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1 Chapter 1 — Basics

2 Chapter Two — Analytic Functions

Definition of limit: lim,_,,, f(z) = wo

implies that |f(z) — wo| < € whenever 0<|z—2z0 <§¢

Cauchy-Riemann Equations

If f(z) = u(x,y) + iv(x,y) and f’(2) exists zo = x¢ + iyo, then the first-
order partial derivatives of u and f must exist at (xo,y0), and they must
satisfy the Cauchy-Riemann equations:

Uy = Uy Uy = —Ug

Sufficient Conditions for Differentiability

Let the function f(z) = y(x,y) + iv(z,y) be defined throughout some e
neighborhood of zy = xg+iyp. Suppose that the first order partial deriva-
tives of the functions u and v with respect to x and y exist everywhere in
that neighborhood, and that they are continuous at (xg, yo). Then, if those
partials derivatives satisfy the Cauchy-Riemann equations at (xo,yo), the
derivative exists.

Polar Coordinates Same as theorem in 18, polarized. Polar form of C-R:

— 1 1 —
Uy = 5’[}9 ;U@ = —Up

2.9 Analytic Functions

A function f of z is analytic in an open set if it has a derivative at each
point in that set. In particular, f in analytic at a point zg if it is analytic
in a neighborhood of zj.



An entire function is a function that is analytic at each point in the entire
finite plane.

If a point fails to be analytic a point zp, but is analytic at some point in
every neighborhood of zg, then z; is called a singular point.

Since the derivatives of the sum and product of two functions exists wher-
ever the functions themselves have derivatives, the sum and product of two
analytic functions are themselves analytic. So is the quotient, wherever
the denominator does not vanish. So is a composition.

Reflection Principle: suppose f is analytic in some domain D which con-
tains a segment of the x-axis and is symmetric to that axis. Iff f(x) is
real for each point x on the segment, then for each point z in the domain:

&) =713

2.10 Harmonic Functions

real-valued function H of two real variables x and y is said to be harmonic
in a given domain of the xy plane if, throughout that domain it has con-
tinuous partial derivatives of first and second order, and satisfies the PDE
known as Laplace’s equation:

Hyp +Hyy =0

If a function f(z) = u(z,y) + iv(z,y) is analytic in a domain D, then its
component functions u and v are harmonic in D.

If two given functions u and v are harmonic in D, and the FOPD satisfy
C-R throughout D, v is said to be a harmonic conjugate of u.

A function f(z) = u(x,y) + iv(x,y) is analytic in a domain D iff v is a
harmonic conjugate of u.

3 Chapter 3 — Elementary Functions
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3.23 The Logarithmic Function and Its Branches
log z = In|z| +iargz

Logz = In|z| + iArgz

log z = Logz + 2inm

branch of a multiple-valued function f is any single-valued function F that
is analytic in some domain at each point z of which the value F(z) is one
of the values f(z).

The function Logz = Inr + iArgz (r > 0,—7 < Argz < ) is called the
principal branch

A branch cut is a portion of a line or curve that is introduced in order to
define a branch F is a multiple-valued function f. Points on the branch
cut for F are singular points, and any point that is common to all branch
cuts of f is called a branch point.

3.24 Complex Exponents

When z # 0 and the exponent ¢ is any complex number, z¢ is defined as:
2 = eclogz

Principal value defined as obvious.

4 Chapter Four — Integrals

4.31 Complex-valued Functions w(t)

Mean-value theorem for derivatives doesn’t apply

Integrals generally exist if piecewise continuous.

4.32 Contours

An arc is a simple or Jordan arc if it does not cross itself.
Similarly, simple closed curve or Jordan curve.

If the derivatives of the component functions of an arc exist and are con-
tinuous, the arc is differentiable.

smooth are has a continuous derivative on the closed interval and is
nonzero on the open interval

contour is a piecewise smooth arc

A simple closed contour has only the beginning and end points the same.



