The critical renormalization fixed point
for commuting pairs of area-preserving maps

Gianni Arioli 1'2 and Hans Koch 3

Abstract. We prove the existence of the critical fixed point (F, G) for MacKay’s renormaliza-
tion operator for pairs of maps of the plane. The maps F' and G commute, are area-preserving,
reversible, real analytic, and they satisfy a twist condition.

1. Introduction

We consider the fixed point problem for the following operator (R, acting on pairs of area-
preserving maps P = (F,G) of the plane:

R(P)=(F,G), F=A'GA, G=A"'FGA. (1.1)

Here, A is a linear scaling (x, z) — (Az, uz), depending on P, with A and p defined by the
condition G(0,0) = (—1,—1). Our main result is the following.

Theorem 1.1. The transformation R has a fixed point (F,G), with associated scalings
A= —0.7067956691 ... , p = —0.3260633966 . . . . (1.2)

The maps F and G are area-preserving, real analytic, and nonlinear. In addition, they
satisfy the following, on non-empty open subsets of their domains. G is reversible with
respect to the involution S(z,z) = (-, z), in the sense that SGS = G~1. The same holds
for F'. Furthermore, F' and G commute.

Our proof of this theorem is computer-assisted.

This fixed point problem has a rather long history [1-7]. The fixed point described in
Theorem 1.1, is known as the “critical” fixed point of R. Its existence was conjectured in
[2], based on a numerical investigations; and some rigorous partial results were obtained
in [7]. A related fixed point problem for Hamiltonians was solved recently in [13,14].

The motivation behind these studies is to describe the breakup of golden invariant
circles in one-parameter families of maps, such as the standard family

(z,2) = (r +w,w), w =z — Bsin(27x). (1.3)
For 8 = 0, the map (1.3) has a smooth invariant circles, including one (at z = 9~!) whose

rotation number is the inverse of the golden mean ¥ = %\/5 —}—%. By KAM theory, the same
holds for small 5 > 0. The golden circle is observed to persist as [ is increased, up to some
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value B, where it starts to break up. The transition is characterized by several numerical
quantities that are universal, in the sense that the exact same values are observed in a large
class of one-parameter families of cylinder maps 3 +— G . In particular, the critical map
in the family (the map Gg for f = ) has a non-smooth golden invariant circle. This
circle, and the entire orbit structure nearby, is invariant under a scaling A = diag(\, ),
with A and g being the values (1.2).

The maps (1.3) commute with integer translations F,,(x, z) = (z+n, 2), so they define
maps on the cylinder T x R. In a more general situation, the cylinder can be R?/F, where
F is a Z-action on R?, generated by some diffeomorphism F;. A map on this cylinder
can be described by a map G : R?2 — R? that commutes with F; . If we think of F; as
a full rotation of the cylinder, then the equation for a periodic point (x,z) of G, with
rotation number §> is GY(z,2) = Fp(x, z). We refer to such a point as being %—periodic
for the pair (F,G), where F' is the inverse of ;. Then a %’—periodic point for (F,G) is
just a fixed point for FPG?. At the same time it is a %—periodic point for (G, FG), since
FPG?1 = GT7P(FG)P. Now consider the continued fraction approximants r; = %, ro = %,
ry = %, ry = g, ... for the inverse golden mean ¥~!, and let n > 1. Then a r,-periodic
point for (F,G) is a r,_1-periodic point for (G, FG). Furthermore, taking n — oo yields
an analogous statement about quasiperiodic points with rotation number 9—1.

Coming back to the scaling properties of critical cylinder maps, one observation is
the following: After a suitable change of coordinates, a sequence of r,-periodic points
(Tn, zn) accumulates at the origin (lying on the golden circle), with asymptotic ratios
Tnt1/Tn — X and zp41/2, — p. This motivates a rescaling of the map (F, G) — (G, FG),
as in (1.1), and it suggests that, under iteration of R, a critical area-preserving cylinder
map converges to the critical fixed point. In this “renormalization picture”, the value S
marks the point where a family 3 — Pp crosses the (codimension 1) stable manifold of the
fixed point. Another universal quantity that can be observed in such families is a value
0 ~ 1.62795. It describes the geometric accumulation, at (., , of bifurcation points S,
involving r,-periodic orbits. This number § is expected to be the expanding eigenvalue of
the derivative DR at the fixed point. Estimates on ¢ require a study of this derivative,
which we have not done here; but it could be the subject for future work.

