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Review of classical entropy theory

Classical entropy theory is concerned with systems that evolve in time.

A typical setup consists of a homeomorphism T : X → X of a compact
metrizable space X .

The topological entropy of T is the infimum over ε > 0 of the
exponential growth rate of the number of partial orbits that can be
distinguished at scale ε > 0.
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Topological entropy ala Rufus Bowen

A length-n partial orbit is an n-tuple of the form
x = (x ,Tx ,T 2x , . . . ,T n−1x).
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A partial orbit
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Topological entropy ala Rufus Bowen

Let ρ be a metric on X .

The ρ∞-distance on length-n partial orbits is

ρ∞(x , y) = max
0≤i≤n−1

ρ(T ix ,T iy).

h(X ,T ) := sup
ε>0

lim sup
n→∞

n−1 log covε(length-n partial orbits, ρ∞)

where covε(·, ρ∞) is the minimum cardinality of a collection of length-n
partial orbits that ε-cover the space of all length-n partial orbits.
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Main Results

1 If (X ,T ) embeds into (Y ,S) then h(X ,T ) ≤ h(Y ,S).

2 In particular, entropy is a topological conjugacy invariant.

3 A system (Y ,S) is a factor of (X ,T ) if there is a surjective
(T ,S)-equivariant map Φ : X → Y :

X

Φ
��

T // X

Φ
��

Y
S
// Y

In this case, h(X ,T ) ≥ h(Y ,S).

4 (Topological entropy was defined earlier in a different way by
Adler, Konheim and McAndrew in 1965).
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Overview

Classical entropy theory is concerned with systems that evolve in time.

Time is usually represented by either Z,N,R or R>0 but more general
groups such as Zd ,Rd can be and have been considered.

What happens if we replace the acting group with a free group
F2 = 〈a,b〉?
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The rank 2 free group
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Important example: full shifts

If Γ is a countable group and K a Borel space then the full K -shift is

ΓyK Γ = {x : Γ→ K}

(gx)f = xg−1f ∀g, f ∈ Γ, x ∈ K Γ.

If K is a topological space then this action is continuous with respect to
the product topology.

The full shift ZyKZ has entropy log |K |.

So the full 2-shift over Z cannot factor onto the full 4-shift over Z.

Lewis Bowen (UT Austin) A brief introduction to sofic entropy theory 9 / 47



Important example: full shifts

If Γ is a countable group and K a Borel space then the full K -shift is

ΓyK Γ = {x : Γ→ K}

(gx)f = xg−1f ∀g, f ∈ Γ, x ∈ K Γ.

If K is a topological space then this action is continuous with respect to
the product topology.

The full shift ZyKZ has entropy log |K |.

So the full 2-shift over Z cannot factor onto the full 4-shift over Z.

Lewis Bowen (UT Austin) A brief introduction to sofic entropy theory 9 / 47



Important example: full shifts

If Γ is a countable group and K a Borel space then the full K -shift is

ΓyK Γ = {x : Γ→ K}

(gx)f = xg−1f ∀g, f ∈ Γ, x ∈ K Γ.

If K is a topological space then this action is continuous with respect to
the product topology.

The full shift ZyKZ has entropy log |K |.

So the full 2-shift over Z cannot factor onto the full 4-shift over Z.

Lewis Bowen (UT Austin) A brief introduction to sofic entropy theory 9 / 47



Important example: full shifts

If Γ is a countable group and K a Borel space then the full K -shift is

ΓyK Γ = {x : Γ→ K}

(gx)f = xg−1f ∀g, f ∈ Γ, x ∈ K Γ.

If K is a topological space then this action is continuous with respect to
the product topology.

The full shift ZyKZ has entropy log |K |.

So the full 2-shift over Z cannot factor onto the full 4-shift over Z.

Lewis Bowen (UT Austin) A brief introduction to sofic entropy theory 9 / 47



The Ornstein-Weiss Example

Theorem ( Ornstein-Weiss, 1987)
If F = 〈a,b〉 is the rank 2 free group then the full 2-shift over F factors
onto the full 4-shift over F.

