Integration of Dissipative Partial Differential Equations: A Case Study

Gianni Arioli‡ and Hans Koch‡

Abstract. We develop a computer-assisted technique for constructing and analyzing orbits of dissipative evolution equations. As a case study, the methods are applied to the Kuramoto–Sivashinski equation, for which we prove the existence of a hyperbolic periodic orbit.

Key words. Kuramoto–Sivashinski equation, hyperbolicity, periodic orbit, computer-assisted proof

AMS subject classifications. 37L05, 37L45, 35K35

DOI. 10.1137/10078298X

1. Introduction. In this paper we consider the problem of investigating the flow of dissipative parabolic equations via computer-assisted methods. The type of equations that we have in mind are of the form

\[\partial_t u + (i \partial_x)^m u + H(u, \partial_x u, \ldots, \partial_x^{m-1} u) = 0, \]

with \(m > 0 \) even, \(H \) real analytic, and \(u = u(t, x) \) satisfying suitable boundary conditions on a bounded spatial domain.

Our goal is to obtain estimates for the time-\(t \) map and its derivative, for small times \(t > 0 \), and to combine these estimates with shadowing arguments in order to control the long-time dynamics. For periodic orbits, this includes bounds on the eigenvalues of the linearized return map. Our method takes advantage of the fact that the solutions \(u(t, x) \) of (1.1) are real analytic in \(x \), when \(t > 0 \), due to the dissipation and the analyticity of \(H \). This allows us to obtain accurate bounds in a relatively straightforward and general way.

As a case study, we consider the unidimensional Kuramoto–Sivashinski equation, which has been the focus of numerous analytical and numerical investigations [1, 2, 3, 4, 5, 6, 7, 8, 9]. Considering Dirichlet boundary conditions on \([0, \pi]\), this equation can be written in the form

\[\partial_t u + 4 \partial_x^2 u + \alpha (\partial_x^2 u + 2u \partial_x u) = 0, \]

\[u(t, 0) = u(t, \pi) = 0, \quad x \in [0, \pi], \quad t \in \mathbb{R}. \]

It is a well-known numerical result [10] that this system exhibits chaotic dynamics when \(\alpha > 133 \). Obtaining rigorous bounds for such large values of \(\alpha \) is more difficult, since high frequency modes contribute more heavily to the dynamics. In order to test the robustness of our algorithm, and to make a first step towards the analysis of chaotic dynamics, we

*Received by the editors January 19, 2010; accepted for publication (in revised form) by C. Wayne July 7, 2010; published electronically September 29, 2010.

‡Dipartimento di Matematica and MOX, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy (gianni.arioli@polimi.it).

‡Department of Mathematics, University of Texas at Austin, Austin, TX 78712 (koch@math.utexas.edu).
consider the value $\alpha = 150$, which is well above the chaotic threshold. Our main result on the Kuramoto–Sivashinski equation is the following.

Theorem 1.1. Equation (1.2) with $\alpha = 150$ admits a hyperbolic periodic orbit of period $\tau = 0.00214688 \ldots$. The Poincaré map associated with some transversal hyperplane is compact, and its eigenvalues lie in the disk $|\mu| < 0.69$, except for a simple eigenvalue $|\mu_1| > 4.8$.

Somewhat similar results were obtained recently in [11], namely the existence of periodic orbits, for several values of α between 30 and 134. However, the methods used in [11] are purely topological and give no information on the stability of the orbit.

The remaining part of the paper is structured as follows. In section 2, we outline the general strategy and then describe the various steps in more detail. This part applies to dynamical systems in any separable Banach space, although the approach is motivated by the intended applications. A more specific functional setting is introduced in section 3, where we discuss the integral equation used to control the time-t map. Section 4 describes our implementation of the various steps and gives further details of our computer-assisted proof.

2. **Strategy and techniques.** Consider an evolution equation of the type

\begin{equation}
\partial_t u = Lu + G(u), \quad u(0) = \nu,
\end{equation}

for a function $u = u(t)$, defined for $t \in [0, \infty)$, that takes values in some Banach space \mathcal{X}. Here, L and G are operators on \mathcal{X}, with L linear. In the applications that we have in mind, which include the Kuramoto–Sivashinski equation, \mathcal{X} is a space of real-valued functions on a bounded domain in \mathbb{R}^n, satisfying suitable boundary conditions.

Below we will sketch a numerical procedure for finding an approximate periodic orbit \bar{u}, starting at some point \bar{u}_0 at time $t = 0$, and returning to the same point at a later time $t = \tau$. After choosing a codimension-one hyperplane $S_0 \subset \mathcal{X}$ that intersects the curve \bar{u} transversally at \bar{u}_0, we define the corresponding Poincaré return map $\Psi : S_0 \to S_0$ by setting $\Psi(u) = u(t)$, where $t = t(\bar{u}_0)$ is the first return time to the section S_0. Here and in what follows, a Poincaré return map needs only be defined locally. If the system is dissipative, then the derivative of Ψ is compact, and in particular, it has only finitely many eigenvalues of modulus larger than 1. We will refer to the corresponding eigenvectors as the “expanding directions.” Our strategy for proving the existence of hyperbolic orbits involves several steps and technical tools. The basic tool is a computer-assisted technique for computing bounds on the time-t map Φ_t of the system, and on its derivative $D\Phi_t$. Then we choose a sequence of intermediate Poincaré sections S_j along the approximate orbit and compute rigorous estimates on the intermediate Poincaré maps $P_j : S_{j-1} \to S_j$ and their derivatives. By means of a shadowing technique applied to the sequence of maps P_j, we prove the existence of a true periodic orbit close to \bar{u}. This information is then used to estimate the derivatives of the intermediate Poincaré maps P_j. After verifying appropriate cone conditions for these derivatives, we obtain the desired bounds on the full Poincaré map.

The very first step in this approach is the computation of an approximate periodic orbit \bar{u}. This can be done by numerically integrating the equation for a long time, looking for segments of the trajectory that begin and end at points close to each other. Choosing an appropriate Poincaré section, such a segment defines a rough fixed point for the return map. We then used a Newton method to construct a more accurate numerical fixed point.
2.1. Integration. Our first goal is to integrate (2.1) on a sequence of time intervals \([T_{n-1}, T_n]\), starting with \(T_0 = 0\). Since the problem is autonomous, it suffices to consider the initial value problem on \([0, T]\). We turn (2.1) into an integral equation as usual, by rewriting the equation as

\[
\frac{\partial}{\partial t} [e^{-tL}u] = e^{-tL}G(u), \quad u(0) = \nu,
\]

integrating both sides, and then multiplying by \(e^{tL}\),

\[
u(t) = e^{tL}\nu + \int_0^t e^{(t-s)L}G(u(s)) \, ds, \quad 0 \leq t \leq T.
\]

After defining a Banach space \(X\) of admissible initial conditions \(\nu\), our aim is to solve (2.3) by iteration, on a Banach space \(X_T\) of continuous \(X\)-valued functions on the interval \(J = [0, T]\). Setting \(\Phi_t(\nu) = u(t)\) then defines the time-\(t\) map \(\Phi_t\) on \(X\) for \(t \in J\).