Notice that R preserves the commuting property of pairs. However, the constraint
FG = GF is highly impractical to work with. Thus, we drop it for the time being. Another
problem is reversibility: it is not preserved by fR. What does preserve reversibility are
“palindromic” compositions like GF'G. Thus, we start by considering the transformation

N(G) = A"1FGA, Gy =A"'FGA, F=A'GA. (1.4)

Here, A\ and p are defined by the equation G(—\, —u) = (—A\?, —p?). This guarantees that
the normalization condition G(0,0) = (—1, —1) is satisfied again by M(G), as well as by G .
Clearly, if G is a fixed point for N, satisfying G; = G, then the corresponding pair (F, Q) is
a fixed point of YR. Interestingly, the property G; = G holds almost automatically: Let G
be a reversible fixed point of 91. Then, using that A=!G = FA~!, we find that J = Gl_lG
satisfies

J=(A'GT'FTIA)(AT2GFGA?) = AT 'GTIATTFGA? = AL T AL (1.5)
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In addition, J leaves the origin invariant. Assuming J is analytic near the origin, a
simple power series argument, using that |u| is not an integer power of |A|, shows that
the conjugacy (1.5) implies J = £I. By proving that J is analytic and different from —I,
we can conclude that G; = G. Hence the pair (F,G) is a fixed point of 2R. In addition,
the identity G; = G implies that (1 is reversible, which in turn implies that F' and G
commute. The complete argument is a bit more involved, since the domains of these maps
need to be considered.

Another constraint is that the map G has to preserve area. We deal with this in the
usual way, by representing GG in terms of a generating function g,

G(ZL',Z) = (y,w), Z= _gl(xvy)v w:.QQ(xay)’ (16)

where g; = 0;¢. In other words, the fixed point problem 91(G) = G is translated into a
fixed point problem N(g) = g. After solving the latter, and verifying that g; o > 1 on
the relevant domain, we obtain the desired fixed point of 1 by solving equation (1.6).
The twist property g; 2 > 0 guarantees that the solution is unique. Furthermore, since
the one-form wdy — zdx is the differential of g, and thus closed, the resulting map G is
area-preserving. For simplicity, we reconstruct G and define F' on domains that are (each)
a union of two overlapping rectangles, satisfying

AD. C D, AD, C D, GAD; C D5 (1.7)

Except for the closures, these are the minimal conditions for J3(P) to be defined on the
domain of P, regardless of the order in which F' and G are composed. In [6], a fixed
point of R that satisfies (1.7) is said to have the extension property. When combined with
additional properties, it is possible to prove a number of interesting facts about cylinder
maps that are attracted to such a fixed point under iteration of R. This includes the
existence of a golden invariant circle. For further details we refer to [6]. We did not
attempt to verify any of these additional properties, but our computer programs should
be well suited for such (and other) investigations.

A related fixed point problem was considered in [7], namely F' = A73GFGA3 and
G = A3GFGFGA3. This is a palindromic modification of the equation R*(P) = P. It
was proved in [7] that the corresponding fixed point equation for a reduced generating
function (corresponding our g;) has a solution; and the bounds obtained for A and p are
compatible with (1.2). What was left open is the question of whether the corresponding
maps F' and G commute (which would yield a fixed point or period 3 for R, assuming that
F and G have proper domains), and whether they are area-preserving.

As indicated earlier, there are analogues of the transformation (1.1), that act on
Hamiltonians. An overview of the work in this area, which goes back to [8, 9], can be
found in [10, 11]. One such transformation, that preserves analyticity, was proved to
have a critical fixed point [13], with a non-smooth invariant torus [14]. Naturally, the
scaling constants for Hamiltonians agree with (1.1). As one would expect, there is a
connection between R and its Hamiltonian analogue. However, this connection [12] is
purely formal, due to unknown domains, and a direct analysis of ‘R seemed more promising
(and interesting) than trying to make this connection rigorous.
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One problem with R has always been the need to work with commuting pairs; but
our argument following (1.5) shows that this issue is less serious than it seems. It should
be possible to extend our methods to obtain results on the derivative of R at the critical
fixed point. An analogous analysis for Hamiltonians seems currently out of reach, due to
the complexity of the transformation involved.

Our results on the transformation N for generating functions, and on a related con-
traction M, can be found in Sections 4 and 5, respectively. The relevant function spaces,
and some basic estimates, are given in Section 3. In Section 6, we discuss an implicit
equation that arises in the definition of A/. A description of our computer-assisted proof
can be found in Section 7. We start by defining the transformation N .

2. Generating functions

The transformation N for generating functions is formally N' = U~10W¥, where ¥ is the
map that assigns an area-preserving map G to a generating function g, via equation (1.6).
Our aim here is to give an explicit but formal description of N, and of its derivative.