4.33 Contour Integrals

e Definition of line or contour integral:

b
/ f(z)dz :/ flZ @) (t)dt < ML
c a

4.34 Antiderivatives

e An antiderivative is, necessarily, an analytic function.

e Theorem: Suppose that a function f is continuous on a domain D. If any
one of the following statements true, then so are the others:

— F has an antiderivative F in D;

— The integrals of f(z) along contour ling entirely in D and extending
from any fixed point z; to any fixed point zo all have the same value;

— The integrals of f(z) around closed contours lying entirely in D all
have value zero

Basically, all are true or none are true.

e Cauchy-Gourst Theorem

If a function f is analytic at all points interior to and on a simple closed
contour C, then: [, f(z)dz =0

4.35 Proof of the Theorem

— Simply and Multiply-Connected Domains

— A simply connected domain D is a domain such that every simple
closed contour within it encloses only points of D.

— A domain that is not simply connected is multiply connected.

— Theorem: If a function f is analytic throughout a simply connected
domain D, then: [ f(z)dz =0

— Corollary: If C7 and C5 denote P.O.S.C.C., where C5 is interior to
C1, and if function f is analytic in the closed region between and
including the two contours, then the integral of f around C; equals
the integral of f around Cs. Principle of Deformation of Paths

4.36 Cauchy Integral Formula

e Let f be analytic everywhere within and on a simple closed contour C,
taken in the positive sense. If zy is any point interior to C, then:

fo) = 5 [ L

2t ) (z — 20)



4.37 Derivatives of Analytic Functions

Theorem: if a function is analytic at a point, then its derivatives of all
orders are also analytic functions at that point.

Corollary: If a function is analytic at a point, then the component func-
tions u, v have continuous partials of all orders at that point.

4.38 Liouville’s Theorem and the Fundamental The-
orem of Algebra

If f is entire and bounded in the complex plane, then f(z) is constant
throughout the plane.

Fundamental Theorem of Algebra

Cauchy’s inequality: |f(™)(z)| < 2pz

F(z0) = & [27 f(z0 + pei®)df

4.39 Maximum Moduli of Functions

Theorem: if a function f is analytic and not constant in a given domain
D, then |f(2)| has no maximum value in D.

Corollary: essentially, maxima of | f(z)| must occur on the boundary

5 Chapter Five — Series

Convergence of Sequences and Series
Convergence, absolute convergence
Necessary but not sufficient that z, — 0

Taylor Series

Suppose that a function f is analytic throughout an open disk |z—zp| < Rp.
Then, at each point z in that disk, f(z) has the series representation: (that
is, the power series converges to f(z) whenever |z — 29| < RO :

() (4
Where: a,, = fTW



5.43 Laurent Series

Suppose that a function f is analytic throughout an annular domain R; <
|z — 20| < Ra, and let C denote any positively oriented simple closed
contour around zy and lying in that domain. Then, at each point z in the
domain, f(z) has the series representation: f(z) => 7 an(z — 20)"

d
Where: an, = 5 [, %
1 f(z)dz
bn = 555 Jo (G—z0) "1
Rt f(z)dz
Cn = 55 fC (z—z0)" T

5.44 Examples: Useful Series
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5.45 Absolute and Uniform Convergence of Power Se-
ries

If a power series centered at z; converges at some point z1, then it is
absolutely convergence at each point z in an open disk centered at zg
extending out to z; in radius.

Corollary (to an unmentioned theorem): a power series represents a con-
tinuous function S(z) at each point inside its circle of convergence.

5.46 Integration and Differentiation of Power Series

Power series can be integrated term-by-term, and summations pulled in
and out of integrals.

Corollary: the sum of a power series is analytic at each point z interior to
the circle of convergence of the series.

A power series can be differentiated term by term.



5.47 Uniqueness of Series Representations

e If a power series converges to f(z) at all points interior to some circle
|z — 20| = R, then it is the Taylor series for f.

e Likewise for Laurent series, but necessarily only in an annular domain
about zg

e Multiplication and Division of Power Series
Leibniz’s rule: [f(2)g(2)]™ =37 _, (7) f®gm=h)(2)

(1) = o

Cn = i akbnfk
k=0

1 n
Cp = F(a7L - Z bk'cn—k)
0 k=1



6 Chapter Six — Residues and Poles

7 Residues

A singular point is isolated if, in addition, there is a deleted neighborhood
throughout which f is analytic.
1

z—20

The residue of f at z is the coefficient of in an L-series of f at z.

