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Abstract. We consider MacKay’s renormalization operator for pairs of area-preserving maps,
near the fixed point obtained in [17]. Of particular interest is the restriction R0 of this operator
to pairs that commute and have a zero Calabi invariant. We prove that a suitable extension
of R

3
0 is hyperbolic at the fixed point, with a single expanding direction. The pairs in this

direction are presumably commuting, but we currently have no proof for this. Our analysis
yields rigorous bounds on various “universal” quantities, including the expanding eigenvalue.

1. Introduction

We consider the operator 〈F,G〉 7→ 〈G,FG〉 acting equivalence classes of pairs of area-
preserving maps of the plane. A pair (F ′, G′) belongs to the class 〈F,G〉 if F ′ = Λ−1FΛ
and G′ = Λ−1GΛ, for some map Λ : R2 → R

2 whose derivative has a constant determinant.
For a concrete analysis, it is convenient to represent each equivalence class by a suitable
member P = (F,G). Restricting the similarity transformations Λ to a specific subgroup,
we end up with the following operator R,

R(P ) =
(

Λ−1GΛ , Λ−1FGΛ
)

, Λ

[

x
z

]

=

[

λx+ ς
µz +̟(x)

]

. (1.1)

Here λ, µ, ς are real numbers and ̟ is a polynomial of degree ≤ 3. These quantities can
be chosen to depend suitably on the pair P .

This operator R has been studied first in connection with the breakup of golden
invariant circles [3,4,5]. Denote by R0 the restriction of R to pairs that commute and have
a zero Calabi invariant. The conjecture is that R0 has a “critical” hyperbolic fixed point.
More details will be given below. The existence of the fixed point was proved in [17].
Here we address the question of hyperbolicity. For technical reasons, we consider the third
iterate of R0. In fact, we first extend R

3
0 to a dynamical system on suitable manifold of

map-pairs. Our main result is that the chosen extension M
′ is hyperbolic near the critical

fixed point P∗, with the derivative of M′ at P∗ having a simple eigenvalue δ3,

δ = 1.62795006498458161676240425734986 . . . , (1.2)

and no other spectrum outside the open unit disk.
This number δ is a quantity that is observed numerically during the breakup of golden

invariant circles in one-parameter families of maps of the two-dimensional cylinder. As a
concrete example, consider Chirikov’s “standard family”, given by

[

x
z

]

Fσ7−−→
[

x− 1
z

]

,

[

x
z

]

Gσ7−−→
[

x+ w
w

]

, w = z − σ sin(2πx) . (1.3)
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Notice that Fσ and Gσ commute. The orbits of Fσ define a cylinder, and Gσ defines a map
of this cylinder. For σ = 0, this map has a smooth invariant circle for any given rotation
number γ ∈ R. By KAM theory, if γ is sufficiently irrational, then the invariant circle
persists under small changes of σ. Here we are interested in the “most irrational” rotation
number, namely the inverse golden mean γ = 1

2

√
5 − 1

2
. Numerically, the corresponding

invariant circle is observed to persist as σ is increased, up to some value σ∞ where the circle
breaks up. As σ is increased further, one immediately passes through an infinite number
of bifurcations involving periodic orbits whose rotation numbers are the continued fraction
approximants r1 = 1

2
, r2 = 2

3
, r3 = 3

5
, r4 = 5

8
, . . . of the number γ. Namely, at values σn

that approach σ∞ from above as n→ ∞, the rn-periodic orbits for Pσ = (Fσ, Gσ) change
stability, from elliptic to hyperbolic. By a p

q -periodic point for a commuting pair (F,G) we

mean a fixed point for F pGq. Interestingly, the ratio (σn − σn−1)/(σn+1 − σn) is observed
to have a limit as n → ∞, namely the number δ. Even more interestingly, the value of
δ is “universal”, in the sense that a large class of cylinder-map families exhibit the same
phenomenon, with the exact same value of δ. Two other universal numbers λ∗ and µ∗

describe the accumulation of rn-periodic orbits at the critical golden torus, for the pair Pσ

with σ = σ∞.

The standard framework (coming from statistical mechanics) for studying this type
of universal behavior involves renormalization. The renormalization operator R defined
in (1.1) was proposed and studied first in [3,4,5]. What makes it relevant to the problem
at hand is the fact that if ω is a rn-periodic point for P , then Λ−1ω is a rn−1-periodic
point for R(P ). The standard explanation of the above-mentioned observations involves
the existence of a fixed point P∗ for R0, with the property that the linearization of R0 at
P∗ has an eigenvalue δ and no other spectrum in the open unit disk. Furthermore, the
scaling Λ∗ associated with P∗ should be conjugate to diag(λ∗, µ∗).
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Figure 1. Expected renormalization picture. Here P̃ = R0(P ).

Figure 1 depicts the expected action of R0, assuming that (some extension of) this
operator acts differentiably on a manifold of map-pairs: A family σ 7→ Pσ intersects the
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“critical surface”Ws at the parameter value σ = σ∞ where the golden torus breaks up. Ws

is the codimension-1 stable manifold of R0 at the critical fixed point P∗. The “bifurcation
surfaces” Σ(rn) accumulate at Ws with an asymptotic rate ∝ δ−n.

We start our analysis by discussing the fixed point problem for R. A proof for the
existence of a fixed point P∗ whose scaling Λ∗ is consistent with numerical observations
was given already in [17]. But our analysis of the operator M′ requires domains that are
different from the ones considered in [17], so we first need prove a similar result:

Theorem 1.1. There exist two commuting area-preserving maps F∗ : DF → R and
G∗ : DG → R, such that the pair P∗ = (F∗, G∗) is a fixed point of R with scaling

Λ∗

[

x
z

]

=

[

λ∗x
µ∗z

]

,
λ∗ = −0.706795669179637278164917314160335 . . . ,

µ∗ = −0.326063396625001485308122063586433 . . . .
(1.4)

The domains DF and DG are open and connected and satisfy the relations (1.5) below.
The maps F∗ and G∗ are real analytic and satisfy a twist condition. Furthermore, they
are reversible with respect to the reflection S

[

x
z

]

=
[

−x
z

]

, in the sense that SF∗S = F−1
∗

and SG∗S = G−1
∗ .

Our proof of this theorem involves estimates that have been carried out by a computer.
As a by-product, we obtain highly accurate bounds on the various quantities involved [23].
In particular, we determine enclosures λ⋄ ∋ λ∗ and µ⋄ ∋ µ∗ that are open intervals of
diameter less than 2−253. Denote by Λ⋄ the set of all 2 × 2 matrices Λ = diag(λ, µ) with
λ ∈ λ⋄ and µ ∈ µ⋄. Then the domains DF and DG mentioned in Theorem 1.1 satisfy the
relations

Λ⋄DF ⊂ DG , Λ⋄DG ⊂ DG , GΛ⋄DG ⊂ DF , (1.5)

for G = G∗. The conditions (1.5) ensure that, if two continuous maps F and G are
well-defined on DF and DG, respectively, then so are the renormalized maps Λ−1GΛ and
Λ−1FGΛ, respectively, if Λ is sufficiently close to Λ∗. Additional conditions with stronger
implication are discussed in [10].

Since our proof of Theorem 1.1 is very indirect, let us describe some of the direct
information that we have about the fixed point P∗. As in [17], the map G∗ is obtained
as a fixed point of the operator N defined by the equation N(G) = Λ−1FG0Λ, where
G0 = Λ−1FGΛ and F = Λ−1GΛ. The map G is normalized by fixing the value G(0), and
the scaling Λ = diag(λ, µ) is then determined by the condition G0(0) = G(0). To be more
precise, we solve the equation N(G) = G for maps by solving the corresponding equation
N (g) = g for generating functions.

A map G is obtained from its generating function g via the equation

[

x
z

]

=

[

x
−g1(x, y)

]

G7−→
[

y
g2(x, y)

]

=

[

y
w

]

, (1.6)

where gj = ∂jg. Assuming that g satisfies a twist condition g1,2 > 0, the corresponding
map G is uniquely defined. Since the one-form wdy − zdx is the differential of g and thus
closed, this map G is area-preserving. Domains will be specified later. Concerning planar



4 Hans Koch

domains, recall that our maps G are in fact lifts of cylinder-maps. Say P = (F,G) is a
commuting pair, with F defining a cylinder ZF . Then the one-form dg may not be closed
on ZF . In that case g defines a multi-valued function on ZF ×ZF . The values at any given
point differ by integer multiples of a fixed constant, namely the Calabi invariant of the
cylinder map [11]. An explicit expression for the Calabi invariant C(P ) of a commuting
pair P will be given in Subsection 3.1. If C(P ) is nonzero then P has a “net motion” in
the non-periodic direction of the cylinder. This is a trivial obstruction to the existence
of homotopically nontrivial invariant circles; so we are mostly interested in cylinder maps
with zero Calabi invariant. This includes e.g. all reversible pairs.

Notice that the operator N preserves reversibility. It is not hard to shows that, if G
is a reversible fixed point of N, then G−1

0 G is the identity map near the origin [17]. So
modulo domain questions, a reversible fixed point of N yields a fixed point for R. Notice
also that, if (F∗, G∗) is a reversible fixed point of R, then F∗ and G∗ commute.

Theorem 1.1 is proved by finding a fixed point g∗ for N , defining the associated
map G∗ via (1.6), and setting F∗ = Λ−1

∗ G∗Λ∗. The resulting domains DG and DF for
G∗ and F∗ will be described in Section 4. The domain of F∗G∗ is defined as usual as
DFG = G−1

∗ (DF ∩ G∗DG). Similarly for the domain DGF of G∗F∗. When saying that F∗

and G∗ commute, we mean that F∗G∗ and G∗F∗ agree on the intersection DFG∩DGF. This
intersection is shown to be non-empty.

Whenever two injective maps F and G commute, we can define an extension G of G
in such a way that GF is defined on the domain of FG and satisfies GF = FG on this
domain. The map F can be extended similarly. This procedure is used to extend F∗ and
G∗ to the larger domains DF = DF ∪ DG and DG = DG ∪ Λ⋄DG. These domains are then
shown to satisfy the relations (1.5).

A related fixed point problem M(P ) = P was considered by Stirnemann in [12], where
M is a “palindromic” modification of the third iterate of R,

R
3(P ) =

(

Λ−3GFGΛ3 , Λ−3FGGFGΛ3
)

,

M(P ) =
(

Λ−3GFGΛ3 , Λ−3GFGFGΛ3
)

.
(1.7)

A useful feature of M is that it preserves reversibility with respect to S. It was shown in
[12] that the corresponding fixed point equation for a reduced generating function has a
solution. What was left open is the question of whether the corresponding maps F and G
commute (which, modulo domain questions, would yield a fixed point for R3), and whether
they are area-preserving.

