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Abstract. We consider analytic Hamiltonian systems with two degrees of freedom, and prove
that every Hamiltonian on the strong local stable manifold of the renormalization group fixed

point obtained in [26] has a non-differentiable golden invariant torus (conjugacy to a linear
flow).

1. Introduction and main results
In families of Hamiltonian systems with two degrees of freedom, the breakup of invariant
tori with quadratic irrational rotation numbers is believed to occur at points where the
family intersects a certain “critical surface”. This is part of the renormalization group (RG)
picture that was proposed first in [1,2]. Further developments, and other applications of
RG ideas in Hamiltonian systems can be found in [3–27]. Renormalization suggests that
the above-mentioned critical surface is the stable manifold Ws of a RG fixed point, and
that this fixed point exhibits nontrivial scaling, causing Hamiltonians on Ws to have non-
smooth invariant tori. Our goal is to confirm part of this prediction, by using the fixed
point obtained recently in [26], and proving that every Hamiltonian on its local stable
manifold has a golden invariant torus that is not of class C1.

If H is a Hamiltonian defined in an open neighborhood of D = T2 × {0}, where 0
denotes the zero vector in R2, and if Φ denotes the flow for H, then a golden invariant
torus for H is a continuous map Γ, from D to the domain of H, such that

Φt ◦ Γ = Γ ◦Ψt , Ψt(q, 0) = (q + tω, 0) . (1.1)

Here, ω denotes a vector in R2 whose component ratio ω2/ω1 is equal to the golden mean
ϑ = (1 +

√
5)/2. Notice that, by virtue of (1.1), the torus Γ is in fact differentiable in

the direction of the flow. A different semi-conjugacy Λ ◦ Γ = Γ ◦ T1 will be used later to
investigate the regularity of invariant tori in a direction transverse to the flow.

Consider the matrix T =
(

0 1
1 1

)
, which has ω as one of its eigenvectors. The renormal-

ization group transformation considered in [26] is of the form

R(H) =
θ

µ
H ′ ◦ UH′ − ε , H ′ = H ◦ Tµ , Tµ(q, p) =

(
Tq, µT−1p

)
, (1.2)
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where θ, µ, and ε are normalization constants depending on H, and where UH′ is a suitable
canonical transformation (homotopic to the identity) that will be described later. In what
follows, we will ignore constant terms in Hamiltonians and set ε = 0. Among the fixed
points of R are the Hamiltonians

Km(q, p) = ω · p+
m

2
(Ω · p)2 , ω = (ϑ−1, 1) , Ω = (1,−ϑ−1) . (1.3)

For these Hamiltonians, UK′m
is simply the identity map. The normalization constants are

θ = ϑ, and µ = ϑ−3 in the case m 6= 0. Similar fixed points exist in higher dimensions.
A RG analysis near such Hamiltonians was carried out in [23], and used e.g. to construct
smooth invariant tori for near-integrable Hamiltonians.

For an analysis of critical tori, we restrict the space of Hamiltonians considered to
functions H = K0 + h, where h(q, p) depends on q and z = Ω · p only, and is invariant
under q 7→ −q. A Banach space B% of such functions h will be introduced in Section 2.
Notice that for the flow of such a Hamiltonian H, the coordinate ω′ · q represents time, in
the sense that its time derivative is 1. Here, and in what follows, ω′ denotes the constant
multiple of ω with normalization ω′ · ω = 1. Naturally, the canonical transformation UH′

will be chosen in such a way that this property is preserved. As a result, the renormalization
of time becomes trivial, in the sense that we can fix θ = ϑ in the definition (1.2) of R.
The scaling constant µ = µ(H) is chosen in such a way that the second partial derivative
of R(H) with respect to z is equal to one.

Consider the affine space H% = K0 + B% . A function in H% will be referred to as real
if it takes real values for real arguments. Our main input from [26] is the following.

Theorem 1.1. [26] The transformation R is well defined, analytic, and compact on some
open domain in H% . The image of a real Hamiltonian under R is real. The transformation
R has a real analytic fixed point H∞ in its domain, and this fixed point exhibits nontrivial
scaling, in the sense that 0 < µ(H∞) < ϑ−3.

Due to compactness, R contracts in all but finitely many directions. Numerically, the
derivative DR(H∞) of R at the fixed point H∞ has exactly two non-contracting eigenval-
ues. One of them, δ1 = 1/(ϑµ(H∞)), is trivial and could be eliminated by incorporating
a suitable translation p 7→ p+ w(H) into the definition of R. The other expanding eigen-
value, δ2 ≈ 1.627950, describes e.g. the universal accumulation of bifurcation points along
a family of Hamiltonians approaching the critical surface.

Let η < 1 be a real number larger than the absolute value of the largest contracting
eigenvalue of L = DR(H∞). The strong stable manifold Ws of R at H∞ can be defined as
the set of all Hamiltonians H in the domain of R, whose iterates Hn = Rn(H) all belong
to the domain of R and approach H∞ at a rate O(ηn). This manifold is the graph of an
analytic function, and it is tangent to the corresponding affine manifold of the linearized
map H 7→ H∞ +L(H −H∞); see e.g. [31]. The main result of this paper is the following.