To be more precise, suppose that \(L\) has a compact inverse and a sequence of eigenvectors \(v_1, v_2, \ldots\) whose span is dense in \(X\). Let \(-\lambda_1, -\lambda_2, \ldots\) be the corresponding eigenvalues, and assume that \(\lambda_k > 0\) for sufficiently large \(k\). Then \(t \mapsto e^{tL}\) is a continuous semigroup on \(X\). Substituting the formal expansion \(u(t) = \sum_k u_k(t)v_k\) into (2.3) yields a system of (infinitely many) coupled ODEs,

\[
u_k(t) = e^{-\lambda_k t}v_k + \int_0^t e^{-\lambda_k(t-s)}g_k(s) \, ds, \quad t \in J,
\]

where \(\{\nu_k\}\) and \(\{g_k(t)\}\) are the expansion coefficients for the vectors \(\nu\) and \(g(t) = G(u(t))\), respectively. Our aim is to work with a finite truncation of this system of ODEs, say \(k \leq N\), and to control the truncation errors. The truncation is defined in terms of the spectral projection \(P_L\) onto the span of the first \(N\) eigenvectors of \(L\).

The same approach will be used to analyze the derivative \(D\Phi_t\) of the time-\(t\) map: The function \(w = D\Phi_t(u)\omega\) is the solution of the initial value problem

\[
\frac{\partial}{\partial t} w = Lw + DG(u)w, \quad w(0) = \omega,
\]

which can be reduced to integral equations similar to (2.3) and (2.4). Further details are provided in section 3.

2.2. Intermediate Poincaré maps. A well-known problem with computer-assisted integration is that the errors accumulate along the orbit, making the computation useless after a certain amount of time. In our approach to the Kuramoto–Sivashinski equation, this time is significantly shorter than what would be needed to estimate the Poincaré map \(\Psi\) directly. (And we do not expect the situation to be much better with other PDEs.) Adapting an approach that has been developed for finite-dimensional dynamical systems [12], we proceed by smaller time steps as follows.

Consider a partition of the approximate period \([0, \bar{T}]\) into \(M\) subintervals \([t_j, t_{j+1}]\), where \(t_j = j\bar{T}/M\) for \(j = 0, 1, \ldots, M\). Then the points \(\bar{u}_j = \bar{u}(t_j)\) define a discretization of the approximate orbit \(\bar{u}\). For each \(j\), we choose a nonzero linear functional \(\eta_j : X \to \mathbb{R}\) and define a Poincaré section \(S_j = \bar{u}_j + X_j\), where \(X_j\) is the null space of \(\eta_j\). After verifying that \(S_j\) is
transversal to the flow, as defined below, a Poincaré map $P_j : S_{j-1} \to S_j$ is defined in the usual way as $x \mapsto \Phi_t(x)$, where $t = t(x)$ is the smallest positive number such that $\Phi_t(x) \in S_j$. The composition of all these “intermediate” Poincaré maps yields the full local Poincaré map Ψ.

In our implementation of this procedure, we choose for each j an ordered basis in $\mathbb{P}_j X$. The second basis vector is chosen to point roughly in the direction of the flow at \bar{u}_j. Then we define $\eta_j(x)$ to be the second coordinate of $\mathbb{P}_j(x - \bar{u}_j)$.

We will use (verify) the following notion of transversality. Let $B \subset X$ be a fixed set of initial conditions. Assume that $\eta : X \to \mathbb{R}$ is continuous and nonzero.

Definition 2.1. Consider a differentiable flow $(t, v) \mapsto u(t)$, defined on $[a, c] \times B$. Let $s \in \mathbb{R}$. We say that the section $S = \eta^{-1}(s)$ is transversal to the flow if, for all initial conditions $v \in B$, the interval bounded by $\eta(u(a))$ and $\eta(u(c))$ contains s, and the derivative of $t \mapsto \eta(u(t))$ is bounded away from zero on $[a, c]$, uniformly in v.

2.3. Shadowing

Our aim is to prove that there exists a true orbit that closely “shadows” the approximate orbit \tilde{u}. In addition, we would like to show that the full Poincaré map is hyperbolic. Our main tool for the first step is Theorem 2.2 below, which is an extension to the infinite-dimensional setting of Theorem 4 in [13]. (See also [11] for an approach to the infinite-dimensional case.)

Theorem 2.2. Consider a Banach space $X = \mathbb{R} \oplus Z$, and let V be the closed unit ball in Z. Let F be a continuous and compact map from $[-1, 1] \times V$ to $X = \mathbb{R} \oplus Z$. Writing $F(u, v) = (g(u, v), h(u, v))$, assume that $\|h(u, v)\| \leq 1$ for all $u \in [-1, 1]$ and $v \in V$. Furthermore, assume that there exists a positive real number $\vartheta \leq 1$ such that $g(u, v) \leq -1$ whenever $u \leq -\vartheta$, and such that $g(u, v) \geq 1$ whenever $u \geq \vartheta$. Then F has a fixed point in $[-\vartheta, \vartheta] \times V$.

Proof. It suffices to consider the case $\vartheta = 1$. We may assume that the norm on X is given by $\|u, v\| = \max\{|u|, \|v\|\}$. By our assumption on F, the closure K of $F([-1, 1] \times V)$ is compact. Thus, given $\varepsilon > 0$, there exist points $w_1, w_2, \ldots, w_n \in K$ such that the balls $W_i = \{w \in X : \|w - w_i\| < \varepsilon\}$ cover the set K. For $w \in K$ define

$$\phi_\varepsilon(w) = \frac{\sum_{i=1}^n \varphi_i(w)w_i}{\sum_{i=1}^n \varphi_i(w)}, \quad \varphi_i(w) = \begin{cases} \varepsilon - \|w - w_i\| & \text{if } w \in W_i, \\ 0 & \text{otherwise.} \end{cases}$$

Clearly, $\phi_\varepsilon : K \to X$ is continuous, and $\|\phi_\varepsilon(w) - w\| \leq \varepsilon$ for all $w \in K$. Assuming $\varepsilon < \frac{1}{2}$, define $\psi_\varepsilon(u, v) = ((1 + 2\varepsilon)u, (1 - 2\varepsilon)v)$. Then $F_\varepsilon = \psi_\varepsilon \circ \phi_\varepsilon \circ F$ is continuous on $[-1, 1] \times V$ and satisfies $\|F(x) - F_\varepsilon(x)\| \leq c\varepsilon$ for some fixed constant $c > 0$.

Denote by X_ε the subspace of X spanned by the vectors $\{w_0, w_1, \ldots, w_n\}$, where $w_0 = (1, 0)$. Notice that F_ε takes values in X_ε. The restriction of F_ε to X_ε satisfies the hypotheses of Theorem 4 in [13], and therefore it admits a fixed point in $[-1, 1] \times V$. If x_m is such a fixed point, obtained with $\varepsilon \leq \frac{1}{c m}$, then $\|F(x_m) - x_m\| = \|F(x_m) - F_\varepsilon(x_m)\| \leq \frac{1}{m}$. Since F is compact, we can choose $m \mapsto x_m$ in such a way that $F(x_m) \to x$ for some x in $[-1, 1] \times V$. Then

$$\|x - x_m\| \leq \|x - F(x_m)\| + \|F(x_m) - x_m\| \to 0.$$

Thus, $x_m \to x$, and $F(x) = \lim_{m \to \infty} F(x_m) = x$ by the continuity of F.