We have tried to work with the operator R directly, but we were unable to find
appropriate function spaces for such an analysis. The problem is that R is defined only
for map-pairs whose generating functions have relatively large and/or unwieldy domains.
This lead us to consider R3 and M. Fortunately, we were able to find domains that work
simultaneously for both N and M. As a result, we have a fixed point P∗ for M that
we already know is a commuting fixed point for R. And since we are interested only in
commuting pairs, there is no loss in working with M instead of R3. For commuting pairs
with zero Calabi invariant, Theorem 1.2 below implies that R3 has at most one unstable
direction at P∗, and that all other directions are exponentially attracting.



Hyperbolicity in Renormalization 5

If B is a set of pairs of area-preserving maps, and if Ω a subset of R2, we say that Ω
is a commutator domain for B if the composed maps FG and GF are defined on Ω, for
every pair P = (F,G) belonging to B. For such a domain Ω we define B

c(Ω) to be the
set of all pairs P ∈ B with the property that FG and GF agree when restricted to Ω, and
that C(P ) = 0.

Theorem 1.2. There exists a Banach manifold B of pairs P = (F,G) of real-analytic
area-preserving maps F : DF → R

2 and G : DG → R
2, a non-empty open commutator

domain Ω for B, an open set B0 ⊂ B containing the pair P∗ described in Theorem 1.1,
and a differentiable map M

′ : B0 → B with the following properties. The derivative of M′

at P∗ has an eigenvalue δ3 satisfying (1.2), and no other spectrum outside the open unit
disk. If P ∈ B0 belongs to B

c(Ω) then so does M′(P ), and M
′(P ) = M(P ). Furthermore,

the local unstable manifold of M
′ is included in B

c(Ω), unless P∗ is an exponentially
attracting fixed point for the restriction of M to B

c(Ω).

Our proof of Theorem 1.2 involves estimates that have been carried out by a computer.

The manifold B is the image under (f, g) 7→ (F,G) of an open set B in a Banach
space B′ of pairs of analytic generating functions. Here g 7→ G, and similarly f 7→ F , is
the map defined by (1.6). This space B′ includes all pairs of polynomials in two variables,
modulo constant functions.

Concerning the last statement of Theorem 1.2, it is clear numerically that P∗ does
not attract all nearby pairs in B

c(Ω). We believe that this alternative can be eliminated
within the framework of this paper, requiring only technical changes. A possible approach
is described at the end of Section 8.

A shortcoming of the map-pair approach is that sets of commuting pairs like B
c(Ω)

are most likely not manifolds. For the renormalization of critical circle maps, an approach
that avoids this problem has been introduced and used successfully in [13]. For the problem
considered here, commuting pairs can be avoided by studying Hamiltonian flows on T

2×R
2

instead of area-preserving maps.

An analogue of Theorem 1.1 for a renormalization operator acting on Hamiltonians
was proved in [14], and the scaling of the fixed point Hamiltonian H∗ is compatible with
(1.4). Unfortunately, the renormalization operator for Hamiltonians (or vector fields) is
substantially more involved than the operator R. So a Hamiltonian analogue of Theo-
rem 1.2 seems currently out of reach. On the other hand, it was shown in [15] that every
Hamiltonian on the strong local stable manifold at H∗ has a golden invariant torus that is
“critical”, in the sense that the flow on this torus is not differentiably conjugate to a linear
flow. A similar argument should work for the operator R

3, but we have not considered
this problem here.

In order to connect these results to the breakup of golden invariant tori, one would also
have to prove that, in some open neighborhood of the fixed point P∗, all commuting zero-
Calabi pairs on one side of the local stable manifold of M′ have a smooth golden invariant
torus, while the pairs on the other side have no golden invariant torus. Two methods that
have been developed and studied in connection with this problem are Greene’s criterion
[2,8,9] and the obstruction method [7,16]. It should be possible to make some progress on
these questions by using the methods developed in this paper.
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The remaining part of this paper is organized as follows. In Section 3 we give a formal
definition of the operator M′ that implements the above-mentioned operator M′ in terms
of generating functions. Some facts that have guided our choices are described in Section 2.
Sections 4 and 5 are concerned with the proof of Theorem 1.1, while Sections 6,7, and 8 are
devoted to the proof of Theorem 1.1. To be more precise, both proofs are reduced to the
task of proving several technical lemmas. Our proof of these lemmas is computer-assisted,
using some estimates that are given in Section 9. In Section 10 we describe how the
remaining estimates are translated into a sequence of trivial computations (with rigorous
error estimates) that can be, and have been, carried out by a computer. The complete
details of this last part, written in the programming language Ada [19], can be found in
[23].

2. Irrelevant eigenvalues

In order to determine a proper choice of scaling Λ = ΛP and a proper modification of
the operator M, it is useful to consider what happens if the scaling is fixed. Much of the
discussion in this section is purely formal; but part of it will be made rigorous later.

Let P∗ = (F∗, G∗) be the fixed point of R described in Theorem 1.1. Denote by R∗

the operator R with a fixed scaling Λ = Λ∗. That is,

R∗(P ) = Λ−1
∗ (G,FG)Λ∗ , P = (F,G) , (2.1)

where we have used the notation V (F,G)U = (V FU, V GU) for maps V, F,G,U of the
plane. As with other renormalization operators in dynamics, fixing the scaling introduces
“irrelevant” eigenvalues at the fixed point. These eigenvalues, and the corresponding eigen-
vectors, can be computed explicitly: Consider changes of coordinates Uε = I+ εT +O(ε2)
with constant determinant det(DUε). Then

U−1
ε P∗Uε = P∗ + εPT +O(ε2) , (2.2)

where PT = (DP∗)DT − TP∗. Notice that the map T 7→ PT is linear. Applying R∗ to the
left hand side of (2.2) we get a similar conjugacy, but with Uε replaced by Λ−1

∗ UεΛ∗. This
shows that

DR∗(P∗)PT = PΛ
−1
∗ TΛ∗

. (2.3)

In particular, if Λ−1
∗ TΛ = κT then PT is an eigenvector of DR∗(P∗) with eigenvalue κ.

Restricting to coordinate changes that are analytic near the origin, these eigenvalues are
all of the form κ = λm−1

∗ µn
∗ or κ = λm∗ µ

n−1
∗ , with m and n nonnegative integers.

The non-contracting eigenvalues κ and the corresponding functions T are listed in
Table 1. In this table, the eigenvalue with label 0N is the N-th largest eigenvalue in modulus
in the even subspace (defined later for generating functions). Similarly, 1N labels the N-th
largest |eigenvalue| in the odd subspace. The same labels are also used in our programs
[23].

label T (x, z) κ value
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01 (0, 1) µ−1 −3.06688825 . . .
12 (0, x) λµ−1 2.16766333 . . .
04 (0, x2) λ2µ−1 −1.53209505 . . .
15 (1, 0) λ−1 −1.41483606 . . .
16 (0, x3) λ3µ−1 1.08287815 . . .
05 (x, 0) 1 1.00000000 . . .
06 (0, z) 1 1.00000000 . . .

Table 1. Eigenvalues of DR∗(P∗) related to coordinate changes.

The goal is to choose the scaling Λ = ΛP in the definition (1.1) of R in such a way
that DR(P∗)PT = 0 for the maps T listed in Table 1. Then we can expect DR(P∗) to
have a simple eigenvalue δ > 1 and no other spectrum outside the open unit disk.

The above-mentioned expectation assumes that R is restricted to commuting pairs
with zero Calabi invariant. If we allow “general” pairs, then DR(P∗) has other expanding
eigenvalues, as was already described in [5]. They can again be computed explicitly:
If Θ = FG(GF )−1 is the commutator for a pair P = (F,G), then the corresponding
commutator Θ̃ for the renormalized pair P̃ = R(P ) is given by

Θ̃ = Λ−1GFG(FGG)−1Λ = Λ−1GFGG−1G−1F−1Λ

= Λ−1GFG−1F−1Λ = Λ−1GF (FG)−1Λ = Λ−1Θ−1Λ .
(2.4)

The derivative of the map Θ 7→ Θ̃ at the trivial commutator Θ∗ = I is given by θ 7→
−Λ−1

∗ θΛ∗. To see how this relates to the spectrum of DR(P∗), consider a one-parameter
family of pairs P∗+εP

′+O(ε2) and the corresponding family of commutators I+εθ+O(ε2).
If P ′ is an eigenvector of DR(P∗) with eigenvalue κ, then we must have Λ−1

∗ θΛ∗ = κθ. So
either θ = 0, or else κ has to be an eigenvalue of the linear operator θ 7→ −Λ−1

∗ θΛ∗. When
restricted to functions θ that are analytic near the origin, the eigenvalues of this operator
are of the form κ = −λm−1

∗ µn
∗ or κ = −λm∗ µn−1

∗ , with m and n nonnegative integers.
Numerically, these values do indeed appear as eigenvalues of DR(P∗).

Consider now the operator M defined by (1.7), but with a fixed scaling Λ = Λ∗. This
operator will be denoted by M∗. When restricted to commuting directions, DM∗(P∗) has
the same eigenvalues and eigenvectors as DR

3(P∗). But other eigenvalues and eigenvectors
need not agree. In particular, consider the commutator Θ̃ for the pair P̃ = M(P ). A
computation similar to (2.4) yields

Θ̃ = F̃Λ−3Θ−1Λ3F̃−1 . (2.5)

To first order in P − P∗, the map Θ 7→ Θ̃ is given by θ 7→ −A
−1θA, where A = Λ3

∗F
−1
∗ .

As we will show, the scaling map A has a fixed point ω̄, which belongs to the domain of Θ
for the maps considered here. Numerically, the derivative DA(ω̄) has two eigenvalues α3

and β3, where
α = −0.590942551826517690952558 . . . ,

β = −0.389987480001625160585061 . . . .
(2.6)

Thus, the operator θ 7→ −A
−1θA has eigenvalues κ3 with κ = −αm−1βn or κ = αmβn−1.

Notice that αβ = λ∗µ∗ since F∗ is area-preserving. For reasons analogous to those de-
scribed after (2.4), any eigenvalue of M∗(P∗) corresponding to a non-commuting direction
has to take one of these values κ3.
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The largest (in modulus) five eigenvalues1/3 of this type are listed in Table 2. In
addition, we list as first entry the eigenvalue that corresponds to a commuting direction
with nonzero Calabi invariant. The coordinates (a, b) used in the the second column of
this table are those that diagonalize A to diag(α, β).

label θ(a, b) κ value

11 −α−1β−1 4.33914408 . . .
02 (0, 1) −β−1 2.56418488 . . .
13 (1, 0) −α−1 1.69221186 . . .
14 (0, a) −αβ−1 −1.51528595 . . .
07 (a, 0) −1 −1.00000000 . . .
08 (0, a2) −α2β−1 0.89544695 . . .

Table 2. Third roots of eigenvalues of M∗(p∗) for non-commuting directions.