We start with some simple facts about generating functions and use the opportunity
to introduce some notation. As can be verified using (1.6), the generating function f * g
for a composed map F'G is given by

(fxg)(z,y) = g(x, V) + f(V,y), (2.1)

with the “midpoint” V = V(x,y) determined by the equation

Lo v) + SV, =0, (22

A conjugacy F' = A1GA by a scaling A = diag(\, 1) translates into
f=0mwgotl,  Uz,y) =z, Ny). (2.3)

For the generating function g~! of the inverse map G~! we get ¢~ *(x,y) = —g(y, x). From
this, one sees that the generating function Sg for SG~1 is given by

(Sg)(z,y) = g(—y, —=). (2.4)

A function g that is invariant under S will be called symmetric.
Now we consider the generating function analogue of each step in the definition of

N(G) = A"2GFGA*, F=A'GA. (2.5)

We assume that G is reversible and satisfies the normalization G(0,0) = (—1,—1). Thus,
the corresponding generating function has to be symmetric and satisfy

g1(0,-1) =0 g2(0,—1) = —1. (2.6)
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The generating function f of F' is given by (2.3), once we have determined the scaling
constants A and . We would like A and p to yield the sequence

-2

(0,0)275(0,0)-C5 (=1, 1) o (=, — 1) Lo (=22, —2) A (1, — 1), (2.7)

so that 91(G) is again properly normalized. Notice that the map G; = A"'FGA then
satisfies G1(0,0) = (=1, —1) as well. The first and last condition (arrow) in (2.7) hold for
any choice of A and p. The second is just the normalization of GG, and the third follows
from the fourth by the definition of F. So we determine A and p by the fourth condition,
or equivalently, by the equation

gl(_)‘a _)‘2) = U, 92(_/\7 _/\2) = _/1’2 . (28)

Next, consider the Composed map. H = GFG. Applying the identity (2.1) twice, we
see that the generating function hof H is given by

h(z,y) = g(x, V) + fV, W) + g(W. ), (2.9)
with V = V(z,y) and W = W(z,y) making the right hand side of (2.9) stationary:
g2(x, V) + LYV, W) =0, oV, W)+ (W,y) =0. (2.10)

A simple calculation, using that both f and g are symmetric, shows that the second
equality in (2.10) follows from the first, if YW = —SV. This identity also ensures that h is
symmetric. Thus, it suffices to solve

92(z, V) + f1(V,—-SV) = 0. (2.11)

Once this equation is solved, and h is defined via (2.9), the remaining step G = A2HA?
translates to R
g(z,y) = M) 2h(Nx, Ny) . (2.12)

Here, we have used (2.3) again. Given that G = (G), the map g — § is the desired
transformation A\.

We will also need to estimate the derivative of NV, so let us now compute ¢’ = DN (g)g’
This is easier than one might think. We assume that both ¢ and ¢’ are symmetric. Using
the symmetry of g, the equation (2.8) for A can be written as K (g, \) = 0, where

K(g,A) = g1(A%, ) — g2(A, 0)2 (2.13)
Setting DK (g, A)(¢’, \’) = 0 and solving for \', we find that

—1
N = —(2Xg1,1 + 91,2 — 292[2Xg2.1 + g2.2])  [91 — 29295) (2.14)

where all functions are being evaluated at (A%, \). Since u = —go(A\?, \), the corresponding
variation of y is
p=—g5—[2Xg2,1 + g2.2]\ . (2.15)
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Then the variation of f = (Au)~1go £ is given by

fr=0w) g ol =N/ X+ /) f + (N /NDS, (2.16)

where D denotes the generator of dilations, (Df)(x,y) = zfi(x,y) + yfo(z,y). The varia-
tion A’ of the function h in the composition (2.9) is simply

-~

W(z,y) =g @ V)+ VW) +dW,y), (2.17)

since the right hand side of (2.9) is stationary with respect to variations of V and W. The

last step in the definition of N is the scaling g = ()\,u)_2ﬁ o ¢2. Tts variation is analogous
to (2.16), so the function ¢’ = DN (g)g’ is given by

7 =) 2R o 2 = 2N /N + i /)G + 2N /N)D . (2.18)

Notice that the basic steps involved in the construction of N (g) and DN (g)g’ are
derivatives, composition of functions, and the solution of implicit equations.

3. Function spaces

In order to control the steps described in the last section, we first have to choose appropriate
domains and function spaces. Since we need good approximations for analytic functions,
our preference is to use Taylor series, and domains that are disks (in each variable).

The equation (2.4) shows that the generating function g for a reversible map G is an
even function of x + y. Thus, it is natural to change variables to

t=x+vy, sS=r—y. (3.1)

However, using a domain of the type |t — to| < p¢ for the variable ¢ poses problems.
Expanding about ty = 0 is essentially useless, even numerically. And using a disk about
to # 0 is not a workable option, since we need a reasonable subspace of even functions.
Here, and in what follows, we call a function even if it is an even function of t. A possible
way out is to write our functions as P + tQ), with P and @ even; then expand P and @
in powers of u = t? — t3 and v = s — so. But it turns out that the resulting domains are
too borderline for a successful analysis of A/. What improves the situation drastically is a
choice of variables of the form

u=[t* —t3] +b[s — so], v=35—S5p, (3.2)

with b substantially different from 0. Specific values for the parameters tg, sg, and b will
be given later.