Theorem 1.2. In some open neighborhood of H∞ , every Hamiltonian that lies on Ws

has a golden invariant torus that is not continuously differentiable.

The proof of this theorem relies on some estimates that have been carried out with
the aid of a computer. These estimates will be described in Sections 4 and 5. The other
parts of the proof are given in Sections 2 and 3.
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2. A golden invariant torus for H∞

Our construction of an invariant torus for the fixed point Hamiltonian H∞ follows a pro-
cedure proposed in [25]. In order to simplify the description of symmetries and norms, we
note that most functions considered in this paper, if defined on or near D = T2 × {0},
admit a representation

f(q, p) =
∑

(ν,k)∈I

[
fν,k cos(ν · q) + f ′ν,k sin(ν · q)

]
zk , z = (Ω · p) , (2.1)

possibly after subtracting some trivial part, such as K0 in the case of Hamiltonians. Here,
I = V ×N and V = {ν ∈ Z×N : ν2 > 0 or ν1 ≥ 0}. We assume of course that f ′ν,k = 0 for
ν = 0. We will call f real if the coefficients fν,k and f ′ν,k are all real. A function f whose
coefficients f ′ν,k or fν,k are all zero will be called even or odd, respectively.

Given a vector-valued function u = (u1, u2, u3, u4) with components ui of the form
(2.1), we can define a map U = I + u from (a neighborhood of) the domain D to some
neighborhood of D. If the components of uq = (u1, u2) are odd and those of up = (u3, u4)
are even, then u and U will be called parity preserving. We will call u and U time preserving
if ω′ · uq = 0. The composition of parity preserving maps Un , if defined, is again parity
preserving. Similarly with time preserving maps.

As mentioned in the introduction, we only consider Hamiltonians H = K0 + h with
h an even function of the form (2.1). We preserve this property under renormalization by
choosing the canonical transformation UH′ to be time and parity preserving.

The flow Φ̃ for the renormalized Hamiltonian H̃ = R(H) is related to the flow Φ for
H by the equation

ΛH ◦ Φ̃t = Φϑt ◦ ΛH , ΛH = Tµ ◦ UH′ , (2.2)

on any domain where the composed maps in this equation are well defined. This follows
from the fact that UH′ is symplectic, and from an explicit computation, showing that (2.2)
holds in the case where H̃ is defined as ϑµ−1H ◦ Tµ . Modulo questions of domains, the
relation (2.2) implies that if Γ is a golden invariant torus for R(H), then

MH(Γ) = ΛH ◦ Γ ◦ T −1
1 (2.3)

is a golden invariant torus for H. In particular, if H is a fixed point of R that has a unique
golden invariant torus, then this torus is a fixed point for MH . A partial converse of this
has been proved in [25]. When applied to the fixed point H∞ described in Theorem 1.1,
the result is the following.

Lemma 2.1. [25] Let Γ∞ be a time and parity preserving real map from T2×{0} into the
domain of ΛH∞ that satisfies the fixed point equation forMH∞ . Assume that the derivative
of ΛH∞ at Γ∞(0) has exactly one non-contracting direction, and that Γ∞ is continuously
differentiable with respect to the variable ω′ · q. Then Γ∞ is a golden invariant torus for
H∞.

Our first goal now is to solve the fixed point equation for MH∞ . We start by defining
some specific domains and function spaces. Consider the set of variables

τ = ω′ · q , x = Ω′ · q , y = ω · p , z = Ω · p , (2.4)
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where Ω′ the constant multiple of Ω that satisfies Ω′ · Ω = 1. In what follows, δ denotes
a (small) positive real number that will be specified later. Let ρ = (ρx, ρz) be a vector in
R2 with positive components. We define Dρ to be the complex neighborhood of D, which
is obtained by extending all variables into the complex plane, subject to the constraints
|Im τ | < δ, |Imx| < ρx and |z| < ρz. Denote by Fρ the Banach space of all functions
(2.1) that are analytic on the domain Dρ and extend continuously to its boundary, and for
which the norm

‖f‖ρ =
∑

(ν,k)∈I

(
|fν,k|+ |f ′ν,k|

)
eδ|ω·ν| cosh(ρxΩ · ν)ρk

z (2.5)

is finite. The even and odd subspaces of Fρ will be denoted by Bρ and Cρ , respectively.
We note that most (if not all) of our analysis could be carried out with a zero value

for δ. In this case, the domain condition |Im τ | < δ has to be replaced by |Im τ | = 0.
A general Hamiltonian in Hρ is then no longer differentiable in directions along which τ
changes. This does not present any difficulty in defining the time evolution of the dual
quantity y, since y = E − h on a surface of fixed energy H = E. But other parts of our
analysis would become more tedious, despite the fact that R actually generates analyticity
in the variable τ (as explained next).