We note that, for reversible pairs, a relation analogous to (2.5) holds if the commutator
Θ is replaced by the map Ξ = FGS. This should not be surprising, since Θ = Ξ2 in this
case. Restricting to commuting pairs, this implies that the fixed point of Ξ∗A plays a role
similar to the fixed point ω of A. Thus, one would expect that Ξ∗(ω) = ω. (Notice that Ξ∗

is an involution and thus has a curve of fixed points.) This is indeed observed numerically.

3. A formal definition of the operator M
′

The main goal in this section is to describe the operator M′ that represents M′ in terms
of generating functions. We also compute the Calabi invariant C(P ). The descriptions are
formal in the sense that we do not specify any domains at this point.

3.1. Generating functions for composed maps

Consider an area-preserving map G defined by a generating function g via (1.6). The
composition of G with a map F generated by f can be represented as

[

x
−g1(x,V)

]

G7−→
[

V
g2(x,V)

]

=

[

V
−f1(V, y)

]

F7−→
[

y
f2(V, y)

]

. (3.1)

So the generating function f⊙g for the composed map FG is

(f⊙g)(x, y) = g(x,V) + f(V, y) , g2(x,V) + f1(V, y) = 0 , (3.2)

where V = V(x, y) is determined by the second equation in (3.2), assuming that this
equation has a unique solution. V will be referred to as the midpoint function for f⊙g.

Denote by V and W the midpoint functions for f⊙g and g⊙f , respectively. Let
x(x, y) = x and y(x, y) = y. We define the commutator for the pair p = (f, g) as

C(p) = f⊙g − g⊙f

= g(x,V) + f(V,y)− f(x,W)− g(W,y) .
(3.3)

Assume now that P = (F,G) is a commuting pair defining a cylinder map. Our
goal is to compute the Calabi invariant for this map. To this end, we need to choose a
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differentiable curve γ in the plane, from a point ω to its image under F . When regarded
as a curve on the cylinder defined by F , this curve γ is closed. By definition, the Calabi
invariant is the area of the region between the closed curves G ◦ γ and γ. In the planar
lift of the cylinder, this region is bounded by two other curves: a curve σ connecting ω to
G(ω), and its image under the map F .

To be more explicit, let (x, y) be some point in the domain of both f⊙g and g⊙f . Define
V = V(x, y) and W = W(x, y). Let z = −f1(x,W) = −g1(x, V) and w = f2(V, y) = g2(W, y).
Consider a differentiable planar curve γ from ω =

[

x
z

]

to F (ω). Then G ◦ γ passes from

G(ω) to ω′ =
[

y
w

]

. Pick another planar curve σ from ω to G(ω). Then F ◦ σ passes from
F (ω) to ω′. Consider the one-form θ = zdx, using the notation (1.6). Its pushforward
under the map G is G∗θ = wdy, and G∗θ − θ = dg. Similarly for the map F . The area
defining the Calabi invariant for P can now be written as

C(P ) =

∫

G◦γ−γ

θ −
∫

F◦σ−σ

θ =

∫

γ

[G∗θ − θ]−
∫

γ

[F ∗θ − θ] =

∫

γ

dg −
∫

σ

df

= g(x, V)− g(W, y)− f(x,W) + f(V, y) .

(3.4)

So C(P ) is just the commutator C(p), evaluated at (x, y). Its value is independent of the
point (x, y): having assumed that FG and GF agree, the generating functions f⊙g and
g⊙f have the same derivatives, so C(p) is a constant in this case.

Notice also that C(G,FG) = C(G,F ) = −C(F,G). Thus, given that the Calabi
invariant is an area, we have C(R(P )) = −det(DΛ)−1C(P ). The eigenvalue −(αβ)−1 in
the first row of Table 2 is precisely this factor −det(DΛ)−1.

3.2. Definition of the operator M
′

Consider the operator R with scaling maps Λ of the form Λ(x, z) = (λx, µz). Formally,
the corresponding operator for pairs of generating functions p = (f, g) is given by

R(p) = (λµ)−1(g , f⊙g) ◦ ℓ def
=

((

(λµ)−1g ◦ ℓ , (λµ)−1(f⊙g) ◦ ℓ
))

, (3.5)

where ℓ(x, y) = (λx, λy), with λ and µ to be determined. Similarly, the operator M∗ is
represented in terms of generating functions by

M∗(p) = (λ∗µ∗)
−3

(

g⊙f⊙g , g⊙f⊙g⊙f⊙g
)

◦ ℓ3∗ , (3.6)

where ℓ∗(x, y) = (λ∗x, λ∗y). We will prove later that this operator M∗ is well-defined in
an open neighborhood of p∗ in a space Bp = Bf × Bg of pairs p = (f, g).

As we have seen in Section 2, the coordinate-related eigenvalues of modulus ≥ 1 arise
from coordinate transformations of the form

U(t)

[

x
z

]

=

[

x
z

]

+

[

t5 + t6x
t7z + τ ′(x)

]

, τ(x) =
4

∑

n=1

tnx
n . (3.7)
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Here τ ′ denotes the derivative of τ , and t is a vector in R
7 close to the origin. If F is an

area-preserving map with generating function f , then U(t)−1FU(t) is the area-preserving
map with generating function U(t, f), where

U(t, f)(x, y) = (1 + t7)f(x+ t5 + t6x, y + t5 + t6y) + τ(x)− τ(y) . (3.8)

For pairs p = (f, g) we define U(t, p) = (U(t, f),U(t, g)). Conditioned on the choice of a
continuous linear map T : Bp → R

7, define now

M(p) = U
(

t,M∗(p)
)

, t = T (p− p∗) , (3.9)

for all p close to p∗. Here p∗ is the fixed point of M∗ obtained from the fixed point g∗ of
N . The derivative of M at p∗ is given by the equation

DM(p∗)p = DM∗(p∗)p+D1U(0, p∗)T p . (3.10)

Let E1, E2, . . . , E7 be the seven coordinate-related eigenvectors of DM∗(p∗) for the eigen-
values listed in Table 1. Then the equation (3.10) may be written in the form

DM(p∗)p = DM∗(p∗)p−
7

∑

k=1

[

Φ1,k(f) + Φ2,k(g)
]

Ek , (3.11)

where Φ1,k : Bf → R and Φ2,k : Bg → R are continuous linear functionals. In fact, it is
these functionals that we choose (as described below); the map T is implicitly defined by
this choice.

Recall that DM(p∗) also has six undesired eigenvalues in non-commuting directions,
namely the cubes of the values listed in Table 2. In order to “eliminate” these eigenvalues,
we compute polynomial approximations E8, E9, . . . , E13 for the corresponding eigenvectors,
and define

M′(p) = M(p)−
13
∑

k=8

Φ3,k

(

C(p)
)

Ek , (3.12)

after choosing suitable linear functionals Φ3,k for k = 8, 9, . . . , 13. Clearly, if p is a com-
muting pair in the sense that C(p) = f⊙g − g⊙f vanishes, then M′(p) = M(p).

All of our functionals Φj,k are of course chosen in such a way that DM′(p∗)Ek ≈ 0
for k = 1, 2, . . . , 13. For simplicity, they are taken to be of the form

Φj,k(h) =

Nj,k
∑

n=1

Φj,k,n h(ξj,k,n) , (3.13)

with Φj,k,n ∈ R, and with ξj,k,n ∈ R
2 well inside the domain of the functions h being

considered. The precise values of these quantities can be found in [23]. By definition, the
choices made in defining M′ are “suitable” if DM′(p∗) has a single expanding eigenvalue
and no other eigenvalues outside the open unit disk. We note that the last eigenvalue in
Table 2 is not expanding; but we choose to eliminate it as well, since it is uncomfortably
close to 1.
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4. Construction of the fixed point

As mentioned in the introduction, the first component G∗ of the fixed point P∗ = (F∗, G∗)
described in Theorem 1.1 is constructed as a fixed point of the operator N defined by
N(G) = Λ−2GFGΛ2, where F = Λ−1GΛ. The scaling Λ = diag(λ, µ) is determined by
requiring that G0 = Λ−1FGΛ maps the origin

[

0
0

]

to the point
[

−1
−1

]

. The corresponding
condition for generating functions is that g01(0,−1) = 0 and g02(0,−1) = −1.

Applying the identity (3.2) twice, we see that the generating function for GFG is
given by

(g⊙f⊙g)(x, y) = g(x,V0) + f(V0,W0) + g(W0, y) , (4.1)

with the numbers V0 = V0(x, y) and W0 = W0(x, y) being determined by the two equations
g2(x,V0) + f1(V0,W0) = 0 and f2(V0,W0) + g1(W0, y) = 0. These equations simplify if
we assume that f and g generate maps F and G that are reversible. To be more precise,
notice that the generating function for G−1 is (x, y) 7→ −g(y, x). This can be seen directly
from (1.6). Thus, the generating function Sg for the reversed map SG = SG−1S is given
by

Sg = g ◦ S , S(x, y) = (−y,−x) . (4.2)

Using that Sg1 = −(Sg)2 and Sf2 = −(Sf)1, the equations determining the midpoint
functions V0 and W0 can be written as

0 = g2(x,V0) + f1(V0,W0) ,

0 = (Sg)2(x,−SW0) + (Sf)1(−SW0,−SV0) .
(4.3)

Assume now that f and g are reversible, in the sense that Sf = f and Sg = g. Then
(4.3) reduces to the single equation g2(x,V0)+ f1

(

V0,−SV0) = 0 if we choose W0 = −SV0.
This relation between V0 and W0 also implies that g⊙f⊙g is reversible. The representation
of N in terms of generating functions is now given by

N (g) = (λµ)−2(g⊙f⊙g) ◦ ℓ2 , f = (λµ)−1g ◦ ℓ . (4.4)

If we express our generating functions in the variables t = x+ y and s = x− y, then
f and g are reversible if and only if they are even functions of t. As was found in [17], the
generating functions arising in the analysis of N are well approximated by polynomials in
the variables u and v,

u =
[

t2 − t20
]

+ b[s− s0] , v = s− s0 , t = x+ y , s = x− y , (4.5)

if t0, s0, b ∈ R are chosen appropriately. This suggested the following choice of functions
spaces. Given a pair ρ = (ρu, ρv) of positive real numbers, denote by Dρ the set of all
points (u, v) ∈ C

2 such that |u| < ρu and |v| < ρv. Define Aρ to be the space of all all
analytic functions φ : Dρ → C, that extend continuously to the boundary of Dρ and have
a finite norm

‖φ‖ρ =
∑

m,n

|φm,n|ρmu ρnv , φ(u, v) =
∑

m,n

φm,nu
mvn . (4.6)
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Clearly Aρ is a Banach algebra, in the sense that ‖φψ‖ρ ≤ ‖φ‖ρ‖ψ‖ρ for all φ, ψ ∈ Aρ.
Consider now a fixed change of variables ϕ(x, y) = (u, v) of the form (4.5). Let

̺ = (t0, s0, b, ρ) and D̺ = ϕ−1Dρ. Then every function f : D̺ → C can be written as

f = [φ+ tψ] ◦ ϕ , t(x, y) = x+ y , (4.7)

where φ and ψ are functions on Dρ.