The corresponding function spaces are chosen as follows. Given a pair of positive real
numbers p = (pu, pv), denote by D, the set of points (u,v) € C? such that |u| < p, and
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[v| < py. Define A5 to be the space of all analytic functions P : D, — C, that extend
continuously to the boundary of D, , equipped with the norm

1Pllo =" Puwllor,  Pluv) =Y Ppou™™. (3.3)

Clearly, A7 is a Banach algebra, that is, | PQ||, < [|P||,[|Q|, . If A is any complex Banach
algebra with unit, then for U,V € A we define P(U,V) =5 Pp ,U™V", provided that
the series converges in A. 7

Before extending the above to include non-even functions, we give here the bound that
is used (in our programs) to estimate the various derivatives that appear in the construction

of N(g) and DN (g)g’. Given positive real numbers o < 7, and a non-negative integer k,
define

B o ml o\ g
Wi(o,7) = max Wi.m (o, 7), Wim(o,T) = =R (;) o " (3.4)

Proposition 3.1. Let r = (ry,r,), with 0 < r, < p, and 0 <7, < p,. If P € A5 and
k >0, then OFP € A% and |0k P||, < Wi (ru, pu)||Pll, -

An analogous bound holds of course for derivatives with respect v.

Proof. With P as in (3.3) we have

(asp)(%v) = Z Z Pm,n(ﬂlmf!k)!um_kvn, (35)

m>kn>0
and thus
k m! m—=k_.n
loEPI < > ) !Pm,n|m7“u Ty
< S ST P00 W (s pu) < 1Pl Wi (s pu)
m>kn>0
as claimed. QED

Consider now a fixed choice of the parameters tg, so, and b. Denote by D, the set of
points (z,y) € C?, for which (u(z,y),v(z,y)) belongs to D,, where u and v denote the
functions (z,y) — w and (z,y) — v, respectively, defined by the change of variables (3.2)
and (3.1). Any function R : D, — C can be written as

R = P(u,v) + tQ(u,v), (3.7)

where P and @) are functions on D, , and t(x,y) = = +y. We define A, to be the Banach
space of all functions (3.7), with P,Q € A7, equipped with the norm

1/2
IRll, = 1P, +pellQllos  pe = [to + pu+[blpu] " (3.8)
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A function R € A, will be called real, if both P and @ take real values for real arguments.
Notice that
t'=totu—bv, |, =pi =t (3.9)

From this, it follows readily that A, is a Banach algebra. The subspace of even functions
R = P(u,v) will be denoted by A¢ . Clearly, A is isometrically isomorphic to Af .

The spaces A, are convenient for estimating composed maps. More generally, let A
be any commutative Banach algebra over C, with unit 1. Let X, Y e Aand T =X +Y.
Given R € A, as in (3.7), define R(X,Y) = P(U,V)+TQ(U,V), where V = X —Y — 591
and U = T? — 31 + bV.

Proposition 3.2. Using the above definitions, assume that ||T'|| < p:, ||U| < p. and
VIl < py. If R belongs to A,, then R(U,V) belongs to A, and |[R(U,V)| < ||R],.
Furthermore, the map (X,Y) — R(U,V) is analytic, on any open domain in A x A where
the assumptions above are satisfied.

The proof of this proposition is a straightforward exercise in power series. When
applied with A = A,, it can be used to estimate the composed maps appearing in the
midpoint equation (2.11). And in the case A = C, it implies e.g. that |R(z,y)| < ||R],,
for all (z,y) € D, .

The spaces A, are also convenient for estimating linear operators. In particular, the
operator norm of a continuous linear map L : A7 — A is given by

|L||, = sup |[LEw nllp Epmn = cmau™o". (3.10)

Here, ¢, n = |[u™v™]|7 1, so that each of the functions E,, , has norm one.
) P )

4. The fixed points of N and R

In this section, we describe our main results concerning the transformation A’. These
results are then used to give a proof of Theorem 1.1 and properties (1.7).
Our domain for the transformation A is a ball in the space AS , for the parameters

to:%lg, 30:%, b=3, Qu:%7 Q’U:%- (4.1)

Different parameter values, and thus variables u and v, are used in our representation of the
functions f, V, and h. We refer to our computer programs [15] for such details. The values
in (4.1) are considered fixed from now on, unless specified otherwise. We remark that these
values have not been fine-tuned, despite the appearance. They are binary fractions that
are close to our simple (in fact our first) decimal guesses. The same holds for the other
parameters values given below.

Theorem 4.1. The transformation N has a locally unique real fixed point g in AG s
analytic near this fixed point, and has a compact derivative. The scaling constants A\ and
u, associated with the fixed point g via equation (1.6), satisfy the bounds (1.2).