In order to apply Theorem 2.2 to the previous sequence of Poincaré maps described in the previous subsection we use the following definitions, which are analogues of similar definitions in [12,
that $\mathcal{X} = \mathcal{Y} \oplus \Theta \oplus \mathbb{Z}$, where \mathcal{Y} and Θ are one-dimensional subspaces of \mathcal{X}. Denote by U and V the closed unit balls in \mathcal{Y} and \mathcal{Z}, respectively.

Definition 2.3. A section (of \mathcal{X}) is a codimension-one affine subspace of \mathcal{X}. A box in a section S is the image of $U \times V$ under a bicontinuous affine map $\psi : \mathcal{Y} \times \mathcal{Z} \rightarrow S$.

Definition 2.4. Let $B_1 = \psi_1(U \times V)$ and $B_2 = \psi_2(U \times V)$ be boxes in two sections S_1 and S_2, respectively. Given a map $f : B_1 \rightarrow S_2$, we say that B_1 f-covers B_2 if the map $F : U \times V \rightarrow \mathcal{Y} \times \mathcal{Z}$, defined by $F = \psi_2^{-1} \circ f \circ \psi_1$, satisfies the hypotheses of Theorem 2.2 for some $\vartheta < 1$. For simplicity, we identified here \mathcal{Y} with \mathbb{R}, and U with $[-1, 1]$.

Roughly speaking, the set B_1 is stretched along B_2 in the direction $\psi_1(U)$ and compressed in the other directions by the map f. Clearly, this definition could be extended to a larger number of expanding directions.

Consider now the Poincaré maps $P_j : S_{j-1} \rightarrow S_j$ described in subsection 2.2, and for each j let B_j be a box in S_j. By periodicity, we identify $j = M$ with $j = 0$.

Corollary 2.5. If for each j the box B_{j-1} P_j-covers B_j, then the Poincaré map $\Psi : S_0 \rightarrow S_0$, defined by $\Psi = P_M \circ \cdots \circ P_2 \circ P_1$, has a fixed point in B_0.

Proof. Let $F_j = \psi_j^{-1} \circ P_j \circ \psi_{j-1}$. It suffices to show that $\Phi = F_M \circ \cdots \circ F_2 \circ F_1$ has a fixed point in $[-1, 1] \times V$. Notice that Φ is not defined on all of $[-1, 1] \times V$ in general. Thus, we consider a modified map $\bar{\Phi} = F_M \cdots \circ F_2 \circ F_1$. The modification $F \mapsto \bar{F}$ is defined as follows. Using the notation of Theorem 2.2, we set $\bar{F}(u, v) = (\gamma(g(u, v)), h(u, v))$, where $\gamma(u)$ denotes the number in $[-1, 1]$ that is closest to u. Then each \bar{F}_j maps the domain $[-1, 1] \times V$ into itself. $\bar{\Phi}$ is well defined as a map on $[-1, 1] \times V$, and it satisfies the hypotheses of Theorem 2.2. Thus, $\bar{\Phi}$ has a fixed point p in $[-\vartheta, \vartheta] \times V$ for some positive $\vartheta < 1$. Clearly, p is also a fixed point of Φ, and $\psi_0(p)$ is a fixed point of Ψ. $lacklozenge$

2.4. Derivatives of the Poincaré map. In our application of Corollary 2.5, we estimate the image of a box B_j under the flow via bounds on the derivative of the flow. The same bounds can also be used to prove hyperbolicity. To be more specific, let u be a periodic orbit, denote by u_j its intersection with the section S_j, and define $\dot{u}_j = Lu_j + G(u_j)$ for all j. A simple calculation shows that

$$DP_j(u_{j-1})w = D\Phi_{t(u_{j-1})}(u_{j-1})w - \frac{\eta_j(D\Phi_{t(u_{j-1})}(u_{j-1})w)}{\eta_j(\dot{u}_j)} \dot{u}_j.$$

Thus, what we need are accurate estimates on the velocities \dot{u}_j.

The low frequency parts $\ell_j = \mathbb{P}_\ell \dot{u}_j$ are estimated explicitly in our construction of the orbit, since $G(u(s))$ appears in the integral equation (2.3) and $\ell_j = \mathbb{P}_\ell G(u_j)$. Consider now the high frequency part $h_j = \mathbb{P}_h \dot{u}_j$. Here and in what follows, $\mathbb{P}_h = \mathbb{1} - \mathbb{P}_\ell$. After proving that $\dot{u}_j \in \mathcal{X}$ for all j, we can use that $\dot{u}_j = D\Phi_{t(u_{j-1})}(u_{j-1}) \dot{u}_{j-1}$. This immediately yields the following result.

Proposition 2.6. Let $k_j = \mathbb{P}_h D\Phi_{t(u_{j-1})}(u_{j-1})\ell_j$ and $D_j = \mathbb{P}_h D\Phi_{t(u_{j-1})}(u_{j-1})\mathbb{P}_h$. Then

$$||h_j|| \leq ||k_j|| + ||D_j|| ||h_{j-1}||, \quad j = 1, 2, 3, \ldots \quad (\text{mod} M).$$

In particular, if $||k_j|| \leq b$ and $||D_j|| \leq a < 1$ for all j, then $||h_j|| \leq (1 - a)^{-1}b.$
2.5. Hyperbolicity. In order to discuss the hyperbolicity of Ψ at u_0 in terms of spectral properties of $D\Psi(u_0)$, we need to consider complex eigenvalues. To avoid the burden of distinguishing between the real and complexified versions of our spaces and operators, we will use the following definition.

Definition 2.7. Given a linear operator A on a real vector space X, we say that $\xi + i\eta$ is a complex eigenvalue for A if there exist vectors $u, v \in X$, not both zero, such that $Au = \xi u - \eta v$ and $Au = \xi v + \eta u$.

Clearly, such eigenvalues come in complex conjugate pairs $\xi \pm i\eta$. We will now drop the adjective “complex” for eigenvalues. For compact linear operators on a real Banach space, we will use the following fact from Dunford–Riesz calculus \cite[section VII.3]{15}. Let S be an isolated set of eigenvalues, that is, invariant under complex conjugation. Then there exists a (unique) bounded projection\footnote{In the complexified space, the spectral projection is obtained by integrating the resolvent along an S-enclosing cycle in the resolvent set. As the cycle can be taken symmetric with respect to the real axis, the projection is manifestly real.} P on X, which commutes with A, such that the restriction of A to PX has all its eigenvalues in S, and the restriction of A to $(I - P)X$ has no eigenvalues in S. We will refer to PX as the spectral subspace for A, associated with S.

We can compute a lower bound on the modulus of the expanding eigenvalue of $D\Psi(u_0)$, and an upper bound on the moduli of the contracting eigenvalues, by replacing the P_j-covering conditions by cone conditions on the derivatives DP_j. This corresponds roughly to replacing Theorem 2.2 by the following theorem.