Define I
+

to be the collection of all pairs (ν, k) in I for which |ω · ν| does not exceed
σ|Ω · ν| or κk, where σ and κ are fixed positive constants. (We will use here the same
values as in [26], which are approximately 0.85001 and 2.125025, respectively.) To every
function f ∈ Fρ , we now associate a new function I+

f , referred to as the “resonant” part
of f , by restricting the sum (2.1) for f to the index set I

+
. The “nonresonant” part of f

is defined as I−f = f − I+
f . In addition, we declare K0 to be resonant, and extend I± to

Hamiltonians by linearity.
One of the important property of the projection I+

is that it is analyticity improving
in the variable τ . In fact, the resonant part of a function f ∈ Fρ is analytic in τ even
if we choose δ to be zero. This follows from the fact that the weight cosh(ρxΩ · ν)ρk

z ,
used in the norm (2.5), increases exponentially in every direction within I

+
. The second

important fact about the projections I± concerns Hamiltonians that (possibly after some
change of coordinates) belong to Hρ and are close to being resonant. As was shown in
[26], the nonresonant part of such Hamiltonians can be eliminated by a canonical change
of coordinates. Thus, we regard resonant Hamiltonians to be in “normal form” and define
the normalization step H ′ 7→ UH′ in such a way that

I
−(
H ′ ◦ UH′

)
= 0 . (2.6)

This equation can be solved by a Nash-Moser type iteration; for details, the reader is
referred to [26]. Notice that, as a result of equation (2.6), the range of R consists of purely
resonant Hamiltonians.

If u = (u1, u2, u3, u4) is a vector-valued function on Dρ such that ux = Ω′ · uq and
uz = Ω · up belong to Fρ , we define

‖u‖ρ = max
{
‖ux‖ρ , b‖uz‖ρ

}
, (2.7)
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where b is some fixed positive constant that will be specified later. As mentioned earlier, we
only consider canonical transformations (besides T1) that are time preserving. If U = I+u
is such a transformation, then uτ = ω′ · uq is identically zero. Furthermore, u does not
depend on the variable y. As a result, the component uy = ω · up enters trivially in
any composition of such transformation. In order to simplify notation, we will therefore
identify u with (ux, uz), unless stated otherwise. The affine space of time preserving maps
U = I + u, with the metric defined by (2.7), will be denoted by Aρ .

For the same reason, u and U will be identified with functions of the variables (q, z)
only. The corresponding restriction of the domains D and Dρ will be denoted by D and
Dρ , respectively. We note that if U is parity preserving, then the line q = 0 is invariant
under U . Thus, for the scaling maps ΛH = Tµ ◦ UH′ we have

ΛH(0, z) = (0, `H(z)) , (2.8)

where `H is some function of one variable. The following lemma describes some of the
properties of this function, in the case H = H∞ . In addition, it summarizes some relevant
results from [26].

The domain parameter % used here is approximately (0.85, 0.15). For the precise
values, the reader is referred to [26]. Let %′ = (ϑ%x, ϑ

2%z).

Lemma 2.2. If δ > 0 is chosen sufficiently small, then there exists an analytic function
H 7→ µ(H) on an open neighborhood V of H∞ in H% , and an analytic map H ′ 7→ UH′

from an open neighborhood V ′ of H ′
∞ in H%′ to A% , such that the following holds. For

every Hamiltonian H in V , ΛH maps the domain D% into a compact subset of itself, H ′

belongs to V ′, and equation (2.6) holds. Furthermore, the transformation R defined by
(1.2) has the properties described in Theorem 1.1, and µ(H∞) = µ∞ = 0.230460196 . . ..
In addition, `H∞ maps the interval [−%z/2, %z/2] into its interior, has a globally attracting
fixed point z∞ , and the derivative of `H∞ at this fixed point is λz = −0.326063 . . ..

This lemma was proved in [26], except for the results concerning `H∞ . To be more
precise, the analysis in [26] was carried out for δ = 0. But the results remain valid for
sufficiently small δ > 0, as will be explained in Section 5.

A more detailed discussion of the scaling map ΛH∞ will be given in Section 4. At
this point, we can already conclude that this map has a fixed point (q, p) = (0, p∞) with
Ω · p∞ = z∞, and that its derivative at this fixed point has λz as one of its eigenvalues.
We note that the corresponding eigenvector is not (0,Ω), as equation (2.8) might suggest,
but it has a nonzero component in the y-direction that has been suppressed in (2.8). The
remaining three eigenvalues of DΛH∞(0, p∞) are obtained by using that UH∞ is a time and
parity preserving symplectic map: they are λτ = ϑ, λx = µ∞/λz = −0.706795 . . ., and
λy = µ∞/λτ = 0.1424322345 . . .. The corresponding eigenvectors are the direction of the
flow at (0, p∞), and the vectors (Ω, 0) and (0, ω), respectively.