7.1 Residue Theorems

Cauchy’s Residue Theorem: Let C be a POSCC. If a function f is analytic
inside and on C except for a finite number of singular points, then the
value of the integral around C is 2im the sum of the residues.

Sometimes, if the function is analytic at each point in the finite plane
exterior to C, it is more efficient to evaluate the intergral of f around C
by finding a single residue.

Theorem: If a function f is analystic everywhere in the finite plane except
for a finite number of singular points interior to a POSSC C, then:

/ f(z)dz = 2miRes,—o| ! f( 1)]
c

2272
7.2 Three types of singular points

Three types of isolated singular points:

Pole of order m (where m is the highest power of (z — zp) in the Laurent
series).

Removeable singular point (when all the b’s are zero, so the residue is
Z€ero).

Essential singular point: when an infinite number of b’s are nonzero. All
hell breaketh loose, taking on every finite value (possibly except zero).

7.3 Residues at Poles

An isolated singular point zo of a function f is a pole of order m iff f(z)

can be written: f(z) = (zf(zzo))m where ¢(z) is nonzero!
Moreover, Res,—,, f(z) = %

Is is always true that if zg is a pole of a function f, then lim,_, ., f(z) = 0o

While the theorem can be useful, often it is better to write directly as
Laurent series.



7.4 Zeros and Poles of Order m

A function that is analytic at a point zy has a zero of rder m there iff
there exists a function g which is analytic and nonzero at zp such that

f(z) = (z—20)"g(2)
Zeros of order m are sources of poles of order m. Theorem as a result.

Corollary: If p and q analytic at point zg, iff p(29) # 0, ¢(z0) = 0, and
q'(20) # 0:
Res,_ P2) _ 2l

q(2)  q'(20)

Higher order formulae exit but are not practical.

7.5 Conditions under which f(z) =0

If f(2) =0 at each point z of a domain or arc containing a point 2o, then
f(z) = 0 in any neighborhood Ny of zp throughout which f is analytic.
That is, f(z) = 0 at each point z in Np.

Theorem: if a function if analytic throughout a domain D, and the function
is zero at each point of a subdomain or arc inside D, then the function is
zero throughout D.

Corollary: a function that is analytic in a domain D is uniquely determined
over D by its values over a domain or along an arc contained in D.

7.6 Behavior of f Near Removeable and Essential Sin-
gular Points

A function is anlways analytic and bounded ins ome deleted neighborhood
of a removeable singularity.

Suppose a function is analytic and bounded in some deleted neighborhood
of a point zy; if f is not analytic at zg, then it’s a removeable singularity.

Essential singularity: not only does hell break loose, but the function
assumes values arbitrarily close to any given number.

8 Chapter Seven — Applications of Residues

Distinction between pair of improper and Cauchy P.V. integrals. If CPV
converges not necessarily true that other does.

Method of evaluating improper integrals



8.61 Improper Integrals Involving Sines and Cosines

Jordan’s inequality: [, e~ #sinfdg < L (R >0)

8.62 Definite integrals involving sines and cosines
8.63 Indented paths
8.64 Integration Along a Branch Cut

8.65 Argument PRinciple and Rouche’s THeorem
Meromorphic = analytic in a domain except possibly poles
Winding number theorem: #27 — #P

Roche’s Theorem: Let two functions f and g be analytic inside and on a
SCC C, and suppose that |f(z)| > |g(z)| at each point on C. Then f(z)
and f(z) 4+ g(z) have the same number of zeros, counting multiplicities,
inside C.

8.66 Inverse Laplace Transforms

Forward transform: F'(s JO e St f(t)

Backward transform: f(t) = 5= limp_.o Jp, e F(s)dst >0

Backward transform: f(t) P.V. fwrwo estF(s)dst >0

f() = 2521 Resems [ F(5)] - (£>0)
Res,—s, [5 F(s)]+Res,—55[e% F(s)] = 2e*'Re{e by +22t+.. .+

]
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