Theorem 2.8. Let A be a bounded linear operator on a real Banach space $X = Y \oplus Z$, with Y one-dimensional. Thus, if $y \in Y$ and $z \in Z$, we have a unique decomposition

$$A(y + z) = y' + z', \quad y' \in Y, \; z' \in Z.$$

Assume now that A is compact, and that there exist positive real numbers $\beta < \alpha$ such that $\|z'\| \leq \beta \max\{\|y\|, \|z\|\}$ and such that $\|y'\| \geq \alpha \|y\|$ whenever $\|y\| \geq \|z\|$. Then A has a simple eigenvalue λ of modulus $|\lambda| \geq \alpha$ and no other eigenvalue of modulus $> \beta$.

Proof. Consider the double cone C in X, defined by $\|y\| \geq \|z\|$. It is preserved by A, meaning that $AC \subset C$. In fact, $C \setminus \{0\}$ is mapped into the interior of C, since $\|z'\| \leq \beta \alpha^{-1} \|y'\| < \|y'\|$ whenever $y + z$ belongs to $C^+ \setminus \{0\}$.

Let λ be an eigenvalue for A of modulus $|\lambda| = r > \beta$. Consider the spectral subspace PX for A, associated with the eigenvalue set $\{\lambda, \bar{\lambda}\}$, as described after Definition 2.7. In PX, choose an invariant subspace of dimension 1 or 2, depending on whether λ is real or not. Assume for contradiction that $\|z'\| < r \|z\|$ for all $x = y + z$ on the unit sphere S in W. Then $x \mapsto \|z'\|/\|z\|$ takes on a maximum value $s < r$ on S. Iterating the map $f(x) = \|Ax\|^{-1}Ax$ on S produces a sequence $x_{n+1} = f(x_n)$ whose Z-components converge to zero (like $(s/r)^n$). The set of accumulation points is invariant under f, and every $x = y + z$ in this set has $z' = z = 0$. For those points, $\|z'\| < r \|z\|$ is false.

The above shows that there exists a unit vector $x = y + z$ in W that satisfies $\|z'\| \geq r \|z\|$. Combined with our assumption $\|z'\| \leq \beta \max\{\|y\|, \|z\|\}$, this implies that $x \in C$. In the case $d = 2$, this leads to a contradiction: The action of $r^{-1}A$ on W is conjugate to a rotation about the origin, by an angle $\arg(\lambda)$ that is not an integer multiple of π. But no planar double...
cone, other than \(\{0\} \), is invariant under such a rotation. Thus, \(\lambda \) has to be real, and the corresponding eigenvector belongs to \(\mathcal{C} \). By a Krein–Rutman-type theorem [7, Theorem 1.2], there is exactly one real eigenvalue of \(A \) that has an eigenvector in \(\mathcal{C} \). Its absolute value is the spectral radius \(\rho(A) \), and it is simple. The claim now follows by noting that \(\|A^nx\| \geq \alpha^n\|y\| \) for all \(n \geq 0 \), and thus \(\rho(A) \geq \alpha \).

Definition 2.9. Let \(X = \mathcal{V} \oplus \mathcal{Z} \), and let \(\alpha > \beta \) be positive real numbers. Given two sections \(\nu_1 + X_1 = \psi_1(X) \) and \(\nu_2 + X_2 = \psi_2(X) \) of \(\mathcal{X} \), and a linear map \(B : X_1 \to X_2 \), we say that \(B \) satisfies the \((\alpha, \beta)\) cone condition if \(A = D\psi_2^{-1}BD\psi_1 \) satisfies the hypotheses of Theorem 2.8.

Consider again the Poincaré maps \(P_j : S_{j-1} \to S_j \) described in section 2.2. Denote by \(u_j \) the intersection of our periodic orbit with the Poincaré plane \(S_j \).

Corollary 2.10. If for each \(j \) the derivative \(DP_j(u_j) \) satisfies an \((\alpha_j, \beta_j)\) cone condition, then \(D\Psi(u_0) \) has a simple eigenvalue \(\mu_1 \geq \prod_j \alpha_j \) and no other spectrum outside the disk \(|\mu| \leq \prod_j \beta_j \).

As far as the proof of Theorem 1.1 is concerned, our task is now reduced to verifying the hypotheses of Corollaries 2.5 and 2.10, with \(\beta_j < 1 < \alpha_j \) for all \(j \).

3. Functional setting.

3.1. The integral operator. It is convenient to rewrite the integral equation (2.3) as a fixed point problem \(K_\nu(w) = w \) for the function \(w(t) = u(t) - e^{tL}\nu \). The operator \(K_\nu \) can be written as \(K_\nu = \Lambda \circ \Gamma_\nu \), where

\[
(\Lambda w)(t) = \int_0^t e^{(t-s)L}Mw(s)\,ds, \quad (\Gamma_\nu(w))(t) = M^{-1}G(w + e^{tL}\nu)(t)
\]

for \(0 \leq t \leq T \). Here, \(M \) is some invertible linear operator on \(\mathcal{X} \) that we are free to choose later. The problem with estimating \(K_\nu \) on a computer is that the function \(t \mapsto e^{tL}\nu \), and thus the integrand in \(\Lambda \), can vary very rapidly near \(t = 0 \). Such functions have to be considered, e.g., when estimating the derivative of the flow.

We deal with this problem by partitioning \(J = [0, T] \) into \(n \) subintervals \(J_i = [t_{i-1}, t_i] \), with the partition being much finer near \(t_0 = 0 \) than near \(t_n = T \), and controlling our functions on each subinterval \(J_i \) separately. Define \(\mathcal{X}_\tau \) to be the space of all continuous functions \(u : J \to \mathcal{X} \) with a finite norm

\[
\|u\| = \max_i \sum_{k=1}^\infty \sup_{t \in J_i} \|u_k(t)\| v_k, \quad u(t) = \sum_{k=1}^\infty u_k(t) v_k.
\]

We note that this norm depends on the partition \(\{J_i\} \) of \(J \). However, the norms associated with two different partitions are equivalent. Our only reason for subdividing \(J \) is to get more accurate estimates on the computer. For the results in this section, it suffices to consider just the trivial partition \(\{J\} \).

We recall that the functions \(v_k \) are assumed to be eigenvectors of \(L \), with eigenvalues \(-\lambda_k \) that tend to \(-\infty \) as \(k \to \infty \). In order to avoid growing factors \(e^{-\lambda_k t} \) in (2.4), we assume from now on that \(\lambda_k \geq 0 \) for all \(k \). This represents no loss of generality, since a positive part of \(L \) can always be incorporated into the nonlinear part \(G \) of the vector field \(L + G \).
Lemma 3.1. Let $0 < a < b < 1$, set $M = (I - L)^a$, and assume that $\sum_{k>m} \lambda_k^{b-1} < \infty$ for some $m > 0$. Then Λ is compact on X_2, and $\|\Lambda\| \leq c(T + T^{b-a})$ for some constant c that is independent of T.