Next, we consider the fixed point equation for the transformation MH∞ defined by
equation (2.3). We note that if Γ is a time and parity preserving fixed point of this
transformation, then Γ(0) is a fixed point of ΛH∞ that lies in the plane q = 0. As a result,
Γ(0) = (0, p∞), and our bounds on the eigenvalues λj show that the derivative of ΛH∞ at
Γ(0) has exactly one non-contracting direction, as required in Lemma 2.1.
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A continuous function on D can be represented by a Fourier series analogous to (2.1),
but restricted to k = 0. Denote by F0 the Banach space of all such functions f , that can
be continued analytically in τ to the strip |Im τ | < δ, and for which the norm

‖f‖0 =
∑
ν∈V

(
|fν |+ |f ′ν |

)
eδ|ω·ν|(1 + |Ω · ν|)r (2.9)

is finite. Here, r is a fixed positive real number to be specified later. The domain char-
acterized by p = 0, |Im τ | < δ and |Imx| = 0 will be denoted by D0 . We can consider
F0 to be the ρ = 0 analogue of the spaces Fρ defined earlier. Thus we extend all of our
previous definitions to this case, including the norm (2.7) for vector-valued functions and
the affine space A0 . Since all of our tori Γ = I+γ are obtained as limits of time and parity
preserving symplectic maps, they are themselves time and parity preserving. Thus, we will
ignore the trivial components γy and γτ = 0. When constructing an invariant torus for a
Hamiltonian H = K0 + h on a surface of constant energy H = E (the default value of E
being 0), the component γy is simply defined by γy = E − h ◦ Γ. It should be noted that
the right hand side of this equation does not depend on γy .

Lemma 2.3. There exist b, r > 0 and 0 < a < 1 such that the following holds. There is
a bounded open neighborhood V of H∞ in H% , an open ball B in A0 , and a concentric
closed ball B0 ⊂ B, such that for every H ∈ V , the transformation MH is well defined
on B, maps B into B0 , and contracts distances by a factor ≤ a. The image of a parity
preserving map under MH is again parity preserving. Furthermore, (H,Γ) 7→ MH(Γ) is
analytic on V ×B.

The proof of this lemma is based on a bound on the scaling maps ΛH , for Hamiltonians
H near the fixed point H∞ of R. For details we refer to Section 4. As in Lemma 2.2, the
assumption here is that δ > 0 has been chosen sufficiently small.

One of the implications of Lemma 2.3 is that MH∞ has a fixed point in B0 . By
Lemma 2.1, this fixed point Γ∞ is an invariant torus for H∞ . We note that the equation
Γ∞◦T1 = ΛH∞ ◦Γ∞ establishes a semi-conjugacy between the action of T1 on the torus T2,
and the action of ΛH∞ on the range of Γ∞ . Since the contracting eigenvalues of these two
actions differ, Γ∞ cannot be of class C1 at 0, unless its derivative with respect to x vanishes
at this point. By using e.g. that contractions can be linearized [30], it is not hard to see
that Γ∞ cannot have a zero x-derivative at 0 without being trivial. This argument does
not generalize to other Hamiltonians, however, and thus we will use a different approach
in Section 3. The following facts will be useful.

Let G be the range of Γ∞ . In Section 4 we will show that G is contained in D%′ ,
where %′ = (%x, %z/2).

Lemma 2.4. There exist open neighborhoods S, S′ of G, whose closures are contained in
D%′ , such that if H ∈ H% is sufficiently close (but not necessarily equal) to H∞ , then ΛH

maps S in a one-to-one fashion onto an open subset of D%′ containing S′.

Proof. Consider the map Λ = ΛH∞ . Our first goal is to show that the restriction of Λ to
G is one-to-one. We start by considering possible self-intersections of G.
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Define u′ ∼ u to mean Γ∞(u′) = Γ∞(u), and suppose that u′ ∼ u. By equation (1.1),
we have Ψt(u′) ∼ Ψt(u) for all t. Since orbits under the flow Ψ are dense in T2 ×{0}, and
Γ∞ is continuous, it follows that u′+ v ∼ u+ v, for every v in the additive group T2×{0}.
This in turn implies that v + u0 ∼ v for every v, where u0 = u′ − u. In particular, u0 ∼ 0,
and since Γ∞ ◦ T1 = Λ ◦ Γ∞ , we find that T k

1 u0 ∼ 0 for all positive integers k.
Assume for contradiction that u0 is not a periodic point of T1 . Then some sequence

{un} of distinct points from the orbit {T k
1 u0} converges. By the same arguments that

were used to derive v + u0 ∼ v, we have

Γ∞
(
v + (un+1 − un)

)
= Γ∞(v) , v ∈ T2 × {0} . (2.10)

Since un+1 − un → 0, this implies that Γ∞ is constant in at least one direction. But
this is incompatible with the fact that Γ∞ is continuous and homotopic to the inclusion
map I : T2 × {0} → D0 . As a result, T k

1 u0 = u0 for some k > 0. This shows e.g. that
T −1

1 u′ ∼ T −1
1 u.

Assume now that Γ∞(v′) and Γ∞(v) have the same image under Λ. Since Λ ◦ Γ∞ =
Γ∞◦T1 , we have Γ∞(T1v

′) = Γ∞(T1v). But as shown above, this implies Γ∞(v′) = Γ∞(v).
In other words, the restriction of Λ to G is one-to-one.

