







(x′, y) if x ∈ J and y ∈ Px ,
(x, y′) if y ∈ J and x ∈ Py ,
(x, y) otherwise.

(4.6)

Proof. Let gw = g ◦ w and h = gw − g. Denote by G, Gw, and H the integral operators
with kernels g, gw, and h, respectively, as described in Section 2. Since h is supported in
(J × Jc) ∪ (Jc × J), we have tr

(

H3
)

= 0. Thus

tr
(

G3
w

)

− tr
(

G3
)

= 3tr
(

G2H
)

+ 3tr
(

GH2
)

. (4.7)

For any measurable F : J → R denote by F the average value of F . Then tr
(

G2H
)

= 4δF1,
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where

F1(x) =

∫

Jc

dy
[

g⋆2(x, y)h(x, y) + g⋆2(x′, y)h(x′, y)
]

=

∫

Jc

dy

∫

Jc

dz
[

g(x, z)g(z, y)h(x, y) + g(x′, z)g(z, y)h(x′, y)
]

+O
(

δ2
)

=

∫

Jc

dy

∫

Jc

dz
[

g(x, z)− g(x′, z)
]

g(z, y)h(x, y) +O
(

δ2
)

=

∫

Jc

dy

∫

Jc

dz
[

gw(x, z)− g(x′, z)
]

g(z, y)h(x, y)

−

∫

Jc

dy

∫

Jc

dz h(x, z)g(z, y)h(x, y) +O
(

δ2
)

,

(4.8)

with an O
(

δ2
)

bound that is independent of x. In the third equality we have used that

h(x, y) + h(x′, y) = 0. Similarly we have tr
(

G2H
)

= 4δF2, where

F2(x) =

∫

Jc

dy

∫

Jc

dx g(z, y)h(z, x)h(x, y) +O
(

δ2
)

. (4.9)

Thus, F1 + F2 = F +O
(

δ2
)

, with

F (x) =

∫

Jc

dy

∫

Jc

dz
[

gw(x, z)− g(x′, z)
]

g(z, y)h(x, y)

=

∫

Jc

dy

∫

Nx

dz
[

g(x, z)− g(x′, z)
]

g(z, y)h(x, y)

=

∫

Px

dy

∫

Nx

dz
[

g(x, z)− g(x′, z)
]

g(z, y)
[

g(x, y′)− g(x, y)
]

= fδ(x) .

(4.10)

Putting it all together,

tr
(

G3
w

)

− tr
(

G3
)

= 12δ
[

fδ +O(δ)
]

. (4.11)

Under the given assumption, fδ has a positive limit as δ → 0. Thus, the right hand side
of (4.11) is positive for sufficiently small δ > 0. QED

5. Ordering

The main goal in this section is to give a proof of Theorem 1.6.

Proposition 5.1. Let g ∈ G◦ and define Y (x0, x1) = {y ∈ I : g(x0, y) < g(x1, y)}. Assume
that either Y (x0, x1) or Y (x1, x0) has measure zero, for any two points x0, x1 ∈ Ĩ. Then
g can be ordered.

Proof. Consider g ∈ G◦ satisfying the given assumption. Define

f(x) =

∫

g(x, y) dy . (5.1)



Vertex order in random graphs 11

It is straightforward to check that Y (x0, x1) has measure zero if and only if f(x0) ≥ f(x1).
Define x0 � x1 to mean that either f(x0) > f(x1), or else f(x0) = f(x1) and x0 ≤ x1.
Then (I,�) is totally ordered. Clearly f is decreasing from (I,�) to (I,≤). Define

v(x) =
∣

∣{x′ ∈ I : x′ � x}
∣

∣ . (5.2)

Furthermore, if A is a measurable set of real numbers of finite measure a = |A|, we define
RA = [0, a).

As was shown in [1], the function v : I → I is measure preserving, and (Rf) ◦ v = f ,
where Rf denotes the decreasing rearrangement of f . Recall that the function f and Rf
have the following level set decomposition

f(x) =

∫ ∞

0


{f>t}(x) dt , (Rf)(x) =

∫ ∞

0


R{f>t}(x) dt . (5.3)

Here {f > t} denotes the set of all x ∈ I such that f(x) > t.
Our goal is to obtain a rearrangement Rg of the function g such that

(Rg)
(

v(x), v(y)
)

= g(x, y) . (5.4)

This identity also implies that Rg is symmetric almost everywhere, since the range of v
has full measure.