Proof. Let $w \in X$ and $\tilde{w} = \Lambda w$. Let $k \geq 1$. If $\lambda_k < 1$, then $|\tilde{w}_k(t)| \leq 2t\|w_k\|$, where $\|w_k\| = \sup_{t \in J} |w_k(t)|$. If $\lambda_k \geq 1$, then

$$
|\tilde{w}_k(t)| \leq \int_0^t e^{-\lambda_k(t-s)}(1 + \lambda_k)^a|w_k(s)| \, ds \\
\leq 2\lambda_k^{b-1}t^{b-a}[(\lambda_k t)^a-b(1-e^{-\lambda_k t})]||w_k||.
$$

The expression $[\cdots]$ in this equation is bounded uniformly in k and t. Multiplying both sides of (3.3) by $\|v_k\|$ and summing over k yields $\|\tilde{w}\| \leq c(T + T^{b-a})\|w\|$, with c independent of w and T.

Denote by P_k the canonical projection onto the one-dimensional subspace spanned by v_k. Then ΛP_k is compact, by the Arzelà–Ascoli theorem. The sum $\sum_k \Lambda P_k$ converges in norm to Λ, due to the factor λ_k^{b-1} in (3.3). Thus, Λ is compact. \hfill \blacksquare

What remains to be proved is that Γ_ν is continuous and bounded on some appropriate domain in X_2. Then $K_\nu = \Lambda \circ \Gamma_\nu$ is compact. Now it suffices to find a closed and convex set C in this domain such that $K_\nu(C) \subset C$. Then K_ν has a fixed point in C. On the computer, we determine such a set C by starting with a singleton $C_0 = \{\tilde{w}\}$, where \tilde{w} is an approximate fixed point of K_ν. Using a suitable enlargement map $C \mapsto C''$ for sets, we compute for $n = 1, 2, \ldots$ an enclosure C_n for $K_\nu(C_{n-1}')$, until $C_n \subset C_{n-1}'$. The set $C = K(C_n)$ for the final value of n is a bound on the fixed point w of K_ν, in the sense that $C \ni w$. This in turn yields a bound on $u(t)$ for $t \in J$, and a bound (in a sense that will be made more precise later) on the time-t map $\nu \mapsto u(t)$.

How exactly these bounds are implemented depends on the specific equation. In the remaining part of this paper, we describe the details for the Kuramoto–Sivashinski equation.

3.2. The Kuramoto–Sivashinski equation. The one-dimensional Kuramoto–Sivashinski (KS) equation can be written as

$$
\partial_t u = Lu - \alpha \partial_x(u^2), \\
L = -4\partial_x^4 - \alpha \partial_x^2.
$$

As mentioned earlier, we consider this equation for $\alpha = 150$. But for now, α can be any positive real number.

The boundary conditions considered are $u(t, 0) = u(t, \pi) = 0$, so the eigenvectors of L are given by $v_k(x) = \sin(kx)$, where k ranges over the set of all positive integers \mathbb{N}. The corresponding eigenvalues are $\alpha k^2 - 4k^4$. As indicated earlier, we extract a negative part L from L. To this end, let $\kappa \geq \sqrt{\alpha}/2$, so that $\alpha k^2 - 4k^4 \leq 0$ for $k \geq \kappa$. Then define L and L' by the equations $Lv_k = -\lambda_k v_k$ and $L'v_k = -\lambda_k' v_k$, respectively, where

$$
\lambda_k = \begin{cases}
0 & \text{if } k \leq \kappa, \\
4k^4 - \alpha k^2 & \text{if } k > \kappa,
\end{cases}

\lambda_k' = \begin{cases}
4k^4 - \alpha k^2 & \text{if } k \leq \kappa, \\
0 & \text{if } k > \kappa.
\end{cases}
$$

Clearly, $L = L + L'$, and L has no positive eigenvalues. The KS equation (3.4) can now be written in the standard form (2.1),

$$
\partial_t u = Lu + G(u), \\
G(u) = L'u - \alpha \partial_x(u^2).
$$
At this point, we need to define some function spaces. Let ρ be a fixed positive real number. In addition to $v_k(x) = \sin(kx)$ for integers $k > 0$, we also consider $v_k(x) = \cos(kx)$ for $k \leq 0$. Given a real number $p > 0$ and a nonempty set of integers K, define A^p_K to be the completion of Span($\{v_k\}_{k \in K}$) with respect to the norm

$$
(3.7) \quad \|f\|_p = \sum_{k \in K} |f_k| |p e^{i k}|, \quad f = \sum_{k \in K} f_kv_k,
$$

where $|k| = \max(|k|, 1)$. Notice that the functions in A^p_K have analytic and bounded extensions to the strip $|\text{Im}(x)| < \rho$. The space X referred to in earlier sections is A^p_K. For now, $p > 0$ is arbitrary, but later on, we will choose $p = 0$. A slightly different (but equivalent) norm on X is used in our definition of the boxes B_j, as will be described later.

The space of continuous curves $u : J \to A^p_K$, with a finite norm

$$
(3.8) \quad \|u\|_p = \max_i \sum_{k \in K} |k|^p e^{i k} \sup_{t \in J_i} |u_k(t)|, \quad u(t) = \sum_{k \in K} u_k(t)v_k,
$$

will be denoted by $C(J, A^p_K)$. In particular, $C(J, X)$ agrees with the space X_T defined in subsection 3.1. A useful property of the spaces A^p_K and $C(J, A^p_K)$ is that they are both Banach algebras.

As described in the previous subsection, we solve (3.6) via the fixed point equation $K_\nu(w) = w$ for $w(t) = u(t) - e^{tL}v$, where $K_\nu = \Lambda \circ \Gamma_\nu$, with Γ_ν and Λ as defined by (3.1). Notice that this map K_ν is independent of the choice of the operator M.

Theorem 3.2. K_ν is a compact map on X_T for each $\nu \in X$. If $B \subset X$ is bounded and nonempty, and if C is a closed convex subset of X_T such that $K_\nu(C) \subset C$ for every $\nu \in B$, then K_ν has a unique fixed point $w \in C$ for every $\nu \in B$. If B is open, then the map $\nu \mapsto w$ is of class C^1 on B.

Proof. Let $a = \frac{1}{3}$ and $b = \frac{2}{3}$. Then the hypothesis of Lemma 3.1 is satisfied, implying that Λ is compact. Furthermore, since $C(J, A^p_K)$ is a Banach algebra, the map $u \mapsto u^2$ is of class C^2 on all of A^p_K. Clearly, the same holds for Γ_ν. Thus, K_ν is compact, and the existence of a fixed point follows from Schauder’s fixed point theorem.

Let w_1 and w_2 be two such fixed points. Assume for contradiction that $w_1 \neq w_2$, and let $T_0 = \inf\{t \in [0, T] : w_1(t) \neq w_2(t)\}$. Replacing w_i by $t \mapsto w_i(T_0 + t) - e^{tL}w_i(T_0)$, if necessary, we can assume that $T_0 = 0$. In what follows, a curve or operator associated with a time interval $[0, s]$ will be given a subscript s.

Let $r > 0$. By Lemma 3.1, $K_{\nu, s}$ is a contraction on the ball $\|w_s\|_p < r$ if $s > 0$ is sufficiently small. By continuity, both $w_{1,s}$ and $w_{2,s}$ belong to this ball if $s > 0$ has been chosen sufficiently small. As a result, $w_{1,s} = w_{2,s}$, contradicting the assumption that $w_1 \neq w_2$.