In order to see that Λ is also one-to-one on an open set containing G, consider three
sequences, {un}, {u′n}, and {u′′n}, accumulating at G, such that Λ(u′′n) = Λ(u′n) = un .
Since G is compact and Λ locally invertible, we may assume that the given sequences
converge to points u, u′, and u′′, respectively, belonging to G. By continuity, we have
Λ(u′′) = Λ(u′) = u, and thus u′′ = u′, as was proved above. This fact, together with the
local invertibility of Λ, implies that u′′n = u′n for large n. This allows us to conclude that Λ
is one-to-one on some open neighborhood S of G. The image of S under Λ is open, since
Λ is locally invertible, and we can choose S in such a way that both S and Λ(S) have
compact closures in D%′ .

This proves that for H = H∞ , the map ΛH has the property stated in Lemma 2.4,
with S′ any open neighborhood of G whose closure is contained in Λ(S). The same holds
now for all H in some open neighborhood of H∞ , since by Lemma 2.2, UH′ depends
continuously on H in a space of analytic maps. QED
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3. Non-differentiable golden invariant tori
In this section, we prove Theorem 1.2, using the results stated in Section 2. Let V ⊂ H%

and B ⊂ A0 be as in Lemma 2.3, and let F0, F1, . . . be arbitrary maps in B. Given a
sequence of Hamiltonians H0,H1, . . . in V , define

Γn,m =
(
Mn ◦Mn+1 ◦ . . . ◦Mm−1

)
(Fm)

= Λn ◦ Λn+1 ◦ . . . ◦ Λm−1 ◦ Fm ◦ T −m+n
1 , 0 ≤ n < m .

(3.1)

Here, and in what follows, Λn and Mn are abbreviations for ΛHn and MHn , respectively.

Theorem 3.1. There is a constant C > 0 such that the following holds. Let H0,H1, . . . be
Hamiltonians in V . Then the limits Γn =limm→∞ Γn,m exist in A0 , are time and parity
preserving, do not depend on the choice of the maps Fm , and satisfy the bounds

‖Γn − Γ∞‖0 ≤ C sup
m≥n

‖Hm −H∞‖% , n = 0, 1, . . . . (3.2)

If Hn = Rn(H0) for all n > 0, then

Γn = Λn ◦ Γn+1 ◦ T −1
1 , n = 0, 1, . . . . (3.3)

If in addition, V has been chosen sufficiently small, and H0 belongs to Ws ∩V , then Γn is
a golden invariant torus for Hn , for each n ≥ 0.

Proof. Lemma 2.3 shows that if n < m < k, then the difference Γn,k−Γn,m is bounded in
norm by dam−n, where d is the diameter of B. Thus, the sequence m 7→ Γn,m converges in
A0 to a limit Γn , and this limit is independent of the choice of the maps Fm . By taking
Fm = I for all m, and using that the canonical transformations UHn

are all time and parity
preserving, we find that Γn is time and parity preserving as well. If Hn = Rn(H0) for all
n > 0, then (3.3) is obtained by taking Fm = Γm for all m, and using that the maps Mn

are continuous.
In order to prove (3.2), it suffices to consider the case n = 0. Let R > 0 be the

distance between H∞ and H% \ V , and let r = supm ‖Hm − H∞‖% . If r ≥ R, then
(3.2) follows from the fact that both B and V are bounded. Assume now that r < R.
For every complex number s in the disk |s| < R/r, consider the sequence of Hamiltonians
Hm(s) = H∞+s(Hm−H∞), and denote by Γm(s) the corresponding maps, constructed as
described in the last paragraph. By Lemma 2.2 and uniform convergence, s 7→ (Γ0(s)−Γ∞)
is an analytic function from the domain |s| < R/r to B. Since this function vanishes at
s = 0, Schwarz’s lemma implies that Γ0(1)−Γ∞ is bounded in norm by dr/R. Thus, (3.2)
is proved.

Consider now the case where H0 belongs to Ws. We choose two open neighborhoods
V ′′ ⊂ V ′ ⊂ V ofH∞ in such a way that for every choice ofH0 inWs∩V ′′, the Hamiltonians
Hn = Rn(H0) all belong to V ′, and the closure K of

⋃
n Range(Γn) is contained in D% .

This is possible by (3.2), and by the fact that Ws is the graph of an analytic function. Let
now Fn = Γ∞ for all n ≥ 0. Consider the equation (2.2), viewed as an identity between
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two functions on K. If t is restricted to some small open interval J containing 0, then the
range of these two functions is contained in D% , for any Hamiltonian H ∈ V ′. Thus, for
t ∈ J and 0 ≤ n < m, we have

Φt
n ◦ Γn,m ◦Ψ−t = Λn ◦ Λn+1 ◦ . . . ◦ Λm−1 ◦ Φtm−n

m ◦ Φ−tm−n
∞ ◦ Γ∞ ◦ T −m+n

1

=
(
Mn ◦Mn+1 ◦ . . . ◦Mm−1

)[
Φtm−n

m ◦ Φ−tm−n
∞ ◦ Γ∞

]
,

(3.4)

where tk = ϑ−kt, and where Φk denotes the flow for Hk . Here, we have also used that
T1 ◦Ψs = Ψϑs ◦T1 , and that Γ∞ is an invariant torus for H∞ . Notice that the map [. . .] in
equation (3.4) is time preserving, since the two flows acting on Γ∞ change the τ -component
of Γ∞ by opposite amounts. Thus, equation (3.4) is an identity between maps in A0 . As
m → ∞, both sides converge in A0 to Γn . But convergence in A0 implies pointwise
convergence, and since Φt

n and Ψt are both continuous and invertible, we conclude that
Φt

n ◦ Γn ◦ Ψ−t = Γn . This shows that Γn is a golden invariant torus for Hn , as claimed.
QED

We note that the method used here to construct invariant tori can also be applied to
near-integrable Hamiltonians, as an alternative to the method introduced in [23]. Such an
analysis is being carried out in [29], for a general class of diophantine rotation numbers.