Consider first some arbitrary nonnegative function F ∈ L∞(I). The corresponding
restrictions F (., y) are measurable on I, for almost every y ∈ I. Thus we can define a
rearrangement R1F of F by setting (R1F )(., y) = RF (., y). An analogous rearrangement
R2F is defined by setting (R2F )(x, .) = RF (x, .). Specifically we have

(RjF )(x, y) =

∫


Rj{F>t}(x, y) dt , j = 1, 2, (5.5)

where
R1A =

{

(x, y) ∈ I : 0 ≤ x < |A.y|
}

, A.y = {x ∈ I : (x, y) ∈ A} ,

R2A =
{

(x, y) ∈ I : 0 ≤ y < |Ax.|
}

, Ax. = {y ∈ I : (x, y) ∈ A} ,

for any set A ⊂ I. By Fubini’s theorem, if A is measurable then so are R1A and R2A. By
the uniqueness of the level set decomposition, we have {RjF > t} = Rj{F > t} for all t.
This show e.g. that F and RjF are equimeasurable.

Consider again the function g and define Rg = R2R1g. Clearly g and Rg are equimea-
surable. Let g.y = g(., y). For almost every y ∈ I there exists a measure preserving function
vy : I → I such that (Rg.y) ◦ vy = g.y. In fact, using that g.y is decreasing almost every-
where on I, as a function from (I,�) to (I,≤), we can take vy = v to be independent of
y. The same applies to the functions gx. = g(x, .). This shows that (5.4) holds for almost
every x, y ∈ I. QED

Assume now that g ∈ G◦ satisfies the equation (1.3) with β 6= 0. As shown in Section
3, there exists a set Ĩ ⊂ I of measure 1 and an increasing sequence of measurable sets
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Jm ր Ĩ such that the restriction of g to each Jm × Jm is uniformly continuous. We may
assume that every point of Jm is a Lebesgue density point for Jm.

Proposition 5.2. Assume that g ∈ G◦ satisfies (1.3) with β 6= 0. Then g is ordered if and
only if for every y ∈ Ĩ the function x 7→ g(x, y) is decreasing on Ĩ.

Proof. The “if” part is obvious. To prove the “only if” part, assume that g is ordered.
Let y ∈ Ĩ. Then there exists M > 0 such that y ∈ Jm for all m ≥ M . By continuity, g is
ordered on each of the sets Jm×Jm. Thus x 7→ g(x, y) is decreasing on Jm for all m ≥ M .
This implies that x 7→ g(x, y) is decreasing on Ĩ. QED

Lemma 5.3. Assume that g ∈ G◦ satisfies (1.3) with β < 0. Assume that g cannot be
ordered. Then for every ε > 0 there exists a measure-preserving bijection w : I → I such
that ‖g ◦ w − g‖2 < ε and T (g ◦ w) > T (g).

Proof. Under the given assumptions, Proposition 5.1 implies that there exists points
x0, x1 ∈ Ĩ and sets Y, Z ⊂ I of positive measure such that g(x0, y) < g(x1, y) for all y ∈ Y
and g(x0, z) > g(x1, z) for all z ∈ Z. Since Jm ր Ĩ we have x0, x1 ∈ Jm for large m. And
since Ĩ has full measure, choosing m sufficiently large guarantees that Y ′ = Y ∩ Jm and
Z ′ = Z ∩ Jm have positive measure.

We may assume that x0 and x1 belong to the open interval (0, 1). Given any δ > 0
define J0 = [x0− δ, x0+ δ] and J1 = [x1− δ, x1+ δ] and J = J0 ∪J1. We now choose δ > 0
sufficiently small such that J0 and J1 are disjoint subsets of I, and such that Y ′′ = Y ′∩Jc

and Z ′′ = Z ′ ∩ Jc have positive measure, where Jc = I \ J .
Consider the sets Px and Nx defined in (4.5), with u : x 7→ x′ as described before

(4.4). If x = x0 then one of these sets includes Y ′′ and the other includes Z ′′. So in this
case Ex and Nx both have positive measure. Since g is uniformly continuous on Jm × Jm,
the same holds for every x ∈ Jm that is sufficiently close (but not necessarily equal) to x0.
And since x0 is a Lebesgue density points for Jm, this applies to a set of points x ∈ Jm
that has positive measure. Thus x0 is a Lebesgue point for fδ and fδ(x0) > 0. The claim
now follows from Lemma 4.2. QED

Proof of Theorem 1.6. Let g ∈ G be a constrained entropy-maximizer with positive
entropy σ = S(g). Assume that g and g⋆2 are not negatively correlated. Then g belongs
to G◦ by Lemma 1.4. Furthermore, as explained after Lemma 1.4, g satisfies the equation
(1.3) with β < 0. We may assume that g is not constant.