Let ν be an eigenvector of $DK_\nu(w_1)$, for some eigenvalue λ, and define $T_0 = \inf\{t \in [0, T] : v(t) \neq 0\}$. After translating w_1 and v in time by T_0, if necessary, we can assume that $T_0 = 0$. Then v_s is an eigenvector of $DK_{\nu,s}(w_{1,s})$, with eigenvalue λ, and by taking $s \downarrow 0$, we see that $\lambda = 0$. In particular, $DK_\nu(w_1)$ has no eigenvalue 1. Thus, by the implicit function theorem, the map $\nu \mapsto w_1$ is of class C^1.

Consider now a section $S = \eta^{-1}(s)$, defined by some nonzero continuous linear functional $\eta : X \to \mathbb{R}$ and some $s \in \mathbb{R}$. Let B be a nonempty bounded set in X. In what follows, differentiability of a function on B means differentiability in an open neighborhood of B.

Theorem 3.3. Let $0 < a < c \leq T$. The flow $(\nu, t) \mapsto u(t)$ is of class C^1 and compact as a map from $[a, c] \times B$ to A_p^n for any given $p > 0$. If the section S is transversal to the flow, then the corresponding Poincaré map $P : B \rightarrow S$ is well defined, of class C^1, and compact.

Proof. We may assume that B is open. Let $0 < b < T$. Consider the map $Q : u \mapsto u(t)$ defined by the integral equation (2.3), where we set $\nu = u(0)$. By using that $C(J, A_p^n)$ is a Banach algebra, the difference $Q(u) - Q(u')$ can be bounded by

$$\|u(t) - u'(t)\|_{p+3} \leq (A_1 + A_2\|u + u'\|_p)\|u - u'\|_p$$

for all $t \in [b, T]$, where A_1 and A_2 are constants that are independent of u and u'. This, and the quadratic nature of Q, implies that Q defines a C^1 map from $C(J, A_p^n)$ to A_p^{n+3}.

Composing Q with the map $u(0) \mapsto u$ described in Theorem 3.2, it follows that Φ_t is a C^1 map from B to A_q^n for $q = p + 3$. By composing several such time-t maps, this generalizes to any given $q > 0$. The same holds for the map $u(0) \mapsto \dot{u}(t)$ as well, since $L + G$ is a smooth map from A_q^{n+4} to A_q^n for any $r > 0$. This in turn implies that the flow $\Phi : (t, \nu) \mapsto \Phi_t(\nu)$ is of class C^1 on $[a, c] \times B$.

Assume now that S is transversal to this flow, in the sense of Definition 2.1. Then, by the implicit function theorem, the equation $\eta(\Phi_t(\nu)) = s$ has a unique solution $t = t(\nu)$, and this crossing time is a C^1 function on B. Composing $\nu \mapsto (t(\nu), \nu)$ with Φ yields the Poincaré map $P : B \rightarrow S$, and this map is C^1 by the chain rule. ■

Convention. From now on, we consider only $p = 0$ and drop the index p.

The remaining part of the paper is devoted to the proof of the following theorem, which, together with Corollaries 2.5 and 2.10, implies Theorem 1.1.

Theorem 3.4. For every integer j, modulo $M = 4294$, there exists a section $S_j \subset A^n$, a box $B_j \subset S_j$, a time interval $[a_j, c_j]$, and two positive real numbers $\beta_j < 1 < \alpha_j$ such that the following holds. For each j, the flow $\Phi : [a_j, c_j] \times B_{j-1} \rightarrow A^n$ is transversal to the section S_j, and the box $B_{j-1} P_j$-covers B_j. If $j \mapsto u_j \in B_j$ satisfies $P_j(u_{j-1}) = u_j$ for each j, then the derivative $DP_j(u_{j-1})$ satisfies the (α_j, β_j) cone condition for each j. Furthermore, $\prod_j \alpha_j \geq 4.8$ and $\prod_j \beta_j \leq 0.69$.

4. Implementation and further details.

4.1. Integration. In order to obtain reasonably accurate error bounds for the integral operator K, we decompose this operator into several parts and estimate each separately. In a first step, we write $K_v(w) = P(\nu, w) + Q(\nu, w)$, where P is linear and Q bilinear. Then $Q(\nu, w)$ is split into three terms $Q^{(n)}(\nu, w)$ that are homogeneous of degree $n = 0, 1, 2$ in w. After substituting the sine-series for ν and w, we end up with integrals like

$$Q^{(1+)}(\nu, w)(t) = -\alpha m \sum_{k+l=m} \nu_k \int_0^t e^{-\lambda_m(t-s)} e^{-\lambda_k} w_l(s) ds.$$

To be more precise, this term is the first of two contributions to the mth Fourier coefficient of $Q^{(1)}(\nu, w)$. The two contributions correspond to the two terms in the identity $\partial_x [2 \sin(kx) \sin(\ell x)] = (k + \ell) \sin((k + \ell)x) - |k - \ell| \sin(|k - \ell|x)$.

The integral in (4.1) can be computed explicitly if w_ℓ is a polynomial. For other terms, we use the following estimate. Define $\|f\|_i = \sup_{t \in J_i} |f(t)|$ and...
(4.2) \[G_i(k, \ell) = \frac{k + \ell}{(\lambda_{k+\ell} - \lambda_k) + 2/\ell}. \]

Proposition 4.1. Let \(K \) and \(L \) be the supports of \(k \mapsto \nu_k \) and \(\ell \mapsto w_\ell \), respectively. Then
(4.3) \[\|Q^{(1+)}(\nu, w)\|_i \leq 2\alpha \|\nu\| \sup_{k \in K, \ell \in L} G_i(k, \ell) e^{-\lambda_k \ell_i - 1}. \]

The supremum in (4.3) can be determined in a finite computation, using the following monotonicity properties of \(G_i \).

Proposition 4.2. For \(\ell > 0 \), the set of all \(k > \kappa \) such that \(G_i(k + 1, \ell) < G_i(k, \ell) \) is of the form \(\{k'_1, k'_2 + 1, \ldots\} \) with \(\ell \mapsto k'_i \) nonincreasing for \(\ell > (\alpha/12)^{1/2} \). An analogous statement holds with the roles of \(k \) and \(\ell \) exchanged. Furthermore, \(G_i(k, \ell + 1) \leq G_i(k + 1, \ell) \) for all \(k \) and \(\ell \).

Similar bounds and monotonicity properties can be obtained for the remaining terms in the splitting of \(K_\mu(\omega) \). For details we refer to the software package ContFuns.CE.Ops.KS (see 78298_01.zip [23.4MB]). The proofs of these propositions are elementary and thus will not be given here.

4.2. Choice of boxes. Our boxes \(B_j \) are centered at points \(\bar{u}_j = \bar{u}(j\tau/M) \) along an approximate periodic orbit \(\bar{u} \), where \(0 \leq j < M \). Consider now \(j \) fixed. Below we will describe a choice of basis \(\Sigma_j = (\sigma_{j,1}, \sigma_{j,2}, \ldots, \sigma_{j,N}) \) in \(\mathbb{P}_s \mathcal{X} \). In particular, \(\sigma_{j,2} \) is roughly the flow direction at \(\bar{u}_j \). Using the unique representation \(x = \sum_k c_k(x) \sigma_{j,k} + \mathbb{P}_H x \) for vectors \(x \in \mathcal{X} \), we define \(S_j = \{x \in \mathcal{X} : \eta_j(x) = \eta_j(\bar{u}_j)\} \), where \(\eta_j(x) = c_2(x) \).