The following result implies Theorem 1.2.

Theorem 3.2. There exists an open neighborhood V of H∞ in H% such that if H0 belongs
to Ws ∩ V , then the torus Γ0 defined in Theorem 3.1 is not of class C1.

Proof. The idea is to use the fact that the transformations Mn worsen regularity in the
x-direction. This is best exploited by considering the inverse transformations.

We choose V sufficiently small, such that (our previous results apply and) the closure
of

⋃
n Range(Γn) is contained in the two sets S and S′ described in Lemma 2.4. This is

possible by (3.2), and by the fact that Ws is the graph of an analytic function. Thus, we
have

Γn = Λ−1
n−1 ◦ . . . ◦ Λ−1

1 ◦ Λ−1
0 ◦ Γ0 ◦ T n

1 , (3.5)

for all n ≥ 0, where the inverse scalings are defined in an unambiguous way.
In what follows, we replace T2 by its universal covering R2, and lift the functions Λn

and Γn accordingly. In addition, we restrict our analysis to the surface τ = 0, which is left
invariant by the time preserving maps Λn and Γn . In order to simplify notation, we will
write Λn and Γn as functions of x and y. Let %′ = (%x, %z/2).

Since the map Λn is parity preserving, it can be written in the form

Λn(x, z) =
(
fn(x, z)x, `n(z) + gn(x, z)x2

)
. (3.6)

We will only (need to) consider points in S or S′. Thus, given that S and S′ have compact
closure in D%′ , we have |z| < b, for some positive real number b < %z/2. By Lemma 2.2,
there exists a real analytic function ϕ on [−b, b], with non-vanishing derivative, such that
ϕ(`∞(z)) = λzϕ(z). Consider now the coordinates z̃ = ϕ(z) and x̃ = x/ϕ′(z). Since UH′∞
is symplectic, the functions `∞ and f∞ in these new coordinates, when restricted to x̃ = 0,
are simply multiplication by λz and λx , respectively.
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The inverse of Λn is also parity preserving, and thus admits a representation analogous
to (3.6). In the coordinates x̃ and z̃, we have

Λ̃−1
n (x̃, z̃) =

(
φn(x̃, z̃)x̃, ψn(x̃, z̃)

)
, (3.7)

with φn, ψn analytic in S′. Since all derivatives of Λn are bounded on S, uniformly in n,
we have φn(x̃, z̃) → φ∞(x̃, z̃), uniformly on S′. Furthermore, φ∞(x̃, z̃) → λ−1

x , as x̃ → 0,
uniformly in z̃. Thus, if V has been chosen sufficiently small, we can find positive real
numbers α and β < 1, such that |φn(x̃, ỹ)| ≤ βϑ for all n ≥ 0, whenever |x̃| < α. Here, we
have used the crucial fact that the eigenvalue λx of DΛ∞ at Γ∞(0) is larger in modulus
than the corresponding eigenvalue −ϑ−1 of T1 .

By equation (3.5), the points Γn(s, 0), expressed in the coordinates x̃ and ỹ, are given
by

Γ̃n(s, 0) =
(
Λ̃−1

n−1 ◦ . . . ◦ Λ̃−1
1 ◦ Λ̃−1

0 ◦ Γ̃0

)
(sn, 0) , sn = (−ϑ−1)ns . (3.8)

Assume now for contradiction that Γ0 is continuously differentiable near 0. Then there
exists a constant c > 0 such that for any given s ∈ R, the angular (x̃) component of
Γ̃0(sn, 0) is bounded in modulus by c|sn|, for large n. Thus, by using the abovementioned
bound on the functions φm , we find that the angular component of Γ̃n(s, 0) is bounded in
modulus by cβn|s| < α, if n is sufficiently large.