This theorem will be proved in the next section, by reducing the fixed point problem
for N to a fixed point problem for a contraction M.
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Our reconstruction of the maps G and F = A~'GA from the generating function g
involves the rectangle R = {(z,2) € R? 1 29 < # < m7 and 29 < 2 < 21}, with

107 — 9 — __ 251
5ER ZL‘1—§, Zo——6, 21 = T9g5 - (42)

L0 = ~ 3256

R contains the origin, and in particular, A>’R C R. We define D, = A“'R_ UR_ and
D =RUAR,_,where R_~ R~ R_, but R CRand RC R_, to ensure that the first
two of the conditions (1.7) hold. We will not specify the rectangles R, here, except for
saying that their corners lie within 27°° of the corners of R.

We note that F' and G can be constructed directly, via equation (1.6), in domains
that contain all points along the normalization chain (2.7). The “direct” domain for G
includes the rectangle R, but it misses points from the S-reflected chain, such as (A, —pu),
which would be convenient for proving that GF' = F'G. This is the reason for including
the scaled rectangle AR, where G will be defined via extension.

Lemma 4.2. The fixed point g described in Theorem 4.1 has the following additional
properties. The equation (1.6) defines a real analytic map Gy on R, , and Gy maps [\2RJr
into AT'R_ . Define G; = A" 'FyGoA on AR, with Fy = A~'GyA defined on A_IR+ )
Then G maps AR into A~'R . Furthermore, J = GflGo is well defined near the origin,
and different from —I.

The analyticity of Gg follows from the analyticity of g via the implicit function theo-
rem. The remaining part of our proof is computer-assisted. For further information and
details we refer to Section 7, and to the code of our programs [15].

We note that the formal identity (1.5) only involves compositions along the chain
(2.7), if J is evaluated at the origin. Thus, all these compositions are well defined, with
(F, G) replaced by (Fpy, Gp), if J is restricted to a small open neighborhood of the origin
in C2. For the same reason, M(Gy) = Go near the origin. This can be used to write
J = Ho_lFoGo , where Hy = AGalA_l. It is this the expression for .J that will be used to
verify that J # —I near the origin.

Proof of Theorem 1.1. The map J = Gl_lGO has the origin as a fixed point. In
addition, it is analytic near the origin (as Gy is analytic), where it satisfies A=2JA? = J.
Expanding .J in powers of x and y, comparing the coefficients with those of A=2JA?, and
using that |A|* < |u| < |\, one readily finds that either J = I or J = —I. The second
alternative has been excluded, so J = I. As a consequence, Gy = G; = A1 FyGoA near
the origin.

By analytic continuation, both GGy and G are restrictions of a single map G that
is real analytic on Dy . Furthermore, since (GoA)AR, and (G1A)R, are both contained
in the domain of Fy, we have G = A~'FyGA on all of D,. Now we can replace Fy by
F = A=1GA, which is defined on all of D, . This shows that (F,G) is a fixed point of fR,
with domains that satisfy (1.7).

The reversibility of G follows from the symmetry of the generating function g. Specif-
ically, we have GoSGyS = I near the origin, since (0,0) and (SG¢S)(0,0) = (1, —1) belong
to the domain of Gy. Similarly, FySFpS = I near (1,—1), since the point (—1,—1) and
its image (A, —p) under SFy belong to the domain of Fy. This fact will be used in the
equation below.
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Reversibility in turn implies that F' and G commute: Substituting G = A"'FGA into
the identity GSGS = 1, we find that FGSFGS = I near the origin. Using the restricted
domains yields

[ = FyG1SEyGoS = FoG1(SFS)(SGoS) = FoG1Fy Gyt (4.3)

This shows that GFF~'G™! = FGF~'G~! near zero, and thus GF = FG in an open
neighborhood of p = (A, —pu). By analytic continuation, the identity GF = F'G holds on
the component of D, N Dgr containing p. The reversibility domains of F' and G extend
similarly.

QED

5. Replacing N by a contraction

For practical purposes, we extend our renormalization procedure to generating functions
g that need not satisfy the normalization condition (2.6). The following extension N’ is
rather ad-hoc, but it is simple and serves the intended purpose. The condition (2.6) can
be written as Ng = (1,0), where Ng = (¢1(1,0), g2(1,0)). Consider the projection PP,

(Pg)(x,y) = g(z,y) + Cu(g)u + Cy(g)v, (5.1)

where C!'(g) and CY(g) are determined by the condition NPg = (1,0). Notice that P
is linear and bounded, on any space AZ for which D, contains the point (1,0). Now
we define N/ = NP. Since the normalization condition Ng = (1,0) is preserved by
the transformation A, the generating function N’(g) is always normalized properly. In
particular, a fixed point g of N is also a fixed point of N.