Definition 2.3 of a box requires a splitting \(\mathcal{X} = \mathcal{Y} \oplus \Theta \oplus \mathcal{Z} \). We choose \(\mathcal{Y} \) and \(\Theta \) to be the one-dimensional spaces spanned by \(\psi_1 \) and \(\psi_2 \), respectively. Then \(\mathcal{Z} \) is the closure of \(\text{Span} \{v_3, v_4, \ldots\} \). In order to specify the box \(B_j \), we choose (determine experimentally) positive real numbers \((r_{j,1}, r_{j,3}, \ldots, r_{j,N}, \varepsilon_j) \), where \(N = 40 \). An affine map \(\psi_j : \mathcal{Y} \times \mathcal{Z} \to \mathcal{X} \) is now defined by setting \(\psi_j(v_k) = \bar{u}_j + r_{j,k} \sigma_{j,k} \) for \(k = 1, 3, \ldots, N \) and \(\psi_j(h) = \bar{u}_j + \varepsilon_j h \) for \(h \in \mathbb{P}_H \mathcal{X} \). The box \(B_j \) is now defined as the image of the unit ball (for the norm below) in \(\mathcal{Y} \times \mathcal{Z} \) under the map \(\psi_j \). To be more precise, the norm (on \(\mathcal{X} \) used here is

(4.4) \[\|x\|' = \max\{|x_1|, |x_2|, \ldots, |x_N|, \|\mathbb{P}_H x\|\}, \quad x = \sum_{k=1}^{\infty} x_k v_k. \]

The first eight vectors in the basis \(\Sigma_j \) are the first eight approximate eigenvectors (in decreasing order of the eigenvalues) for the derivative of the time-\(\tau \) map at the point \(\bar{u}_j \). Thus, \(\sigma_{j,1} \) is approximately the expanding direction, and \(\sigma_{j,2} \) approximates the flow direction, which corresponds to an eigenvalue \(1 \). For \(k = 9, \ldots, 20 \) we choose \(\sigma_{j,k} = (I - P) v_k \), where \(P \) is an approximation of the spectral projection for the largest eight (in modulus) eigenvalues of the linearized time-\(\tau \) map at \(\bar{u}_0 \). For \(k = 21, \ldots, 40 \), we simply choose \(\sigma_{j,k} = v_k \). A precise description of all these choices can be found in the source code of our computer programs (78298_01.zip [23.4MB]).

4.3. Mapping boxes by using convexity. In order to prove the covering relations described in Theorem 3.4, we need to compute the image of the box \(B_j \) under the intermediate Poincaré map \(P_j \) for each \(j \). Let \(j \) now be fixed. The first step in estimating \(P_j \) is to find an interval
[a, c] such that the section S_j is transversal, in the sense of Definition 2.1, to the flow with initial conditions in B = B_{j-1} and times in [a, c]. Assume that we have found such an interval. Then for every u ∈ B there exists t ∈ [a, c] such that P_j(u) = EΦ_t(u). Here, E denotes some fixed affine projection from X onto S_j. Thus, in order to verify that B P_j-covers B_j, it suffices to verify that B EΦ_t-covers B_j for every t ∈ [a, c]. In what follows, let P_j = EΦ_t for some fixed but arbitrary t ∈ [a, c].

Computing P_j(B) directly, or even P_j(∂B), is a prohibitive task. Fortunately, it suffices to compute the images of the “corners” of B. To be more precise, fix 0 < n < N, set I = {1, 3, ..., n + 1}, and denote by P the canonical projection onto the span of {σ_{j-1,k}}_{k ∈ I}.

In order to simplify notation, assume that P_j(B) = R and by convexity, this point belongs to the canonical projection onto the span of {σ_{j-1,k}}_{k ∈ I}.

In order to see why it suffices to compute the corners of B, consider the map f(x) = P_j(x) - P_j(0) from X = X_{j-1} to X_j, which satisfies f(0) = 0. The following arguments apply to more general situations.

Bound on f from a bound on Df. Suppose that for every point x ∈ B we have a bound F(x) on Df(B)x. That is, F(x) is a closed convex set containing Df(w)x for every w ∈ B. If t → w(t) is any continuous curve in B, then \(\int_0^1 dt Df(w(t))x \) is a convex combination of elements from F(x) and thus belongs to F(x). In particular, taking w(t) = tx, we see that f(x) ∈ F(x). Thus, F is a bound for f on B.

Convex combinations of corners. Now we use that every point x ∈ B admits a (unique) representation x = ξ + \(\sum_i s_i w_i \), where ξ ∈ B, and where 0 ≤ s_i ≤ 1 are real numbers that add up to 1. Thus

\[
(4.5) \quad f(x) = \int_0^1 dt Df(tx)x = \sum_i s_i \int_0^1 dt Df(tx)(ξ + w_i),
\]

and by convexity, this point belongs to \(\sum_i s_i F(ξ + w_i) \). If F(b + w_i) denotes a convex set containing F(ξ + w_i) for every ξ ∈ B, then the bounds \(\{ F(b + w_i) \}_{i=1}^m \) are sufficient to estimate f(x) for arbitrary x ∈ B.

4.4. The computer-assisted proof of Theorem 3.4

We continue our top-down approach to the original problem by reducing the proof of Theorem 3.4 further, to a point where it suffices to check a finite number of inequalities between (representable) numbers. In this section, we explain the problem-specific part of this process. The remaining task is simple enough that it can be automated and carried out by a computer. For the details of this last part we refer to the source code of our programs (78298_01.zip [23.4MB]).

Besides explicit computations (basic operations for numbers or functions), the proof of Theorem 3.4 involves the solution of implicit equations. In such cases, we first determine an approximate solution. Then the problem is reduced to verifying posteriori estimates that imply the existence of a true solution nearby. In particular, the sequence of boxes B_j represents a numerical approximation on the flow and its eigendirections. The covering relations are a posteriori estimates that guarantee the existence of a true orbit, including the points u_j ∈ B_j described in Theorem 3.4. Similarly at the level of local solution curves: The first step is to
find an approximate fixed point w_0 of the map K_ν. A bound C on the fixed point w is then obtained by verifying set inclusions in A^z, as described in subsection 3.1. These inclusion relations in turn reduce to simple inequalities in R.

Our computer programs are structured accordingly, into a “dynamical systems” level that deals with objects like boxes, a level where the main objects are functions in $C(J,A^z)$, another level that deals with maps between the spaces A^z, and a Scalar level. Every computation eventually ends up at the Scalar level; it can be carried out either in rigorous mode ($\text{Scalar } \Rightarrow \text{Interval}$), or in purely numeric mode ($\text{Scalar } \Rightarrow \text{Numeric}$) if the goal is to find an approximate solution. The other levels merely organize the proof.

Many of these steps require accurate bounds to succeed, and this has to be achieved with a finite (and reasonable) number of operations. This is made possible by the fact that the map K_ν is uniformly approximable by finite-dimensional mappings. It allows for accurate bounds that involve only finitely many inequalities.