By using now that Γn → Γ∞ in A0 , and the fact that evaluation is continuous on A0 ,
we conclude that the angular component of Γ∞(s, 0) is zero for all s ∈ R. Thus, since the
curve s 7→ sΩ is dense in T2, the angular component of Γ∞ is identically zero. But this is
impossible, since Γ∞ is continuous and homotopic to I. This shows that Γ0 cannot be of
class C1. QED

4. The maps MH

In this section, we follow the strategy proposed in [25] and reduce the proof of Lemma 2.3
to the proof of a bound on the function u = UH′ − I. In what follows, H is some fixed but
arbitrary Hamiltonian in the domain of R. Consider the transformation NH that maps
Γ− I to MH(Γ)− I. Explicit expressions for this transformation and its derivative are

NH(γ) = Tµ ◦
[
γ + u ◦ (I + γ)

]
◦ T −1

1 ,

DNH(γ)v = Tµ

[
v + ((Du) ◦ (I + γ))v

]
◦ T −1

1 .
(4.1)

We note that u and µ depend on the Hamiltonian H.
The following lemma provides bounds on the individual steps that appear in (4.1). As

was done earlier, we identify u with the pair (ux, uz) in the space C% × B%. Similarly, γ is
identified with an element of F2

0 . The norm in these two spaces is given by equation (2.7),
with ρ replaced by % and 0, respectively. Define

β(c, s) = sup
t≥0

(1 + t)r

cosh(ct)
est , s < c . (4.2)
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Proposition 4.1. Assume f, g ∈ F0 , h ∈ Fρ , and γ ∈ F2
0 . Then

(a) |f(q, 0)| ≤ ‖f‖0 , for all q ∈ T2.
(b) ‖fg‖0 ≤ ‖f‖0‖g‖0 .
(c) ‖f ◦ T −1

1 ‖0 ≤ ϑr‖f‖0 .
(d) ‖h ◦ (I + γ)‖0 ≤ β(ρx, ρ

′
x)‖h‖ρ , if ‖γx‖0 ≤ ρ′x < ρx and ‖γz‖0 ≤ ρz .

The proof of these inequalities is straightforward; see also [25].
As a domain for NH , we choose an open ball of radius R > 0 in F2

0 , centered at
an approximate fixed point γ′ of MH∞ . The approximate fixed point γ′ was determined
numerically. In order to ensure that part (c) of Proposition 4.1 applies to each γ in this
ball, with h a component of u or Du, we require that

‖γ′x‖0 +R ≤ ρ′x < ρx < %x, ‖γ′z‖0 +R/b ≤ ρ′z = ρz , (4.3)

and ρz < %z , for some appropriate domain parameters ρ and ρ′. In particular, the condition
ρ < % is needed to ensure that the components of Du belong to Fρ . A useful measure for
the size of Du is given by the seminorm

‖u‖′ρ = max
{
‖∂xux‖ρ + b−1‖∂zux‖ρ , b‖∂xuz‖ρ + ‖∂zuz‖ρ

}
. (4.4)

Here, and in what follows, b = 2. Our main technical estimate is

Lemma 4.2. There exists a Fourier polynomial γ′, real numbers r,R > 0, and domain
parameters ρ, ρ′ satisfying (4.3) and ρz < %z/2, such that if H = H∞ and

ε = ‖NH(γ′)− γ′‖0 , KH = ϑr−1 + ϑrβ(ρx, ρ
′
x)‖Tµu‖′ρ , (4.5)

then ε < (1−KH)R.

The proof of this lemma will be described in the next section. The constants r and R
used in this proof are r ≈ 10−4 and R ≈ 2× 10−3. For the precise values we refer to [26].

Proof of Lemma 2.3. Assume that the hypotheses and conclusions of Lemma 4.2 hold.
Since µ and u depend analytically on H, as described in Lemma 2.2, there exists a positive
real number a < 1− ε/R, and an open neighborhood V of H∞ in H% , such that ϑ|µ| < 1
and KH < a, for all Hamiltonians H ∈ V . Here, we have used that differentiation with
respect to x and z is bounded from F% to Fρ . By (4.3) and Proposition 4.1, NH is well
defined, and analytic, on an open ball B ⊂ F2

0 with radius R and center γ′. The same
proposition also shows that a is an upper bound on the operator norm of DNH(γ), for
every γ in B. Thus, by Lemma 4.2, the transformation NH contracts distances by a factor
≤ a, and it maps B into a ball of radius ε + aR < R, centered at γ′. Since UH′ is parity
preserving for any H ∈ V , the subspace C0×B0 is invariant under NH . The analyticity of
(H, γ) 7→ NH(γ) follows from Lemma 2.2 and the chain rule. QED

We note that the bound ρz < %z/2 in Lemma 4.2 ensures that the range of Γ∞ is
contained in D(%x,%z/2) , which was used in the proof of Lemma 2.4.
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5. Remaining proofs
What remains to be proved are the estimates on UH′∞

that are described in Lemma 4.2,
and in the second part of Lemma 2.2. This is done with the assistance of a computer,
by decomposing the desired bounds in a systematic way into trivial inequalities, and by
verifying these inequalities. The decomposition process is based largely on bounds devel-
oped in [26]. In fact, our programs are essentially a superset of those used in [26]. Thus,
in order to avoid undue repetition, we will limit our discussion to the parts that are new,
and assume that the reader is familiar with the techniques described in [26]. As usual
with computer-assisted proofs, the ultimate reference for details is the source code of our
programs [28].