Next, we convert the fixed point equation N’(g) = g to a fixed point equation for a
map M that can be expected to be a contraction. For M we choose a Newton-type map

M) =7+ N'(go+M7y) = (g0 + Mv), N =NP. (5.2)

Here, go is a fixed (normalized) generating function that is an approximate fixed point of
N. Then v = 0 is almost a fixed point of M. The linear operator M in this definition is
taken to be an approximate inverse of T — DAN”(go), so that the derivative

DM(y) =1— [I— DN"(go + M~)| M (5.3)

of M is small near v = 0. Since DN is compact, we choose for A =1 — M a finite rank
“matrix”, in the sense that AE; =, A; ;F; , with A; ; = 0 for all but finitely many index
pairs (7,7). The indices here are pairs of nonnegative integers, and E,, ,, is the function
defined in (3.10). In addition, we ensure that NA = 0, which guarantees that NM = 0.

Given any function h € A¢ and any real number r > 0, denote by B,(h) the closed
ball in A of radius r, centered at h.

Lemma 5.1. There exists a normalized real polynomial go € Aj , a bounded linear oper-
ator M on A, as described above, as well as real numbers r > 0 and R > ||M||,r, such
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that the following holds. The transformation N is well defined, bounded, and analytic, as
a map from Bg(go) to A,, with p, = %gu and p, = %gv. For the corresponding map
M,

[M(go)lle <e,  [[DMO)l < &, (5.4)

with €, k > 0 satisfying € + kr < r. Here, and in the statement that follows, v denotes an
arbitrary function in B,.(0). The equation (2.8), with g = go + M+, determines two locally
unique constants \ and p, and these constants satisfy the bounds (1.2).

Our proof of this lemma is computer-assisted and will be described in in Section 7.

Theorem 4.1 follows as a corollary: By the contraction mapping principle, M has a
unique fixed point v in the ball B,.(0). The corresponding function g = go + M~ belongs
to Br(go) and is a fixed point of A/. This fixed point is locally unique, as M cannot have
an eigenvalue 0, given that M is a contraction. The compactness of the derivative (near
g) follows from the analyticity-improving property of AV, since the inclusion map A, — A,
is compact.

6. Implicitly defined quantities

The definition of A/ involves a number of implicit equations, such as the equation g; (A%, \)—
g2(A?,0)? = 0 for ), or the equation RX = 1 for the multiplicative inverse X of a given
function R, or equation (2.11) for the midpoint function V. In our computer-assisted
proof, implicit equations are always solved by first determining numerically an approximate
solution, and then estimating the error. As an example, we discuss the solution of (2.11).
The other (simpler) implicit equations are solved similarly.

Let x(x,y) = x. Given functions ¢, 1, V), such that ¥ (x, V) + ¢(V, —SV) ~ 0, the goal
is to find a function v such that

KOV +v) L @,V +v) + oV + v, —SV + 1)) (6.1)

is equal to zero. Modulo notation, this is the problem (2.11). The derivative of K at V + v
can be written as

6.2
= DK(V)h + (A, — Ap)h + (B, — By)Sh, (6.2)
where
A, = Yoz, V+ 1)+ 01 (V+ v, -S(V +v)), 6.3)
BV:_¢2(V+V7_S(V+V))' '
A straightforward computation shows that
DK(V) 'h = R7Y(SAg)h — R™'BySh,, (6.4)

where R = AgSAg — BoSBy and R~! = 1/R.
In the following proposition, K is considered a map on A, , defined near V € A, .
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Proposition 6.1. Let » > 0. Assume that the following holds, for all v € A, of norm r
or less. The functions A,, B,, R~ belong to A, and satisfy a bound

IRl (I 4oll, + 1 Boll,) (114w = Aoll, + 1B, = Boll,) < &, (6.5)
with k < 1. Furthermore,
[DEOV)TEW)||, < e < (1 —r)r. (6.6)
Then the equation K(V + v) = 0 has a unique solution v, € A, of norm <.

Proof. Define
C(v)=v—DKWV) 'KV +v). (6.7)

Notice that ||C(0)||, < e by the assumption (6.6). We also have

DC(v) =1— DK(V)"'DK(V +v)
= —DK(V) ' [DK(V +v) — DK(V)] (6.8)
— —R7'[(S40) — BoS] [(Aw — 4o) + (B, — Bo)S] ,

so the inequality (6.5) implies that || DC(v)|| < & on the ball ||v|, < r. The assertion now
follows from the contraction mapping principle. QED

When solving the midpoint equation (2.11), we start with a function g belonging
to Ay, and a function f belonging to another space of this type. In order to verify
the hypotheses of Proposition 6.1, we first have to estimate the derivatives ¢ = f; and
1 = g9, as as well as the first partial derivatives of ¢ and 1. This can be done by using
Proposition 3.1. Then we can use Proposition 3.2 to estimate the functions A, and B, .
The inverse 1/R is estimated by using the contraction & — (X +2£)[1 — RX] — RE?, whose
fixed point &, is the difference between the true inverse and an approximate inverse X.
Combining steps and using the chain rule, we see that the function C(v) in (6.7) depends
analytically on the pair (f, g), on any open domain where the necessary norm inequalities
are satisfied. By uniform convergence, the analytic dependence carries over to the solution
Vs .