Definition 4.1. We define B̺ to be Banach space of all functions (4.7) with φ and ψ
belonging to Aρ , equipped with the norm

‖f‖̺ = ‖φ‖ρ + ρt‖ψ‖ρ , ρt =
(

t20 + ρu + |b|ρv
)1/2

. (4.8)

The Taylor coefficient φ0,0 of φ will be referred to as the constant term of f . We will call
f even if ψ = 0, or odd if φ = 0. The subspace of even and odd functions in B̺ will be
denoted by B0

̺ and B1
̺ , respectively.

Clearly, B0
̺ is isometrically isomorphic to Aρ . It is not hard to see that both B0

̺ and
B̺ are Banach algebras.

Remark. As defined above, B̺ is a Banach space over C. When discussing maps associated
with generating functions in B̺, we only consider the corresponding Banach space over
R, where a function is assumed to take real values for real arguments. Since it should be
clear from the context which number field is being used, we will denote both spaces by B̺.
Similarly for the spaces Aρ. If we wish to stress that a function takes real values for real
arguments, we will refer to this function as being real.

For the domain of the function g in (4.4) we use parameter values

̺g(r) : t0 = 17367
32768

, s0 = 78643
65536

, b = 314573
65536

, ρu = r , ρv = 25887
32768

r , (4.9)

with r to be specified. Here, the subscript g in ̺g is just a symbol and does not refer
to a specific function g. This is part of a convention that is used throughout this paper:
any subscript in non-slant font is an abstract symbol and not an argument. The domain
D̺ and space B̺ with ̺ = ̺g(r) will be denoted by Dg(r) and Bg(r), respectively. For
the function f = (λµ)−1g ◦ ℓ we use the domain Df(r) and space Bf(r), defined by the
parameter values

̺f(r) : t0 = 0 , s0 = − 7
4
, b = −7 , ρu = 3

2
r , ρv = 14746

16384
r . (4.10)

In addition, define real domains Dg(r) = R
2∩Dg(r) and Df(r) = R

2∩Df(r). For the values
of r considered here, Dg(r) is a simply connected region η−r (x) < y < η+r (x) between the
graphs of two continuous functions y = η±r (x), defined over an interval ξ−r < x < ξ+r . The
values ξ±r and the functions η±r can be computed explicitly. Similarly for the domain Df(r).

Theorem 4.2. The operator N is well-defined and analytic on an open set in B0
g(

9
8
). This

open set contains a unique real fixed point g∗ of N . The associated scaling constants
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λ∗ and µ∗ satisfy the bounds (1.4). The corresponding function f∗ belongs to B0
f (

9
8
). On

Dg(
31
32
) and Df(

31
32
), the functions f = f∗ and g = g∗ satisfy the twist condition g1,2, f1,2 > 1

and the bounds g1,1, g2,2, f1,1, f2,2 < −1.

Concerning our proof of this theorem: The existence of the fixed point g∗ ∈ B0
g(

9
8
) with

f∗ ∈ B0
f (

9
8
), and the bounds on λ∗ and µ∗, are proved the same way as the corresponding

parts of Theorem 4.1 in [17]. In particular, the fixed point problem for N is reduced to
a fixed point problem for a quasi-Newton map associated with N . The second derivative
inequalities are then easy to verify, since our construction of f∗ and g∗ yields highly accurate
polynomial approximations with rigorous error bounds. For details we refer to [17,23]. The
task of controlling g⊙f⊙g also appears in connection with the operator M∗ and will be
discussed in Sections 6,9, and 10.

5. Map domains

When considering map-pairs (F,G) associated with pairs (f, g) of generating functions,
the domains of f and g are always taken to be Dg = Dg(r) and Df = Df(r), with r =

15
16
.

In the remaining part of this section, f, g, F,G stand for f∗, g∗, F∗, G∗ . The inequali-
ties in Theorem 4.2 imply that f⊙g and g⊙f are real analytic and satisfies a twist condition
on their domains Df⊙g and Dg⊙f, respectively. By definition, Df⊙g is the set of all points
(x, y) ∈ R

2 for which there exists a unique V ∈ R such that (x, V) ∈ Dg and (V, y) ∈ Df

and g2(x, V)+ f1(V, y) = 0. Similarly for Dg⊙f. The domain of the map G is defined by the
equation

DG = Γg Dg , Γg

[

x
y

]

=

[

x
−g1(x, y)

]

. (5.1)

Notice that, by the twist property of g, DG is a simply connected region ζ−(x) < z < ζ+(x)
between the graphs of two continuous functions z = ζ±(x), defined over the interval
ξ−r < x < ξ+r . The domain DF of F is defined analogously.

Lemma 5.1. Every map in the set Λ−1
⋄ GΛ⋄ is well-defined on DF, and every map in

Λ−2
⋄ GFGΛ2

⋄ is well-defined on DG. In particular, Λ⋄DF ⊂ DG and Λ2
⋄DG ⊂ DG.

This lemma is proved easily by including two additional domain-checks in the proof of
Theorem 4.2. Namely, using the estimates on the midpoint function V0 and W0 obtained
in the proof of Theorem 4.2, we verify that the composed maps on the right hand side
of (4.1) are well defined if f and g are restricted Df(r) and Dg(r), respectively, for some
r < 15

16
. No additional work is needed to allow arbitrary scalings Λ ∈ Λ⋄ in Lemma 5.1,

since by definition, Λ⋄ is the enclosure used for Λ∗ in the proof of Theorem 4.2. For the
complete details we refer to [23].

Notice that

R(F,G) = (F,G0) , R(F,G0) = (F0, G) , (5.2)

where G0 = Λ−1
∗ FGΛ∗ and F0 = Λ−1

∗ G0Λ∗. Given that Λ2
⋄DG ⊂ DG, the map G0 is well-

defined on Λ⋄DG, and F0 is well-defined on DG. This has motivated our choice of domains
DG = DG ∪ Λ⋄DG and DF = DF ∪ DG.
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For monodromy arguments it would be useful to know that (the union of) the domains
Df⊙g and Dg⊙f are simply connected. We saw no easy way to prove this, but the sets W
and SW given below achieve the same purpose.

Lemma 5.2. The domain λ−1
∗ Df⊙g of the generating function g0 = (λ∗µ∗)

−1(f⊙g) ◦ ℓ∗ of
the map G0 includes the intersection of Dg with the half-plane x+y ≤ 0. This intersection
includes an open neighborhood of the point (0,−1), and g0 = g on this open set. Further-
more, g0 extends to a real analytic function on an open domain W with the property that
W ∪ SW is simply connected.

We will now give a sketch of our proof and refer to [17,23] for details.

The claim that g0 = g near (0,−1) follows from a simple computation [17], which
shows that J = G−1

0 G satisfies J = Λ−1
∗ J−1Λ∗ near the origin. Using that J is analytic,

and that |λ|3 < |µ| < |λ|4 by Theorem 4.2, it follows that J = ±I near the origin. Using
our computer-generated bound on J , the case J = −I is easily excluded.

The remaining part of the proof is an exercise in interval arithmetic. We outline it
here since it is qualitatively different from our other proofs: As mentioned earlier, our
construction of f∗ and g∗ yields highly accurate approximations (polynomials in u and v)
with rigorous error bounds. When analyzing the domain of f⊙g, this allows us to decide
e.g. whether the function V 7→ g2(x, V) + f1(V, y) has a zero V = V(x, y) with (x, V) ∈ Dg

and (V, y) ∈ Df. If (x, y) is an arbitrary (unknown) point in a given square, the answer
can be either True, False, or Uncertain. The squares being considered are from a finite
collection of closed diadic squares that cover a “sufficiently large” region. Denote by A
and B the union of squares yielding answer = True and answer = Uncertain, respectively.
Then B covers the boundary of Df⊙g. By inspection (after determining the boundary of
B) we find that the complement of B is the disjoint union of two connected sets, with one
of them being the interior of the bounded set A.

Concerning the extension of g0, notice that the inequalities in Theorem 4.2 are proved
on domains that are larger than Dg and Df. This allows us to construct and estimate f⊙g
on an open domain that includes A ∪B. Now it is clear that there exists an open domain
W with the properties described in Lemma 5.2. For the complete details of the proof we
refer to [23].

The above-mentioned domains, scaled by a factor λ∗, are depicted in Figure 2. The
larger contour is the boundary of Df⊙g or (indistinguishably at the given resolution) the
set B described above. The smaller contour is the boundary of λ∗Dg. The straight line
shown in Figure 1 is the line of fixed points for the reflection S, where x+ y = 0. Seven of
the eight isolated points that can be seen near (or on) this line are the points ξ3,k,n. The
eighth point (x̄, ȳ) will be described below.
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Figure 2. Domains of f⊙g and g ◦ ℓ−1
∗ , and points ξ3,k,n.

Proof of Theorem 1.1. By Lemma 5.2, the function g0 agrees with g on a complex open
neighborhood of Dg ∩{x+ y ≤ 0}. Since f and g are even, we have Sg0 = (λµ)−1(g⊙f) ◦ ℓ,
and this function agrees with g on a complex open neighborhood of Dg ∩ {x + y ≥ 0}.
Thus, the functions g0 and Sg0 together define a (unique) real analytic extension of g to
the domain W ∪SW . This domain includes both the domains of g0 and Sg0. This implies
e.g. that the maps F and G commute.

By Lemma 5.1, the domain of G0 includes Λ⋄DG. Furthermore, G and G0 agree on
the intersection of their domains. Thus, G and G0 extend to a real analytic map G on
DG = DG ∪ Λ⋄DG. Similarly, the domain of F0 = Λ−1

∗ G0Λ∗ includes DG. Thus, F and F0

extend to a real analytic map F on DF = DF ∪ DG. By (5.2) the pair (F ,G) is a fixed
point of R. The bounds (1.4) follow from Theorem 4.2.

What remains to be proved is (1.5). We will use Lemma 5.1 repeatedly without
mentioning it each time. From DF = DF ∪ DG we get Λ⋄DF ⊂ Λ⋄DF ∪ Λ⋄DG. Since
Λ⋄DF ⊂ DG, this implies the first relation Λ⋄DF ⊂ DG in (1.5). Here we have used the
definition DG = DG∪Λ⋄DG. From this definition we also get Λ⋄DG ⊂ Λ⋄DG∪Λ2

⋄DG. Since
Λ2
⋄DG ⊂ DG, this implies the second relation Λ⋄DG ⊂ DG in (1.5). Finally, by using that

G maps Λ2
⋄DG into DF, and that G0 maps Λ⋄DG into DF, we obtain

GΛ⋄DG = G(Λ⋄DG ∪ Λ2
⋄DG) ⊂ G0Λ⋄DG ∪GΛ2

⋄DG ⊂ DF . (5.3)

This implies the third inclusion relation in (1.5) and completes the proof of Theorem 1.1.
QED

The following will be needed in our discussion of the operator M′.