Our first step extends the results in [26], from δ = 0, to values of δ in a nontriv-
ial interval (defined implicitly) of non-negative real numbers. This extension is rather
straightforward: As was explained in [25], general estimates that do not involve any spe-
cific function carry over to δ > 0. This is due to the fact that Fρ is a Banach algebra,
for any δ ≥ 0, and that the transformations UH′ are time preserving. The only relevant
effect of increasing δ is to increase the norm of any explicitly given function (in our case
Fourier-Taylor polynomials of degrees |ν| ≤ 40 and k ≤ 16). Thus, it is sufficient to repeat
the computer part of [26], with all norm weights cosh(ρxΩ ·ν)ρk

z increased by a fixed factor
slightly larger than 1, which we did. As expected, the the results did not change in any
significant way; but of course, any explicit bound used in the present paper stems from
this generalization, not from [26] directly, and the new programs and data are included in
[28].

Next, we consider the task of obtaining an upper bound on the quantity KH , defined
in equation (4.5). Here, and in what follows, H = H∞ . The canonical transformation UH′

solving equation (2.6) is composed of elementary canonical transformations of the form

U(q, p) =
(
q +

[
∂−1

τ ∂zψ
]
(q, p+ P )Ω, p+ P − ψ(q, p+ P )ω′

)
, (5.1)

that are associated with nonresonant generating functions ψ. Here, P = g(q, p)Ω′, and g is
defined implicitly by the equation g(q, p) = −[∂xψ](q, p+P ). To be more precise, we have
UH′ = U ′

0 ◦ U ′
1 ◦ U ′

2 ◦ . . . , where the U ′
n are canonical transformations of the form (5.1),

obtained by iteratively solving (2.6). The transformation U ′
0 is fixed, and its generating

function is part of the data in [26,28]. The remaining transformations U ′
1, U2, . . . are

corrections and very close to the identity. In [26], we obtained bounds on each individual
U ′

n , on the composed map U ′′ = U6 ◦ U7 ◦ . . ., and on the Hamiltonian H ′ ◦ UH′ , but not
on the canonical transformation UH′ by itself.

Our first step was to combine the existing bounds on the transformation U ′
n and U ′′

into a bound on UH′ = U ′
1 ◦ U ′

2 ◦ . . .. More specifically, we duplicated some procedures in
the package RG Ops, and modified these copies (as indicated in comments) to perform this
additional task. Since UH′ is very close to the identity, these compositions are carried out
within a simple data type UBall, that only keeps bounds on the norms of ux and uz , for
the canonical transformation U = I + u being represented. Bounds on the components of
U0 and UH′ are obtained and saved by running the program UComp.

For additional operations involving canonical transformations, we use a new data type,
Canonical, which consists of a pair of type Fourier, representing a “standard set” in one
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of the spaces F2
ρ . We refer to [26] for the definition of such standard sets. A similar data

type, Torus, consists of a pair of type Sobolev, and is used to represents standard sets
in F2

0 . Both are defined in a package named Torus Ops, which also implements bounds
on some operations involving these types. These bounds are obtained easily from the
corresponding bounds on the components. In particular, a bound on the composition of
functions in Fρ is already available in Fouriers.Ops, as described in [26]. The resulting
bound for the composition of two canonical transformations is used at the beginning of
the program CheckTorus, to estimate UH′ = U0 ◦ UH′ . Obtaining a bound on KH is then
straightforward. We find that KH < 0.9, and consequently (1 −KH)R > 2 × 10−4. The
norm parameter ρx used in this estimate is ρx ≈ 0.7; see [28] for its precise value.

The same estimate on UH′ is used also to verify the claims in Lemma 2.2 regarding
the function `H . The first step is to check that our upper bound ρz on ‖γ′z‖0 + R/b is
smaller than %z/2, as stated in Lemma 4.2. Then, we show that the function `H has a
non-vanishing derivative on J0 = [−ρz/2, ρz/2], that its 25-th iterate maps J0 into a small
subinterval J , and that both of these intervals are invariant under `H . Finally, we verify
that `′H(z) = −0.326063 . . . for every z ∈ J . This is done by running the program Scaling.

The main new aspect of our computer-assisted proof, compared to [26], is the need
to work with non-differentiable functions. Fortunately, the map NH that needs to be
estimated is much simpler than R. As it turns out, representing a function in F0 by a
Fourier polynomial and upper bounds on “higher order terms”, yields estimates that are
sufficiently good for our purpose. Our choice of standard sets for F0 is completely analogous
to those for Fρ . These sets are represented by the data type Sobolev. For reasons of
efficiency, all Sobolev-related definitions and bounds were added to the existing package
Fouriers and its children. This includes bounds on the product Sobolev ∗ Sobolev
and the composition Fourier ◦ Sobolev, which use Proposition 4.1 and are described in
Fouriers.Ops.

After estimating KH as mentioned above, the program CheckTorus uses the procedure
Torus Ops.NN to obtain a bound on NH(γ′). Here, γ′ is an approximate fixed point of NH ,
which was obtained by iterating a purely numerical version (defining Scalar to be Numeric
instead of Interval) of the procedure Torus Ops.NN, starting with γ = 0. The Fourier
coefficients for γ′ can be found in [28]. Our bound on NH(γ′) yields ε < 6 × 10−5, which
is less than (1−KH)R, as claimed in Lemma 4.2.
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