Pick r > 0 such that g ∈ Gr. Let ǫ = E(g). Then by Proposition 4.1, g is a L2-local
maximizer of T on Σr

ǫ,σ. And by Lemma 5.3 this implies that g can be ordered, as claimed.
QED

6. Proof of Theorem 1.7

Let g ∈ G be a constrained entropy-maximizer with positive entropy. Assume that g and
g⋆2 are not negatively correlated. Then g belongs to G◦ by Lemma 1.4. Furthermore, as
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explained after Lemma 1.4, g satisfies the equation (1.3) with β < 0. By Theorem 1.6 we
may assume that g is ordered.

By Proposition 3.4 we can also assume that for all y ∈ I outside some countable set
Z ⊂ (0, 1), the function x 7→ g(x, y) is continuous on I, except for jump discontinuities at
points x ∈ Z. In particular, we have g(., y) → g(., 0) pointwise, as yց0. It is not hard to
see that the convergence is in fact uniform. Let Ĩ = I \ Z.

Using that S′(g) = α+ βg⋆2 we have

S′
(

g(x, y)
)

− S′
(

g(x, η)
)

= β

∫

g(x, z)
[

g(z, y)− g(z, η)
]

dz . (6.1)

Given j ∈ {1, 2} let yj < ηj be two points in Ĩ. Define

S′′
j =

∫ 1

0

S′′(gj,s) ds , gj,s = (1− s)g(., ηj) + sg(., yj) . (6.2)

Then the equation (6.1) for y = yj and η = ηj can be written as

S′′
j (x)fj(x) = β

∫

g(x, z)fj(z) dz , fj(x) = g(x, yj)− g(x, ηj) . (6.3)

Equivalently, fj satisfies the equation

fj = WjGfj , (Wjφ)(x) = wj(x)φ(x) , wj(x) =
β

S′′
j (x)

. (6.4)

Since yj < ηj the function fj is nonnegative. Furthermore, we see from (6.3) that either

fj = 0 on Ĩ or else fj > 0 on Ĩ. Notice also that wj is positive and bounded away from
zero.

Consider Wj and G as linear operators on L2(I). Clearly Wj is bounded and G is
compact. Both operators are self-adjoint, and Wj is positive. Thus, we can rewrite the
equation fj = WjGfj more symmetrically as

hj = Ajhj , hj = W
−1/2
j fj , Aj = W

1/2
j GW

1/2
j . (6.5)

Assume that fj is not identically zero on Ĩ. Since Aj is a compact self-adjoint integral
operator with positive kernel, and since hj is a positive eigenfunction of Aj with eigenvalue
1, it is clear that λj = 1 is the largest eigenvalue of Aj and that it is simple. Using the
corresponding Rayleigh quotient we see that

λ−1
j = inf

f 6=0

〈

f, β−1S′′
j f

〉

〈f,Gf〉
. (6.6)

The infimum is attained if and only if f is a constant multiple of fj .
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Consider now two pairs (y1, η1) and (y2, η2) in Ĩ × Ĩ satisfying

y1 ≤ y2 < η2 , y1 < η1 ≤ η2 . (6.7)

Then
g1,s(x) = (1− s)g(x, η1) + sg(x, y1)

≥ (1− s)g(x, η2) + sg(x, y2) = g2,s(x) .
(6.8)

We will use that

S′′
1 − S′′

2 =

∫

[

S′′(g1,s)− S′′(g2,s)
]

ds = S′′′[g1,s − g2,s] , (6.9)

where

S′′′ =

∫∫

S′′′(ḡs,t) dsdt , ḡs,t = (1− t)g2,s + tg1,s . (6.10)

Notice that

S′(g) = log
(1− g

g

)

, S′′(g) =
−1

g(1− g)
, S′′′(g) =

1

g2
−

1

(1− g)2
. (6.11)

Case 1. Consider first the case where g(1, η) ≥ 1/2 for some positive η ∈ Ĩ. This occurs
e.g. when g(1, 0) > 1/2 . Let J = (0, η] ∩ Ĩ. Then g(x, y) ≥ 1/2 for all x ∈ Ĩ and y ∈ Y . Let
y1 = y2 = 0. If f1 = 0 for all choices of η1 < 1 in some subset Y ⊂ J of positive measure,
then g is constant on Ĩ×Y and we are done. So we may assume now that f1 6= 0. Similarly
we may assume that f2 6= 0.

Consider now η1 < η2 in J . Since S′′′ is negative on the interval (1/2 , 1) we have
S′′
1 ≤ S′′

2 and thus w1 ≤ w2, implying that

〈h,A1h〉 ≤ 〈h,A2h〉 , h ≥ 0 . (6.12)

Assume for contradiction that there exists η1 < η2 in J such that g(x, η1) > g(x, η2) for
all x in some set X ⊂ Ĩ of positive measure. Then the inequality (6.12) is strict unless
h vanishes on X. Taking h = h1 this leads to a contradiction. Thus we must have
g(., η1) = g(., η2) on Ĩ, for all η1 < η2 in J .