Lemma 5.3. The map A = Λ3
∗F

−1 has a locally unique fixed point ω̄ = (ȳ, z̄) in
range(FG) ∩ range(GF ). The derivative DA(ω̄) has two eigenvalues α3 and β3 satis-
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fying the bounds (2.6). Since ω̄ belongs to the range of H = FG, there exists a unique
point (x̄, ȳ) in the domain of h such that h2(x̄, ȳ) = z̄. There exist a closed connected set
C ⊂ Df⊙g∩Dg⊙f whose interior contains (x̄, ȳ) and all points ξ3,k,n that enter the definition
(3.13) of the functionals Φj,k for j = 3. Furthermore C = SC.

Proving this lemma is a straightforward rigorous “computation”. The existence of a
set C with the asserted properties can be seen by inspection (using the set B described
after Lemma 5.2). For the complete details of the proof we refer to [23].

We note that x̄+ ȳ = 0, since the maps F and G commute. The point (x̄, ȳ) is shown
in Figure 2: it is the point on the line x+ y = 0 near the lower boundary of λ∗Dg.

6. The midpoint equations for even pairs

The definition (3.6) of the operator M∗ involves the composed functions g⊙f⊙g and

g⊙f⊙g⊙f⊙g. If we denote these two functions by f̂ and ĝ, respectively, then

f̂(x, y) = g(x,V0) + f(V0,W0) + g(W0, y) , (6.1)

ĝ(x, y) = g(x,V1) + f(V1,V2) + g(V2,W2) + f(W2,W1) + g(W1, y) , (6.2)

where Vj = Vj(x, y) and Wj = Wj(x, y) are determined by the condition that the right
hand side of (6.1) and (6.2) be stationary with respect to variations of each Vj and each Wj .
The resulting equations for the functions Vj and Wj will be referred to as the midpoint
equations. For j = 0 they are given by (4.3), and for j = 1, 2 they are

0 = g2(x,V1) + f1(V1,V2) ,

0 = (Sg)2(x,−SW1) + (Sf)1(−SW1,−SW2) ,

0 = f2(V1,V2) + g1(V2,W2) ,

0 = (Sf)2(−SW1,−SW2) + (Sg)1(−SW2,−SV2) .

(6.3)

For the functions V0 and W0 we use spaces BVf(r) = B̺′(r) with domain parameter
̺′ = σ(λ3, ̺f), where σ

(

a, (t0, s0, b, ρu, ρv)
)

≈
(

|a|t0, as0, ab, |a|ρu, |a|ρv
)

. The exact defini-
tion of the scaling σ can be found in [23]. For the functions Vj and Wj with j = 1, 2 we
use spaces BVg(r) = B̺′(r) with domain parameter ̺′ = σ(λ3, ̺g).

The midpoint equations need to be solved in two different situations. First, we need
to compute and estimate the midpoint functions for the fixed point p∗, since the same
functions appear in the derivative DM∗(p∗). In this case, the functions f and g involved
are even. Then we also need to estimateM∗ in an open neighborhood of p∗. In this case, we
will use perturbation theory, since the odd parts of f and g can be chosen arbitrarily small.
This will be discussed in the next section. As it turns out, controlling odd perturbations
involves the same estimates as controlling even perturbations. Thus, we assume in this
section that f and g are even. In addition, we make here the ansatz Wj = −SVj . This is
justified a-posteriori by the fact that it yields a solution for (4.3) and (6.3), and that these
solutions are unique due to the twist properties of f∗ and g∗.
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The equation for the midpoint function V0, as described after (4.3), can be written as

K′(V0) = 0 , K′(V0) = g2(x,V0) + f1
(

V0,−SV0) . (6.4)

Formally, the derivative of K′ is given by DK′(V0) = L′
−1, where

L′
±1 =

[

g22(x,V0) + f11(V0,−SV0)
]

± f12(V0,−SV0)S . (6.5)

Here, and in what follows, if u and v are functions in one of the spaces B̺(r), then u+ vS
denotes the operator h 7→ uh+ vSh.

Similarly, the midpoint equations (6.3) can be written as

K′′(V) = 0 , K′′

[

V1

V2

]

=

[

g2(x,V1) + f1(V1,V2)
f2(V1,V2) + g1(V2,−SV2)

]

. (6.6)

Here, we have used that the second and fourth equations in (6.3) become redundant in the
case considered here, where f and g are even and Wj = −SVj . Formally, the derivative of
K′′ is given by DK′′(V) = L′′

−1, where

L′′
±1h =

[

g22(x,V1) + f11(V1,V2) f12(V1,V2)
f12(V1,V2) L±1

] [

h1
h2

]

, (6.7)

with
L±1 =

[

f22(V1,V2) + g11(V2,−SV2)
]

± g12(V2,−SV2)S . (6.8)

The operators L′
1 and L′′

1 will be needed in the next section.
In what follows, if X and Y are Banach spaces, the product space X × Y is assumed

to be equipped with the norm ‖(x, y)‖ = ‖x‖X + ‖y‖Y .

Lemma 6.1. There exist open sets V0 ⊂ BVf(1) and V1, V2 ⊂ BVg(1) such that the following
holds. For j = 0, 1, 2 define Wj = −SVj . Then for every f ∈ Bf(1) and every g ∈ Bg(1),
each term on the right hand side of (6.1) defines a function in BVf(1), and each term on the
right hand side of (6.2) defines a function in BVg(1). The dependence of these functions
on Vj and Wj is analytic. Furthermore, there exists an open neighborhood Uf of f∗ in
B0

f , and an open neighborhood Ug of g∗ in B0
g , such that the following holds. For every

f ∈ Uf and every g ∈ Ug, the linear operators L′
±1 and L′′

±1 are invertible on BVf(1) and
BVg(1) × BVg(1), respectively; and the equations K′(V0) = 0 and K′′(V1,V2) = 0 have
unique solutions Vj ∈ Vj . These solutions depend analytically on f ∈ Uf and g ∈ Ug.

Our proof of this lemma is computer-assisted and will be described in Sections 9,10.

Concerning the invertibility of the operators L′
σ and L′′

σ for σ = ±1, our programs
only check explicitly the case σ = −1. This suffices for the following reason. The basic
identity being used is

(ǔ− vS)(u+ vS) = (ǔ+ vS)(u− vS) = uǔ− vv̌ , (6.9)

where ǔ = Su and v̌ = Sv. We invert u − vS by first checking that multiplication by
w = uǔ− vv̌ is invertible, so that (u− vS)−1 = w−1(ǔ+ vS). Then u+ vS is invertible as
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well, and (u+vS)−1 = w−1(ǔ−vS). This applies directly to L′
±1 and L±1. To compute the

inverse of a 2× 2 matrix of operators such as (6.7), we use the standard formula involving
the inverse of the two operators in the main diagonal. It is straightforward to check that if
g22(x,V1) + f11(V1,V2) and L±1 are invertible, then either both L′′

±1 can be inverted this
way, or neither.

7. Domain of the operatorM
′

Lemma 6.1 covers most of what is needed to find a domain where M′ is well-defined and
analytic. Among the missing steps is the scaling:

Lemma 7.1. There exists ε > 0 such that the following holds. Let f ∈ BVf(1) and
g ∈ BVg(1). Then f ◦ ℓ3∗ belongs to Bf(1 + ǫ) and g ◦ ℓ3∗ belongs to Bg(1 + ǫ).

This simple result is proved together with Lemma 6.1; see Sections 9,10.
The main problem that is not yet covered in Lemma 6.1 is the solution of the midpoint

equations (4.3) and (6.3) for functions f and g that are not necessarily even. However, the
non-even part can be taken arbitrarily small; so we can use simple perturbation theory, as
we will now describe.

The system of equations (4.3) can be written in the form K ′(p, q) = 0, where p =
(f, g) and q = (V0,W0). Here p is restricted to some open neighborhood Up of p∗ in
Bp(1) = Bf(1)×Bg(1), and q is restricted to Uq = V0 ×W0, with V0 and W0 as specified in
Lemma 6.1. Then K is analytic on Up×Uq and vanishes at (p∗, q∗), where q∗ is the pair of
midpoint functions (V0,W0) for p∗. Next we consider pairs p∗ + p′ of generating functions
with p′ close to zero. To simplify notation, let us write (p, q) in place of (p∗, q∗). To first
order in the perturbation p′, the equation K ′(p+ p′, q+ q′) = 0 for the midpoint functions
q + q′ becomes D1K

′(p, q)p′ + D2K
′(p, q)q′ = 0. Assume first that p′ has a fixed parity:

Sf ′ = σf ′ and Sg′ = σg′, with σ = ±1. Then a straightforward computation shows that
the equation D1K

′(p, q)p′ +D2K
′(p, q)q′ = 0 becomes

L′
+σ(V ′

0 + σSW ′
0) = 0 , L′

−σ(V ′
0 − σSW ′

0) = h′ , (7.1)

with
h′ = −2g′2(x,V0)− 2f ′1(V0,−SV0) , (7.2)

where L′
±1 are the operators defined in (6.5). By Lemma 6.1, these operators are invert-

ible, and by linearity, this implies that D2K
′(p, q) is invertible. Thus, by the implicit

function theorem, the equation K ′(p, q) = 0 defines an analytic map p 7→ q in some open
neighborhood of p∗, taking values in V0 ×W0.

Similarly, the system (6.3) can be written in the form K ′′(p, q) = 0, where p = (f, g)
and q = (V1,W1,V2,W2). For fixed parity σ, the equationsD1K

′′(p, q)p′+D2K
′(p, q)q′ = 0

become

L′′
+σ

[

V ′
1 + σSW ′

1

V ′
2 + σSW ′

2

]

=

[

0
0

]

, L′′
−σ

[

V ′
1 − σSW ′

1

V ′
2 − σSW ′

2

]

=

[

h′′

h′′

]

, (7.3)

with
h′′ = −2f ′2(V1,V2)− 2g′1(V2,W2) , (7.4)
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where L′′
±1 are the operators defined in (6.7). By the same argument as above, we conclude

that the equation K ′′(p, q) = 0 defines an analytic map p 7→ q in some open neighborhood
of p∗, taking values in V1 ×W1 × V2 ×W2.

In the following theorem we use the fact [23] that the points ξ1,k,n and ξ2,k,n in (3.13)
have been chosen to lie in Df and Dg, respectively. The choice of the constants Φj,k,n and
polynomials E8, E9, . . . , E13 is not relevant at this point.

Theorem 7.2. The equation (3.9) defines an analytic map M : B′ → Bp(1), where B
′

is some open neighborhood of p∗ in Bp(1). The derivative DM(p) is compact, for every
p ∈ B′. Similarly, the equation (3.12) defines an analytic map M′ : B′ → Bp(1) with
compact derivative.