Define Φ : (Z/2Z)F → (Z/2Z× Z/2Z)F by

Φ(x)(g) =
(

x(g) + x(ga), x(g) + x(gb)
)
.

This is surjective, shift-equivariant, 2-1, continuous and a
homomorphism of compact abelian groups!

(Ornstein-Weiss, 1987): Is the full 2-shift over F measurably conjugate
to the full 4-shift?
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The Ornstein-Weiss map
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Factors between topological Bernoulli shifts

Theorem (Bartholdi, 2016)
If Γ is any non-amenable group then there exist integers 2 ≤ m < n
and a continuous, shift-equivariant surjective map

(Z/mZ)Γ → (Z/nZ)Γ.
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A new approach to entropy theory for Z-actions

Consider softening the notion of partial orbit.

An (n, δ)-pseudo orbit is a tuple x = (x1, . . . , xn) ∈ X n such that

1
n

n−1∑
i=1

ρ(Txi , xi+1) < δ.

Note: we are using an `1 metric instead of an `∞ metric.
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A pseudo-orbit
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Entropy via pseudo-orbits

Theorem

h(X ,T ) = sup
ε>0

inf
δ>0

lim sup
n→∞

n−1 log covε( (n, δ)-pseudo orbits, ρ∞).

Proof sketch.
Use Markov’s inequality to show that any (n, δ)-pseudo orbit is
approximately shadowed by a union of a few long partial orbits.
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Periodic orbits

A periodic orbit with period n is a tuple (x ,Tx , . . . ,T n−1x) such that
T nx = x (up to cyclic reordering).
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A periodic orbit
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Entropy via periodic orbits?

The exponential rate of growth of the number of periodic points that
can be distinguished at scale ε (and then send ε↘ 0) is a lower bound
for entropy.

But in general, it is not equal to entropy.
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How to compute entropy

partial orbits

tt **
pseudo orbits

**

periodic orbits

tt
pseudo periodic orbits
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Pseudo-periodic orbits

An (n, δ)-pseudo-periodic orbit is a tuple x = (x1, . . . , xn) ∈ X n (up to
cyclic order) such that

1
n

n∑
i=1

ρ(Txi , xi+1) < δ

(indices mod n).
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Pseudo-periodic orbits
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Entropy via pseudo-periodic orbits

Theorem

h(X ,T ) = sup
ε>0

inf
δ>0

lim sup
n→∞

n−1 log covε((n, δ)-pseudo-periodic orbits, ρ∞)

Aside: pseudo-periodic orbits have also been called microstates,
good maps or sofic models for the action.
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A first step towards sofic entropy

Let Γ be a countable group, ΓyX an action by homeomorphisms.

Preliminary definition : an pseudo-periodic orbit consists of an action
ΓyσV on a finite set and a map φ : V → X that is approximately
equivariant in an `1-sense:

|V |−1
∑
v∈V

ρ
(
φ
(
σ(g)v

)
,gφ(v)

)
< δ ∀g ∈ F

where F ⊂ Γ is finite.

More precisely, this is a (σ, δ,F )-pseudo-periodic orbit .
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A pseudo-periodic orbit of a free group action
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A first step towards sofic entropy

Let Σ = {ΓyσnVn} be a sequence of actions on finite sets.

Preliminary definition : the sofic entropy of ΓyX with respect to Σ is

hΣ(ΓyX ) :=

sup
ε>0

inf
δ>0

inf
FbΓ

lim sup
n→∞

|Vn|−1 log covε((σn, δ,F )-pseudo-periodic orbits, ρ∞).
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Main Results (Kerr-Li, 2011)

1 If ΓyX embeds into ΓyY then hΣ(ΓyX ) ≤ hΣ(ΓyY ).

2 In particular, Σ-entropy is a topological conjugacy invariant.

3 hΣ(ΓyK Γ) = log |K |.

4 If Γ is amenable then sofic entropy agrees with classical entropy.
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A boring example

Suppose Vn is a single point for all n.

Then hΣ(ΓyX ) = log # (fixed points).