Case 2. Now consider the case where g(0, η) ≤ 1/2 for some η ∈ Ĩ smaller than 1. This
occurs e.g. when g(0, 1) < 1/2 . Let J = [η, 1) ∩ I. Then g(x, y) ≤ 1/2 for all x ∈ Ĩ and
y ∈ J . Let η1 = η2 = 1. By arguments analogous to those used in Case 1, we find that
g(., y1) = g(., y2) on Ĩ for all y1 < y2 in J .

Case 3. Next consider the case where g(0, 1) = 1/2 and g(0, η) > 1/2 for all η ∈ Ĩ. Equiv-
alently we have g(1, 0) = 1/2 and g(x, 0) > 1/2 for all x ∈ Ĩ. Notice that, if g(1, 0) were
just a bit larger then we would be in Case 1. In order to estimate what happens near the
point (0, 1) it is convenient to use (6.6) in place of (6.5). Let y1 = y2 = 0. In what follows,
η denotes a small positive number in Ĩ to be specified later. As a first step, we will prove
that

〈f1,Kf1〉 ≥ 0 , K = S′′
2 − S′′

1 , (6.13)
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for η1 < η2 in J = (0, η] ∩ Ĩ. The inner product in this equation is the integral of Kf2
1

from 0 to 1. If we had g(1, η) ≥ 1/2 as in Case 1, then K ≥ 0 due to the monotonicity of
S′′ on (1/2 , 1). In the case at hand, we still have K ≥ 0 on [0, ξ] for any given ξ ∈ (0, 1),
provided that η > 0 has been chosen sufficiently small, say η ≤ η0(ξ).

In what follows, our small positive positive parameter is 1− ξ, and we always assume
that 0 < η ≤ η0(ξ). In order to prove (6.13), we will bound the values of the function
g1,s−g2,s on [ξ, 1] in terms of the values of this function on [0, ξ]. Similarly for the function
f1. This suffices, since the factor S′′′ in (6.9) can be made arbitrarily close to zero on [ξ, 1]
by choosing ξ < 1 sufficiently close to 1.

As in Case 1 we may assume that f1 6= 0 and f2 6= 0. Using positive upper and lower
bounds on S′′

j we have

0 ≤ C−1
[

g(x, η1)− g(x, η2)
]

≤
[

g⋆2(x, η1)− g⋆2(x, η2)
]

≤ C
[

g(x, η1)− g(x, η2)
]

, (6.14)

for some C > 0 and all x ∈ Ĩ. The constant C only depends on the function g and the value
of β. Notice that the function g⋆2(., η1)− g⋆2(., η2) is decreasing. Thus, if 0 ≤ x′ < x ≤ 1
then

[

g(x, η1)− g(x, η2)
]

≤ C2
[

g(x′, η1)− g(x′, η2)
]

,
[

g1,s(x)− g2,s(x)
]

≤ C2
[

g1,s(x
′)− g2,s(x

′)
]

.
(6.15)

Similarly we can show that f1(x) ≤ C2f1(x
′). Applying these bounds for 0 ≤ x′ ≤ ξ ≤

x ≤ 1, with ξ < 1 sufficiently close to 1, it is now clear that (6.13) holds for η1 < η2 in
J = (0, η] ∩ Ĩ and η > 0 sufficiently small. In this case we obtain

〈

f1, β
−1S′′

2 f1
〉

〈f1, Gf1〉
≤

〈

f1, β
−1S′′

1 f1
〉

〈f1, Gf1〉
= 1 = inf

f 6=0

〈

f, β−1S′′
2 f

〉

〈f,Gf〉
. (6.16)

Let y0 = η1 and η0 = η2 so that f0(x) = g(x, η1) − g(x, η2). As described after (6.4) we
have either f0 = 0 on Ĩ or f0 > 0 on Ĩ. If we had f0 > 0 on Ĩ then the inequality in (6.16)
would be strict, which is a contradiction. Thus we must have g(., η1) = g(., η2) on Ĩ, for
all η1 < η2 in J .

Case 4. Finally consider the case where g(1, 0) = 1/2 and g(1, η) < 1/2 for all positive η ∈ Ĩ.
Equivalently we have g(0, 1) = 1/2 and g(x, 1) < 1/2 for all x ∈ Ĩ. Notice that, if g(0, 1)
were just a bit smaller then we would be in Case 2. Let η1 = η2 = 1. By arguments
analogous to those used in Case 3, we find that g(., y1) = g(., y2) on Ĩ for all y1 < y2 in J .

In all four cases we find that y 7→ g(., y) is constant on J for some set J ⊂ I of positive
measure. Thus Theorem 1.7 is proved. QED
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