Proof. The analyticity of M∗ : B → Bp(1+ǫ) in some open neighborhood B of p∗ in Bp(1)
follows from the above discussion, together with Lemma 6.1 and Lemma 7.1. Furthermore,
the linear map p 7→ U(t, p) defined by (3.8) is continuous from Bp(1 + ǫ) to Bp(1 + ǫ/2)
for t ∈ C

7 sufficiently close to zero, and U(t, p) depends analytically on t. Thus, by the
chain rule, the equation (3.9) defines an analytic map M : B′ → Bp(1 + ǫ/2) on some
open neighborhood B′ of p∗ in Bp(1). Clearly the same holds for the map M′. The
compactness of DM(p) and DM′(p), as linear operators on Bp(1), follows from the fact
that the inclusion map Bp(1 + ǫ/2) → Bp(1) is compact. QED

8. Hyperbolicity

In order to simplify notation, we write Bp instead of Bp(r) whenever r = 1. Similarly for
all other spaces and domains that depend on a choice of r in (4.9) or (4.10).

Denote by Vj and Wj = −SVj the midpoint functions for the fixed point p∗ = (f∗, g∗)
of the operator M∗. For every pair p = (f, g) in Bp we have

DM∗(p∗)p = (λ∗µ∗)
−3

(

f̂ , ĝ
)

◦ ℓ3∗ , (8.1)

where f̂ and ĝ are the functions defined by (6.1) and (6.2), respectively. The derivative of
M at p∗ is given by (3.10), and for the derivative of M′ we have

DM′(p∗)p = DM∗(p∗)p−
7

∑

k=1

[

Φ1,k(f) + Φ2,k(g)
]

Ek −
13
∑

k=8

Φ3,k

(

DC(p∗)p
)

Ek . (8.2)

Here, DC is its derivative of the commutator (3.3). With V and W as defined above,

DC(p∗)p = g(x,V) + f(V,y)− f(x,W)− g(W,y) . (8.3)

A straightforward computation shows that DM∗(p∗) preserves parity, in the sense
that the even subspace B0

p = B0
f × B0

g and the odd subspace B1
p = B1

f × B1
g of Bp are both

invariant under DM∗(p∗). By our choice of polynomials E8, E9, . . . , E13 and constants in
(3.13), the derivatives of M and M′ at p∗ are parity-preserving as well. And of course,
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these quantities have been chosen in such a way that, numerically, the derivative of M′ at
p∗ has the desired spectrum. For the precise values we refer to [23].

By Theorem 7.2 the linear operator DM′(p∗) is compact on Bp. Since we had men-
tioned it only in passing, let us recall that the norm on Bp is given by

‖p‖ = ‖f‖̺f
+ ‖g‖̺g

, p = (f, g) . (8.4)

Denote by A the restriction of DM′(p∗) to the (invariant) even subspace B0
p. In order to

prove that A has no eigenvalues outside the open unit disk, except for a simple eigenvalue
δ3 > 1, we consider a map F that can be expected to be a contraction (for some norm)
and whose fixed point is the normalized eigenvector p̄ of A for the eigenvalue δ3. A
simple candidate for such a map is p 7→ ‖Ap‖−1Ap. We choose a smooth modification
F : p 7→ [ϕ(Ap)]−1Ap of this map, where ϕ is a continuous linear functional on B0

p, with
the property that ϕ(p) ≈ ‖p‖ for p near p̄. See [23] for the precise definition of ϕ. The
iterates of F and their derivatives are given by

Fn(p) =
1

ϕ(Anp)
Anp , DFn(p)h =

1

ϕ(Anp)

[

Anh− ϕ(Anh)

ϕ(Anp)
Anp

]

. (8.5)

Lemma 8.1. Let m = 6. There exists a pair p0 ∈ B0
p and a real number r > 0 such that

the following holds. Let B = {p ∈ B0
p : ‖p− p0‖ ≤ r}. Then the map Fm is a contraction

on B and thus has a unique fixed point p̄ ∈ B. Both p̄ and ϑ = ϕ(Ap̄) are real, and
δ = ϑ1/3 satisfies the bound (1.2). Furthermore, ‖DFm(p̄)‖ < ϑ−m.

Our proof of this lemma is computer-assisted and will be described in Sections 9,10.
With the same tools we also prove

Lemma 8.2. The fifth power of DM′(p∗), when restricted to the (invariant) odd subspace
B1

p, is a contraction.

As an immediate consequence of these two lemmas we have the

Corollary 8.3. The operator DM′(p∗) has no spectrum outside the open unit disk, except
for a simple eigenvalue δ3 that satisfies (1.2).

Proof. By Lemma 8.2 is suffices to prove the claim for the operator A.
From (8.5) we see that any fixed point p of Fm satisfies ϕ(p) = 1 and is an eigenvector

of Am with eigenvalue ϕ(Amp). By uniqueness, every eigenvector of Am near p̄ is a
constant multiple of p̄. This applies in particular to p̄ + εAp̄ for ε 6= 0 close to zero, so p̄
is an eigenvector of A; and the corresponding eigenvalue is ϑ.

Consider the operator B defined by Bp = Ap− ϕ(Ap)p̄. Using (8.5) we have

DF(p̄) = ϑ−1B , Bnp = Anp− ϕ(Anp)p̄ . (8.6)

And ‖Bm‖ < 1 by Lemma 8.1. Assume for contradiction that the eigenvalue ϑ of A is not
simple. Then there exists p ∈ Bp such that (A− ϑ)p = p̄. A straightforward computation
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shows that this p satisfies Bnp = ϑn[p−ϕ(p)p̄] for all n. But this is incompatible with Bm

being a contraction. Similarly, it is clear from the second identity in (8.6) that A cannot
have an eigenvalue of modulus ≥ 1, besides ϑ. QED

Our next goal is to relate the operator M for pairs of generating functions to the
operator M for pairs of area-preserving maps. At this point it becomes relevant that two
generating functions that differ only by a constant yield the same map. We have ignored
this fact up to now in order to simplify the description. Denote by B′

f the subspace of
Bf consisting of all function f ∈ Bf whose constant term (see Definition 4.1) is zero. B′

g

is defined similarly, and B′
p = B′

g × B′
g. We may assume that p∗ ∈ B′

p. Since the the
constant-term issue is trivial, let us simply redefine M to take values in B′

p, by setting the
constant terms in M(p) equal to zero. Similarly for the operator M′.

Denote by Υg the map g 7→ G defined by the equation (1.6). To be more precise,
we assume that g belongs to B′

g and is close enough to g∗ to satisfy a twist condition.
Then Υg(g) is well-defined as a map from DG to R

2. Similarly, denote by Υf the map that
associates to a generating function f ∈ B′

f close to f∗ the corresponding map F : DF → R
2.

Now we need to check that the maps F = Υf(f) and G = Υg(g) can be composed as
required by (1.7).

Lemma 8.4. There exists r < 15
16

such that the following holds. Denote by Vj and Wj

the midpoint functions for p∗. Let f ∈ Bf(r) and g ∈ Bf(r). Then the function f̂ given by
(6.1) is well-defined on the domain of V0, and the function ĝ given by (6.2) is well-defined
on the domain of V1.

This lemma is proved easily by using the estimates on the midpoint function Vj and
Wj obtained in the proof of Lemma 6.1. For the complete details we refer to [23].

Based on Lemma 5.3, Theorem 7.2, Corollary 8.3, and Lemma 8.4, we can now give a

Proof of Theorem 1.2. First, we note that Lemma 8.4 can be generalized as follows.
Let B′ be the domain of M and M′ as described in Theorem 7.2. We may assume that
B′ is an open ball, centered at p∗. Consider the midpoint functions V ′

j and W ′
j associated

with pairs p′ = (f ′, g′) in B′. From the discussion preceding Theorem 7.2 we know that
these midpoint functions depend analytically on p′. Thus, Lemma 8.4 remains true if we
replace the functions Vj and Wj by V ′

j and W ′
j , respectively, assuming (which we shall)

that the radius of B′ is sufficiently small.
As described earlier, to every pair of generating functions p = (f, g) in some open

ball B ⊂ B′
p centered at p∗, we can associate two area-preserving maps F = Υf(f) and

G = Υg(g). Using these two maps, define Υp(p) = (F,G).
Choose another ball B0 ⊂ B′ ∩ B centered at p∗, such that M(B0) and M′(B0)

are included in B. Assuming (which we shall) that the radius of B0 has been chosen
sufficiently small, the above-mentioned generalization of Lemma 8.4 implies that if p ∈ B0

and P = Υp(p), then M(P ) is well-defined and agrees with Υp(M(p)). We note that the
change of coordinates Λ in the expression (1.7) forM(P ) depends on p and can be expressed
explicitly in terms of the change of coordinates U(t) given in (3.7), with t = T (p− p∗).

Clearly Υp is one-to-one on B. Equip B = Υp(B) with the topology that makes Υp a
homeomorphism. Then B is a Banach manifold with a single chart Υ−1

p : B → B. On the
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open neighborhood B0 = Υp(B0) of P∗ = Υp(p∗) we can define M
′ = ΥpM′Υ−1

p . By The-
orem 7.2 the operators M and M

′ are differentiable on B0, and in fact real analytic. The
assertion in Theorem 1.2 concerning the spectrum of DM

′(P∗) follows from Corollary 8.3.
Next we consider map-pairs that commute near the fixed point ω̄ of A = Λ3

∗F
−1
∗ .

Consider the associated point (x̄, ȳ) and the set C described in Lemma 5.3. Pick ǫ > 0
such that the closure of the square R = {(x, y) ∈ R

2 : |x−x̄| < ǫ , |y− ȳ| < ǫ} is included in
the domain of both f⊙g and g⊙f , for every pair p ∈ B. This is possible if the radius of B
has been chosen sufficiently small. By decreasing ǫ > 0, if necessary, the commutators C(p)
are uniformly bounded on R. Thus Bc =

{

p ∈ B : C(p)(ξ) = 0 for all ξ ∈ R
}

is relatively
closed in B. The image of Bc under Υp is the set Bc(Ω) mentioned in Theorem 1.2. Here
Ω can be any sufficiently small open neighborhood of ω̄.

Consider now a pair p ∈ Bc. By Lemma 5.3, the commutator C(p) vanishes at all
points ξ3,k,n appearing in (3.13). Thus, if p ∈ B0 then M′(p) = M(p). Notice also that
M(P ) is related to M∗(P ) via a change of coordinates I +O(‖p− p∗‖). And by (2.5), the
commutator for P̃ = M∗(P ) vanishes in some open neighborhood of F̃ (Λ−3

∗ ω̄). Thus, if
the radius of B0 has been chosen sufficiently small, then C(M(p)) vanishes in an open set
that has a non-empty intersection with the square R. Here, we have used Lemma 5.3 and
the continuity of M. By analyticity, this implies that M(p) belongs to Bc.