The general approach is quite standard by now. We start by associating with a space X a collection $\text{std}(X)$ of subsets of X that are representable on the computer. We will refer to these sets as “standard sets” for X. A “bound” on an element $w \in X$ is then a set $W \in \text{std}(X)$ containing w, while a bound on a map $f : X \rightarrow Y$ is a map $F : D_F \rightarrow \text{std}(Y)$, with domain $D_F \subset \text{std}(X)$, such that $f(w) \in F(W)$ whenever $w \in W \in D_F$. Notice that the composition of two bounds, if defined, is a bound on the corresponding composed map. This and other properties allow us to combine bounds on elementary maps into bounds on more complex maps like K_ν, and thus to mechanize the necessary estimates. Bounds are implemented as procedures or functions in our programs. Any procedure (or function) that uses a theorem first tries to verify that the hypotheses of the theorem are satisfied for the given input. If the hypotheses cannot be verified, then the procedure aborts with an Error message. In that sense, every implemented bound F knows its domain: If a procedure (and thus any other procedure that may get invoked in the process) terminates without generating an Error, then the input is by definition in the domain of F.

The basic bounds used in the present proof have been developed already in [16], up to the level of bounds on basic operations (like sums, products, antiderivatives, norms, etc.) involving the spaces R and A^z, as well as between products of these spaces. Thus, in order to avoid undue repetition, the reader is referred to [16, 17] for a description of the bounds used at this level.

Here, we also have to choose and represent appropriate sets in the space $C(J,A^z)$. For functions in $C(J,R)$, we use approximating polynomials of degrees up to $m = 20$ and error estimates on $n = 10$ subintervals J_i. Given $G = (G_0, \ldots, G_m)$ in std(R)$^{m+1}$ and $H = (H_1, \ldots, H_n)$ in std(R_+)n, define $C_{G,H}$ to be the set of all functions $f \in C(J,R)$ that admit a representation

\begin{equation}
 f(t) = \sum_{k=0}^{m} g_k t^k + h(t), \quad h \in C(J,R),
\end{equation}

such that $g_j \in G_j$ for all j and $\|h\|_i \leq h_i \in H_i$ for all i. We now define std($C(J,R)$) to be the collection of all such sets $C_{G,H}$. These standard sets correspond to the data type ContFun in our programs.
Consider now the space $\mathcal{C}(J, \mathcal{A})$. Functions in this space can be represented as Fourier series $u(t) = \sum_k u_k(t) v_k$ with coefficients $u_k \in \mathcal{C}(J, \mathbb{R})$. The data type for function $\nu = \sum_k \nu_k v_k$ in \mathcal{A}, and the corresponding collection of subsets $\text{std}(\mathcal{A})$, have already been defined in [17]. In fact, this type was derived from a generic data type Fourier, with coefficients in some unspecified Banach algebra, whose standard sets are represented by a generic type FCoeff. We can take advantage of this by instantiating FCoeff with ContFun to define a derived data type TFourier. The sets associated with data of type TFourier are our standard sets for the space $\mathcal{C}(J, \mathcal{A})$. We note that the (bound on the) norm inherited from this procedure corresponds to the trivial partition $\{J\}$ of J. The norm for other choices of the partition has to be implemented afterwards.

It is now straightforward to implement bounds on the basic operations involving the spaces \mathcal{A} and $\mathcal{C}(J, \mathcal{A})$. This includes, e.g., the evaluation map $u \mapsto u(t)$ from $\mathcal{C}(J, \mathcal{A})$ to \mathcal{A}. A bound on the map K_ν is straightforward as well, albeit tedious, as subsection 4.1 indicates. Our bound on K_ν yields a bound on the time-t map Φ_t, as described earlier. The map whose fixed point solves (2.5) is very similar to K_ν, and we can use the exact same estimates as for K_ν. This in turn yields a bound on the derivative $D\Phi_t$.

For the intermediate Poincaré maps P_j we use two different bounds. Let us first describe the “simple” version and its application. We start with a numerical guess for a time-interval $[a, c]$ that should contain the crossing times $t(\nu)$ for all initial conditions $\nu \in B_j$. Then we verify the transversality condition in Definition 2.1, with $B = B_{j-1}$ and $S = S_j$, using the convexity argument described in subsection 4.3, for both $f = \Phi_a$ and $f = \Phi_c$. A bound on P_j is now given by a bound on $P_j = E\Phi_t$ that is valid for every $t \in [a, c]$. Here, E_x is the vector obtained from $x \in X$ by setting its second coordinate (in the basis Σ) equal to zero.

Consider now the problem of verifying that $B_{j-1} P_j^f$-covers B_j. Let $f = \psi_j^{-1} \circ P_j \circ \psi_{j-1}$, where ψ_{j-1} and ψ_j are the affine maps associated with the boxes B_{j-1} and B_j, respectively. That is, $B_j = \psi_j(B)$, where B denotes the unit ball in the space $X = Y \oplus Z$, equipped with the norm (4.4), where $x_2 = 0$. Let $I = \{1, 3, \ldots, 20\}$. Denote by \mathbb{P} the canonical projection in X onto the span of $\{v_k\}_{k \in I}$. Then every $x \in X$ has a unique representation $x = \sum_{k \in I} c_k(x) v_k + \xi(x)$, where $\xi(x) = (1 - \mathbb{P})x$.

Using the notation from subsection 4.3, the box B has $m = 2^{19}$ corners $b + w_i$, with $c_k(w_i) = \pm 1$ and $\xi(w_i) = 0$. We check that $c_k(f(b + w_i)) \geq \alpha_j > 1$ whenever $c_1(w_i) = 1$, and that $c_k(f(b + w_i)) \leq -\alpha_j < -1$ whenever $c_1(w_i) = -1$. In addition, we verify that $|c_k(f(b + w_i))| \leq \beta_j < 1$ for $k \geq 3$, and that $\|\xi(f(b + w_i))\| \leq \beta_j < 1$. This is done by using a bound F on Df, as described in subsection 4.3. By convexity, the above inequalities imply that $B_{j-1} P_j^f$-covers B_j. This holds for every $t \in [a, c]$, so $B_{j-1} P_j$-covers B_j.

Once these covering relations have been verified, the existence of the periodic orbit u follows from Corollary 2.5. This allows us to bound the derivatives $DP_j(u_{j-1})$ by using (2.6) and Proposition 2.6. Now we repeat the steps described above, but with F a bound on the derivative of $f = \psi_j^{-1} \circ P_j \circ \psi_{j-1}$ on B. By linearity, this is equivalent to verifying an (α_j, β_j) cone condition.

For a detailed and complete description of all these steps, we refer the reader to the source code and input data for our computer programs (78298_01.zip [23.4MB]). The source code is written in Ada95 [18], and the input data are plain (ASCII) text files. Our programs were run successfully on several different types of machines, using public versions of the GNAT
compiler [19]. The program output and information concerning the compilation and execution of our programs are included in 78298_01.zip [23.4MB] as well.

Acknowledgment. The authors would like to thank one of the referees for pointing out an error in an earlier proof of Theorem 2.8.

REFERENCES

[19] GCC, A free-software compiler for the Ada programming language, part of the GNU Compiler Collection; see http://gcc.gnu.org/.