The last argument is based on the fact that the fixed point for the contraction C can
be obtained by iteration, yielding a sequence that converges (geometrically or better) in
norm. The same arguments apply to the fixed point problem M(+) = 7. Our constructive
definition of M yields either an empty domain (unsatisfied norm inequalities), or else an
analytic map.

7. Organization of the programs

What remains to be proved is Lemma 5.1, including (1.2), the domain and range properties
described in Lemma 4.2, and a simple bound on DJ(0,0). These are all inequalities. The
goal is to reduce inequalities like [[DM(7)||, < & into several simpler ones, and to continue
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this reduction, until the inequalities that need to be checked are completely trivial. The
computer is used not only to check these trivial inequalities, but also to generate them,
using the propositions from this paper, or more basic facts, or definitions.

The basic techniques used in our proof are not new. Thus, we will limit our description
to the main structure, and to some novel aspects. The precise definitions, and all other
details of the proof, can be found in the source code of our programs. (They are written
in the programming language Ada95 [17].) The programs should be organized well enough
to be readable without much knowledge of programming.

Since more complex structures are defined in terms of simpler ones, we will start
with a description of the lowest level. One of the issues at this level is rounding. To
avoid a possible misunderstanding, we would like to stress that the control of roundoff
errors is a rather trivial aspect of this type of proofs. The main difficulty is to control
objects in infinite dimensions, namely our spaces A, , with a finite amount of information.
This requires keeping track of what is relevant at each step of the proof, and discarding
unnecessary information.

In what follows, words in this font will denote entities (data types, procedures,
packages, ...) in our programs.

As mentioned earlier, implicit equations are first “solved” numerically, and then we
prove that there exists a true solution nearby. Thus, most procedures are designed to be
run either in numeric or rigorous mode, depending on whether the generic type Scalar is
instantiated with Numeric or Ball, respectively. Modes are switched withing the program
as needed. In numeric mode, the floating point unit is instructed to round to the nearest
Rep (representable number, in our case 80 bit [16]), while in rigorous mode, we put the
unit into round-up mode. This guarantees e.g. that R1+R2 returns an upper bound on the
true sum of R1 and R2. A lower bound can be obtained from -(-R1-R2). This allows for
rigorous interval arithmetics.

Our “intervals” are in fact special cases of balls B(c,r,b) = (c+rU)1 +bU in a
commutative Banach algebra A with unit 1, where ¢ and r,b > 0 are representable real
numbers, I/ is the unit ball in R or C, and U is the unit ball in A. The corresponding data
type Ball is a record S=(S.C,S.R,S.B) with components of type Rep. Using controlled
rounding as described above, it is easy to implement an operation S1+S2 that returns
a Ball S, with the property that B(S) contains all sums s; + so, with s; € B(S1) and
s € B(S2). Such low level operations are defined in the Ada package Balls. In what
follows, we identify a data type like Ball with the collection of all representable sets B(S)
based on this type.

These sets B(S) are sufficient when working with A = R or A = C. Consider now
the space A = AJ. In this case, B(S) represents a neighborhood of the constant func-
tion (u,v) +— S.C. More elaborate subsets of A7 are represented by a type Taylor2,
consisting of a pair T=(T.R,T.C), where T.R is a pair of numbers of type Radius (non-
negative Rep), representing the domain parameter p, and where T.C is a two-dimensional
array (0. .PDeg,0..PDeg) with components T.C(M,N) of type Ball. The pair T repre-
sents the set B(T) = > B(T.C(M,N))u™v". This sum ranges over nonnegative integers M
and N, with M+N not exceeding PDeg. Clearly, we can define a Taylor2-sum T1+T2 with the
desired property (analogous to the one described above for balls), in terms of Ball-sums
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T1.C(M,N)+T2.C(M,N). This and other bounds on operations involving functions in AZ are
defined in the package Taylors2.

For the quadratic functions uw and v defined in Section 3, we use a data type Args,
given by a record A=(A.TO,A.S0,A.B,A.A) with components of type Rep. The first three
components describe the parameters ty, sg, and b. The component A.A is the coefficient
a in a more general version a[t? — t3] + [s — sq] of our function v, but we only use a = 0
here. Some basic operations involving such quadratic functions, and changes of variables,
are defined in the packages MiniFuns and MiniFuns.Ops.

Our standard sets in the space A, are defined by a type Fun, consisting of a quadruplet
F=(F.A,F.E,F.P,F.Q), where F.P and F.Q are of type Taylor2. The component F.E is
a Boolean parameter; if True, then the set represented by F is B(F) = B(F.P) + tB(F.Q),
with B(F.P) and B(F.Q) as described above, except for a change of variables u = u(x,y)
and v = v(z,y) defined by the Args-type argument F.A of F. We refer to such a Fun as
being of “even” type. If F.E is False, then the Ball-type components F.P.C(M,N) and
F.Q.C(M,N) use A, as algebra, and not just the even subspace A7 . So the functions in
the corresponding sets B(F.P) and B(F.Q) need not be even.