To prove the last statement in Theorem 1.2, denote by Ws and Wu the local stable
and unstable manifolds, respectively, for the operator M′ at p∗. Consider first the case
where M is not expanding on Bc. That is, there exists an open ball B1 ⊂ B0 centered at
p∗ such that Mn(Bc∩B1) ⊂ Bc∩B0 for all n. Given that M agrees with M′ on Bc∩B0,
and that M′ is hyperbolic, this implies that Bc ∩B1 ⊂ Ws.

Next, consider the case where M is expanding on Bc. Then there exists N > 0 such
that the following holds. For every n ≥ N there exists a sequence of pairs p1, p2, . . . ∈ Bc

converging to p∗, such that the orbit of pk contains a point p′k at a distance between 2−n−1

and 2−n from p∗. So some subsequence of k 7→ p′k converges to a point p′′n ∈ Wu, and
2−n−1 ≤ ‖p′′n − p∗‖ ≤ 2−n. Since Bc is closed in B, we have p′′n ∈ Bc. Now, given any
ξ ∈ R, consider the function h : Wu → R defined by h(p) = C(p)(ξ). We have h(p′′n) = 0
for all n ≥ N . Since Ws is real analytic and p′′n → p∗, it follows that h = 0. Given that
ξ ∈ R was arbitrary, we conclude that Wu ⊂ Bc. QED

It seems surprising that we cannot exclude the possibility that p∗ is an attracting fixed
point for the restriction of M to Bc. The underlying problem is that we know very little
about how the set Bc embeds into the space Bp. The most useful pieces of information are
probably the scaling relation (2.5) for the commutator Θ, and the corresponding scaling
of the Calabi invariant (see Subsection 3.1). One way to take advantage of these scaling
properties would be the following.

Assume that the eigenvector p̄ of DM′(p∗) for the eigenvalue ϑ = δ3 belongs to the
subspace Bc. Then p̄ is also an eigenvector of DM(p∗), with eigenvalue ϑ. We claim
that this implies that the local unstable manifold of M is included in Bc. Here is just
a sketch of a proof: Since no power ϑn with n ≥ 2 is an eigenvalue of DM(p∗), there
exists a real analytic M-invariant curve t 7→ p(t) such that p(0) = p∗ and p′(0) = p̄, and
M(p(ϑ−1t)) = p(t) for t near zero. Now consider the Taylor series of (t, ω) 7→ P (t)(ω)
about the point (0, ω̄). Using the above-mentioned scaling properties, together with our
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bounds on α, β, and δ, one finds that all pairs P (t) for t near zero are necessarily commuting
and have a zero Calabi invariant.

Within the framework developed in this paper, the “cleanest” way to prove the above
assumption would be to replace the approximate eigenfunctions E8, E9, . . . , E13 in our
definition (3.12) of M′ by the true eigenfunctions. If Corollary 8.3 remains true for this
operator M′, then we have p̄ ∈ Bc, as is easy to see.

In practice, we cannot determine these eigenfunctions exactly. But it suffices to have
good bounds (enclosures), as is the case for the function g∗ and related quantities. Obtain-
ing such bounds is a purely technical problem. The remaining part of our analysis should
not change. Our only reason for working with approximate eigenfunctions was to avoid
adding yet another level of complexity to the problem.

9. Reduction to simpler estimates

Here we give some estimates that are used in our programs. They concern mostly sim-
ple operations like the differentiation and composition of functions, and the norm and
inverses of certain operators. We also describe why the remaining problem reduces to such
estimates.

9.1. Derivatives

Derivatives of functions in B̺ reduce via (4.7) to derivatives of functions in Aρ. For these
derivatives we use the following estimate from [17]. Given positive real numbers σ < τ ,
and a non-negative integer k, define

Wk(σ, τ) = max
m≥k

Wk,m(σ, τ) , Wk,m(σ, τ) =
m!

(m− k)!

(σ

τ

)m

σ−k . (9.1)

Proposition 9.1. [17] Let r = (ru, rv), with 0 < ru < ρu and 0 < rv ≤ ρv . If φ ∈ Aρ and
k ≥ 0 then ∂kuφ ∈ Ar and ‖∂kuφ‖r ≤Wk(ru, ρu)‖φ‖ρ .

An analogous bound holds of course for derivatives with respect v.

9.2. Composition

The composed function f(V1,V2) in (6.2) is estimated by using the Banach algebra property
of the spaces BVg(r). More generally, let B be any commutative Banach algebra over C,
with unit 1. Let X,Y ∈ B and T = X + Y . Pick ̺ = (t0, s0, ρu, ρv). Given f as in (4.7),
define f(X,Y ) = φ(U, V ) + Tψ(U, V ), where V = X − Y − s01 and U = T 2 − t201+ bV .

Proposition 9.2. [17] Assume that ‖T‖ ≤ ρt and ‖U‖ ≤ ρu and ‖V ‖ ≤ ρv . If f
belongs to B̺ then f(X,Y ) belongs to B and ‖f(X,Y )‖ ≤ ‖f‖̺ . Furthermore, the map
(X,Y ) 7→ f(X,Y ) is analytic, on any open domain in B×B where the assumptions above
are satisfied.

In the special case B = C we get the estimate |f(x, y)| ≤ ‖f‖̺ , for all (x, y) ∈ D̺ .
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The proof of this proposition is a simple exercise in power series. In particular, from
the representation (4.6) one gets

‖φ(U, V )‖ ≤
∑

m,n

|φm,n|‖Um‖‖V n‖ ≤
∑

m,n

|φm,n|‖U‖m‖V ‖m , (9.2)

and the last sum is bounded by ‖φ‖ρ with ρ = (ρu, ρv), if ‖U‖ ≤ ρu and ‖V ‖ ≤ ρv .
The second inequality in (9.2) can be far from optimal if B is a function space and the

norm of U (or V ) is significantly larger than its sup-norm. In our program we deal with
this problem as follows. For k > 1 define

‖U‖k =
∥

∥Uk
∥

∥

1/k
, CU = max

0≤r<k
‖U‖−r

k ‖Ur‖ , (9.3)

if U is nonzero. Notice that limk ‖U‖k is the spectral radius of the operator “multiplication
by U”, which in turn is the sup-norm of U . Let us now fix k > 1. Writing a nonnegative
integer m as m = qk + r with 0 ≤ r < k, we have

‖Um‖ ≤
∥

∥Uk
∥

∥

q‖Ur‖ = ‖U‖kqk ‖Ur‖ ≤ CU‖U‖mk . (9.4)

Similarly we have ‖V n‖ ≤ CV ‖V ‖nk . These are the bounds that we use (for large m or
n) to estimate the first sum in (9.2). Notice also that φ(U, V ) ∈ B whenever φ ∈ Aρ and
‖U‖k ≤ ρu and ‖V ‖k ≤ ρv .

9.3. Implicit equations

Implicit equation such as the midpoint equation K′(V0) = 0 are solved by using a quasi-
Newton method of the following type.

Let X and Y be Banach spaces. Let F be a C1 function defined on some open domain
in X , taking values in Y. The goal is to solve the equation F (x) = 0. To accomplish this,
we choose an approximate solution x0 in the domain of F , and a bounded linear operator
M0 : Y → X that approximates DF (x0)

−1. In addition, we choose a positive integer n.

Proposition 9.3. Assume that M0 is one-to-one, that F is of class C1 in an open neigh-
borhood of a ball B = {x ∈ A : ‖x− x0‖ ≤ r}, and that

∥

∥M0F (x0)
∥

∥ ≤ ε ≤ n

n+ 1
r ,

∥

∥I−M0DF (x)
∥

∥ ≤ 1

n+ 1
,

for all x ∈ B. Then there exists a unique x ∈ B such that F (x) = 0.

The proof is a straightforward: apply the contraction mapping theorem to the map
x 7→ x−M0F (x).

9.4. Linear operators

The spaces Aρ and B̺ are also convenient for estimating linear operators. In particular,
the operator norm of a continuous linear map L : Aρ → Aρ is given by

‖L‖ = sup
m,n

‖Lem,n‖ρ , em,n(u, v) = cm,nu
mvn , (9.5)
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where cm,n is defined in such a way that em,n has norm one.
Linear equations Lx = y are considered in the context of Proposition 9.3. The linear

operator L : X → Y is assumed to be bounded, andM0 : Y → X is an approximate inverse
of L. Applying Proposition 9.3 to the function F defined by F (x) = Lx− y, we obtain the

Corollary 9.4. Assume that M0 is one-to-one, and that

‖M0(Lx0 − y)‖ ≤ ε ≤ n

n+ 1
r , ‖I−M0L‖ ≤ 1

n+ 1
. (9.6)

Then there exists a unique x ∈ X such that ‖x− x0‖ ≤ r and Lx = y.

This corollary is also used (with y = I and x0 = M0) to estimate the inverse of
an operator L. Similarly, we estimate the reciprocal of a function f by inverting the
multiplication operator L : h 7→ hf . In this case, or whenever M0 commutes with L, the
one-to-one condition on M0 can be dropped.

9.5. Contracting iterates

The following proposition, with a suitable choice of parameters, is used to prove the claim
in Lemma 8.1 concerning the contraction property of the map F6 defined in (8.5).

Let B be any Banach space, and let m ≥ 1.

Proposition 9.5. Let p0 ∈ B and 0 < r < r′. Define B = {p ∈ Bp : ‖p − p0‖ ≤ r}
and B′ = {p ∈ Bp : ‖p − p0‖ < r′}. Let F : B′ → B be of class C1. Assume that for
n = 1, 2, . . . ,m,

∥

∥Fn(p0)− p0
∥

∥ ≤ εn ,
∥

∥DFn(p)
∥

∥ ≤ Kn , εn +Knr < r′ , (9.7)

for all p ∈ B in the domain of Fn. Then Fn maps B into B′, for all n ≤ m. Furthermore,
if εm +Kmr ≤ r then Fm is a contraction on B.

The proof of this proposition is straightforward and thus will be omitted.
We note that r′ ≫ r in our application of this proposition, since our map F is far

from being a contraction (for the given norm).

9.6. Analyticity

The analyticity properties mentioned in Lemma 6.1 follow “by construction”. In order to
explain why, let us recall some facts about analytic maps.

Let X and Y be Banach spaces over C, and let B ⊂ X be open. A map F : B → Y is
said to be analytic if it is Fréchet differentiable. Thus, sums, products, and compositions
of analytic maps are analytic. Equivalently, F is analytic if it is locally bounded, and if
ψ ◦ F ◦ φ is analytic for arbitrary continuous linear maps φ : C → X and ψ : Y → C. This
shows in particular that uniform limits of analytic functions are analytic. These and other
useful facts can be found e.g. in [1].

So the reason why e.g. the solution V0 of the midpoint equation K′(V0) = 0 depends
analytically on the functions f and g is that K′(V0) depends analytically (in fact linearly)
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on f and g, and that the solution is obtained via an iteration V 7→ V −M0K′(V) that
converges uniformly. The same applies to all of our implicit equations: We always use the
contraction mapping theorem, which yields a solution via uniform limits.