This “general” version of Fun appears naturally when composing with a function in
A, . For such compositions, we use Proposition 3.2 to estimate the errors. The even type
is more convenient for estimating derivatives, since we can use Proposition 3.1 directly,
via the chain rule. Thus, once the midpoint equation (2.11) is solved, and we have a

“general” Fun for the function % defined in (2.17), we convert this set to even type. The
basic operations involving sets in A, are defined in the package Funs2.

We recall that (2.11) is solved by first computing a numerical approximation for the
functions V. This is done by the procedure Funs2.Num.NumCompZero. Then RG.MidPoint
verifies that this approximate solution satisfies the hypotheses of Proposition 6.1. This
yields an upper bound 7 on the norm of the error, so it suffices to add a ball of radius
r to the approximate solution, to obtain a Fun-type set that contains the true midpoint
function V.

The above discussion should make clear that we can constructively define a map
Renorm, from Fun to Fun U {Error}, with the following property: If g € B(G1), and if
Renorm yields a set G2, then N (g) € B(G2). In the context of computer-assisted proofs,
such a set-map is called a “bound” on the map N. Bounds on maps like N/ and M are
defined in the package RG. They use bounds on more basic maps, defined in Funs2, which
in turn use bounds defined in Taylors2, etc. If a domain Error occurs along the way
(meaning that some condition could not be verified), then the program is simply halted.

Our bound on M is named Contract. One of the steps in the proof of Lemma 5.1 is
to verify that ||M(0)||, < e. This is done simply by applying Contract to the set {0}, and
then evaluating the Norm of the resulting set of functions, which yields a set of numbers
named Eps. The maximum Sup(Eps) defines our choice of € in Lemma 5.1. Then r is
determined in such a way that € 4+ kr < r holds if k less than KMax = g—i.

We note that, even though M is a contraction, Contract will not map any set from
Fun into itself. The reason is that these sets do not carry enough information to exhibit the
cancellations that are responsible for the contraction property of M. But the cancellations

do occur when our bound DContract on DM is applied to a basis vector E;. This allows
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us to estimate the operator norm of DM(G), using the formula (3.10). Here, G is the ball
B,.(0) described in Lemma 5.1. The norm ||[DM(G)E;,||, is estimated explicitly, for finitely
many indices j = (m, n), including all those that have A; ; # 0 for some 7. The remaining
basis vectors £ , which correspond to larger values of |m + n|, are contracted so strongly
by DM(G) that they can be mapped collectively, in a small number of sets of type Fun.
As a result, we obtain the desired bound on the norm of DM(G) in 70 steps of DContract,
organized by the function DContractNorm. The bound is less than KMax.

At this point, we have a ball By(gp), described by a record G of even type Fun,
that contains a fixed point of A/. The proof of Lemma 5.1 is completed by executing
RG.LambdaMu(G,La,Mu), which returns two balls La and Mu containing the scaling constant
A and p, respectively, for all functions in B (go). In particular, A is estimated by solving
the fixed point problem for the map A — K(g,\) defined by equation (2.13). The bound
(1.2) holds for all real values in the balls La and Mu.

Our proof of Lemma 4.2 is comparatively low-tech. For sets of points in C? we use
a data type Point, which has two components of type Ball (with A = C, but recall that
the center of a Ball is real). A claim of the type GoR; C Ry is checked simply by solving
equation (1.6) for all points (z, z) € Ry, and then checking that (y,w) = Go(z, z) belongs
to Ry . In particular, the function RG.GLambdaO takes a Point P as an argument, and
returns a Point Q that contains ¢ = GoAp for all p in the set B(P) defined by P. Thus,
in order to prove that (GoA)AR, C R_, we simply cover AR, with a finite number of
such sets B(P) and verify that the sets B(Q) returned by RG.GLambda0 are all contained in
A~'R_. Again, this is done simultaneously for all functions g € B(go). The other domain
conditions are verified analogously. This task is coordinated by RG.CheckMaps. Before
that, CheckJ(G) verifies that the 2 x 2 matrix D.J(0,0) is different from —I. This is done by
multiplying the derivatives of Gg, Fpy, and H; ! evaluated at the appropriate points. These
derivatives can all be expressed in terms of second derivatives of the generating function g.
Derivatives are always estimated by using Proposition 3.1, even if only particular values
are needed.

For further details, the reader is referred to the source code of these programs [15].
When the program Verify is compiled (by an Ada compiler) and then run, the above-
mentioned steps are carried out, and the resulting numerical inequalities are verified. This
process takes about 28 hours on a current personal computer. The values of the parameters
described in Lemma 5.1 are roughly € ~ 1.9 x 1073 and and R ~ 8.3 x 10712,
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