9.7. Remaining tasks

In Sections 4–8 we have reduced the proofs of Theorems 1.1 and 1.2 to the task of prov-
ing Theorem 4.2 and several technical lemmas. Among these lemmas, only Lemmas 6.1,
8.2, and 8.1 are sufficiently involved to require arguments that go beyond straightforward
“computations”. What we have done in the preceding subsections was to reduce the proof
of these three lemmas to computations as well.

The objects in these computations are elements in one of our Banach spaces, such as
R, Aρ or B̺. By “computing” an element x in some space X we mean finding a set X ⊂ X
that contains x. The types of enclosures X that we use, and the procedures for finding
them, will be described in the next section.

One task that is potentially infinite is the computation of an operator norm. However,
the operators L whose norms we have to estimate are compact. In fact, they owe their
compactness to the scaling f 7→ f ◦λ3. So in the notation of (9.5), the norm ‖Lem,n‖ρ tends
to zero asm+n increases. In this case, it suffices to compute Lem,n form+n ≤ N , plus the
image LE of a set E that encloses all functions em,n with m+ n > N . To get an accurate
bound on ‖L‖, if desired, it suffices to choose N in such a way that ‖LE‖ρ ≤ ‖Lem,n‖ρ
for some pair (m,n) with m+ n ≤ N .

Concerning Theorem 4.2, we recall that a similar result has already been proved in
reference [17], so we refer to [17,23] for details.

10. Organization of the programs

In this section we describe how the remaining proofs are organized. The precised defini-
tions, and all other details of the proof, can be found in the source code of our programs
[23], written in the programming language Ada [19]. Similar techniques have been used in
other computer-assisted proofs, including [6,12,17,18], to list just a few on area-preserving
maps.

10.1. Basic strategy

The remaining task is compute the quantities that appear in any of the yet-unproved
lemmas, and to verify that they have the desired properties. It is important to notice that
the original claims all have been reduced to inequalities. At this point, the main objects
besides numbers are functions in the spaces Aρ or B̺, and no operation involved is more
complex than the composition of such functions.

The first step is to implement procedures that allows us to work at the level of these
main objects. In particular, if F and G represent enclosures for two functions F ∈ B̺ and
G ∈ B̺, respectively, then we want F*G to yield a rigorous enclosure for the product FG.
Once such basic operations are implemented, we can use the propositions from Section
9 to do the same for more complex operations, such as quotients F/G or composed maps
Comp(Phi,U,V) or partial derivatives DerX(F) etc. Then it becomes possible to verify a
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claim like ‖M0K′(V)‖ < ε by executing a command like Norm(M0*KPrime(V))<Eps and
checking that the result is True.

Our choice of enclosures will be described in detail below. This sets the framework
for implementing bounds like Comp or Norm. The actual implementation is best (most
efficiently and accurately) described by the source code of our programs [23]. As a rough
guide to this code we will mention the program units (Ada packages) where the entities
being discussed are defined.

10.2. Enclosures

To every space X considered we associate a finite collection E(X ) of subsets of X that
are representable on the computer. For a product space X = X1 × . . . × Xn we choose
E(X ) to be the collection of all sets X1 × . . . × Xn with Xj ∈ E(Xj) for each j, unless
specified otherwise. An “enclosure” for an element x ∈ X is a set X ∈ E(X ) that contains
x. A “bound” on a map f : X → Y is a map F : E(X ) → E(Y) ∪ {undefined}, with
the property that f(x) ∈ F (X) whenever x ∈ X ∈ E(X ), unless F (X) = undefined. In
practice, if F (X) = undefined then the program halts with an error message.

Each collection E(X ) corresponds to a data type in our programs. A simple type of en-
closure is associated with a data type Ball2, which consists of all triples S=(S.C,S.R,S.B),
where S.C is a representable real number (type Rep), and where S.R and S.B are nonneg-
ative representable real numbers (type Radius). If X is any Banach algebra over F = R

or F = C with unit 1, we include in E(X ) all sets S♭ = (S.C + S.RUF)1 + S.BUX where S

can be any Ball2. Here UF and UX denote the closed unit balls in F and X , respectively.
For the type Radius we use a standard Ada type Long Long Float with 64 mantissa

bits (with the Gnat compiler [21]). The type Rep is either Long Long Float as well,
or an MPFR floating point type [22] with up to 320 mantissa bits, depending on the
program. Both types support controlled rounding [20] for the basic arithmetic operations.
It is straightforward to implement bounds on the corresponding operations in a Banach
algebra X , using enclosures S♭ with S of type Ball2. For details we refer to the packages
Flts.Std.Balls2 and MPFR.Floats.Balls2 in [23]. In the cases X = R and X = C, these
are our only sets in E(X ). For the spaces X = Aρ and X = B̺ we now define additional
sets and bounds.

Our collection E(Aρ) also contains sets T♭ associated with pairs T=(T.R,T.C) from a
data type Taylor2. The component T.R is ρ = (ρu, ρv), which we always take to be a pair of
type Radius. To be more specific about the component T.C, let us first describe the repre-
sentation used in [17]. There, T.C is a two-dimensional array with entries T.C(1..D,1..D)

of type Ball2. The corresponding set in E(Aρ) is given by T♭ =
∑

T.C(M, N)
♭
uMvN , with

the sum being restricted to M + N ≤ D. Here u(u, v) = u and v(u, v) = v. Notice

that each term T.C(M, N)
♭
in the above sum is itself a set in E(Aρ) and can contain non-

polynomial functions. Our implementation in [23] differs from what we have just described
only in that the elements T.C(M,N) withM+N ≤ D are stored in a one-dimensional array
T.C(0..L) with L = D(D + 3)/2. Using our Ball2-based bounds, it is straightforward
to implement Taylor2-based bounds on the basic operations in Aρ. Our Taylor2-based
bounds are defined in the package Taylors2.

Next consider a space B̺ with ̺ = (t0, s0, b, ρ). For E(B̺) we use a data type Fun,
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whose members are quadruplets F=(F.A,F.E,F.P,F.Q), where F.A specifies the parame-
ters (t0, s0, b) and F.E is of type Boolean; while F.P and F.Q are of type Taylor2, with
F.P.R and F.Q.R equal to ρ. If F.E=True then F♭ consists of all functions (4.7) with
φ ∈ F.P♭ and ψ ∈ F.Q♭. The type Fun with F.E=False exists only for reasons of efficiency.
For a discussion of this type we refer to [17]. Fun-based bounds on operations involving
functions in the spaces B̺ are defined in the package Funs.

Bounds on solutions of implicit equations use Proposition 9.3 via one of the generic
packages Newton or Zeros. For basic linear algebra we use generic packages Matrices

and Vectors etc. The type FunVec is a Vector with components of type Fun. It is used
e.g. to store powers (type FunPowers) of functions U, V ∈ B̺ that are used repeatedly in
compositions φ(U, V ) =

∑

φm,nU
mV n. Enclosures for the operators L′

−1 and L′′
−1 use the

types Flop and Flop2, respectively, where Flop is a FunVec(1..2), and where Flop2 is a
Matrix(1..2,1..2) with components of type Flop. Bounds based on these types are also
defined in Funs.

We should add that the packages Taylors2 and Funs are based on a generic type
Scalar, and the above description applies only when these packages are instantiated with
Scalar => Ball2.

10.3. Main procedures and programs

The procedures that are directly related to renormalization are defined in the package RG

and its children: RG.Fix (used to solve the fixed point problem for N ) and RG.Maps (used
to analyze map-domains) and RG.Spec (used for the analysis of M′). Our main programs
do little else than invoking a few procedures from these packages.

RG is again based on a generic type Scalar. It uses two instantiations of Funs side by
side: the main version Funs(Scalar => Scalar) named SFuns, and a “numeric” version
Funs(Scalar => Reps) named NFuns. The latter is used whenever an estimate needs an
approximate solution, which is the case for all of our implicit equations. But approximate
solutions that are needed repeatedly can be (and have been) saved to file and are read
from file if available.

Among the data files in [23] are approximate fixed point for the maps N and F ,
approximate midpoints functions, approximate inverses for the operators DK′(V0) and
DK′′(V1,V2), and some approximate eigenvectors for DM∗(p∗). The labeling of eigenval-
ues and eigenvectors that is used in our programs is the one given in Tables 1, 2. The
eigenvalue δ3 and eigenvector p̄ are labeled 03.

The proof of Theorem 4.2 uses a quasi-Newton map for the operator N near the
approximate fixed point. As in [17], the main work is carried out by the procedures
RG.Fix.Renorm and RG.Fix.DContractNorm. The fixed point g∗ is shown to lie in a ball
of radius less that 10−89, centered at at a polynomial approximation of degree 200. We
note that the enclosure for g∗ is taken slightly larger than necessary. As a by-product, our
enclosure for λ∗ is wider than necessary, and this ensures e.g. the existence of the ε > 0 in
Lemma 7.1.

Lemma 5.2 is proved by running the program CheckMaps, which calls procedures from
the package RG.Maps. The same program is also used to verify the inequalities given in
Theorem 4.2. The claims in Lemma 5.3 concerning the map A are verified by the program
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AllEigen3. The proof of Lemma 6.1 uses the procedures MidPointVf and MidPointVg

from RG.Spec. They are called from the program WriteRG3Data, which also carries out
the domain checks for Lemma 8.4.

Lemma 8.1 is proved in three steps. Using an approximate fixed point p0 for F and
fixed constants Kn defined by RGParam.XC3, the procedure RG.Spec.Contr3Fix deter-
mines suitable values of the remaining constants in Proposition 9.5 and verifies all inequal-
ities in this proposition, except for the bounds ‖DFn(p)‖ ≤ Kn. An enclosure for DF(p)
for arbitrary p ∈ B′ is determined in RG.Spec.XContr3Mat, and the necessary bounds on
‖DFn(p)‖ for n = 1, 2, . . . , 6 are computed by the program XMatNorm. The same program
is used also to prove Lemma 8.2.

We note that controlling the derivative of M′ is much more delicate than controlling
the map itself, since DM′(p∗)p is not stationary with respect to variations of the midpoint
functions Vj . Getting good bounds on these functions was rather challenging. Besides
high degrees, large mantissas, and other technicalities [23], it required a careful choice of
domains.

What our programs effectively do is to reduce the original problem to a finite sequence
of trivial numerical computations (with specified rounding). These computations have been
carried out successfully by a standard desktop computer. We used the Gnat compiler [21]
to generate the executable code and to link with the MPFR library [22]. On a current
desktop computer with four 3.4GHz processors, the total running time of our programs is
roughly 240 hours. The files in [23] include the source code of our programs, data files, log
files, and a README file with instructions on how to compile and run the programs. Bounds
on λ, µ, α, β, and δ that are more accurate than the ones given in this paper can be found
in the log file alleigen3.log.
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