This isn’t what is usually meant by entropy.

To fix this, require that the actions ΓyσnVn witness Γ in the sense that:
for all g ∈ Γ \ {1Γ},

|Vn|−1#{v ∈ Vn : σn(g)v 6= v} → 1 as n→∞.

With this assumption, Σ is said to be a sofic approximation to Γ.
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A curious example
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A curious example
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A curious example

Conversely, if there is a (σ, δ, {a,b,a−1,b−1})-pseudo-periodic orbit,

φ : Vn → {0,1}

then there is a δ-almost bi-partition {φ−1(0), φ−1(1)} of the graph of
ΓyVn.

So, if the graphs of ΓyVn do not have almost bi-partitions then

hΣ(F2y{0,1}) = −∞.

Recap: Sofic entropy depends on the choice of sofic approximation
and it can be −∞.
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The Ornstein-Weiss example revisited

The reason entropy increases under the Ornstein-Weiss map is
because it is not always possible to lift a pseudo-periodic orbit.

(Z/2Z)F2

OW

��

Vn

∃φ̃?
77

φ ''
(Z/2Z× Z/2Z)F2
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A cohomological interpretation of the Ornstein-Weiss
example

Given
φ : Vn → (Z/2Z× Z/2Z)F2

let
φedge : En → (Z/2Z)

be the map defined on the edges of the action graph by

φ(v)e = (φedge(v , va), φedge(v , vb)).

A pseudo-periodic orbit φ : Vn → (Z/2Z× Z/2Z)F2 has an approximate
lift if and only if φedge is (close to) a coboundary.
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The Ornstein-Weiss example revisited

The increase in entropy corresponds with the exponential growth of the
cohomology of the graphs (Vn,En).

Aside: the Ornstein-Weiss map has been generalized by
Gaboriau-Seward from the free group F to an arbitrary group Γ and the
increase in entropy is related to the first `2-betti number and cost of Γ.
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What is this good for?

Gottschalk’s Surjunctivity Conjecture (1973): Let k be a finite set and
Φ : kΓ → kΓ a continuous shift-equivariant injective map. Then Φ is
surjective.

Theorem (Gromov, 1999)
If Γ is sofic then the conjecture is true.

Proof by Kerr-Li, 2011.
hΣ(ΓykΓ) = log |k |.
hΣ(ΓyΦ(kΓ)) = log |k |.
The sofic entropy of any proper subshift of kΓ is < log |k |.
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Partial actions
We don’t actually need ΓyσnVn to be actions.

Instead we require {σn : Γ→ sym(Vn)} to be a sequence of maps (not
necessarily homomorphisms!) satisfying

(asymptotic homorphism condition) ∀g,h ∈ Γ,

|Vn|−1#{v ∈ Vn : σn(gh)v = σn(g)σn(h)v} → 1 as n→∞

(asymptotic freeness) ∀g ∈ Γ \ {1Γ},

|Vn|−1#{v ∈ Vn : σn(g)v 6= v} → 1 as n→∞.

Such a sequence is a sofic approximation and Γ is sofic it has one.

Definition due to Gromov (1999), named and made accessible by
Weiss (2000).
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An action of Z2
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A partial action of Z2
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Sofic groups

Amenable groups are sofic.

Residually finite groups are sofic. Hence all linear groups are
sofic.

The class of sofic groups is closed under: subgroups, direct limits,
inverse limits, direct products, extensions by amenable groups,
free products with amenable amalgamation, wreathe products.
(Elek-Szabo, Dykema-Kerr-Pichot, Paunescu, Hayes-Sale)

If G is sofic then G satisfies Gottshalk’s surjunctivity conjecture,
Connes embedding conjecture, the Determinant conjecture,
Kaplansky’s direct finiteness conjecture. (Gromov 1999, Weiss
2000, Elek-Szabo 2005)

Open: Is every countable group sofic?
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The measure-conjugacy problem

Probability-measure-preserving actions

Γy(X , µX ), Γy(Y , µY )

are measurably conjugate if there exists a measure-space
isomorphism Φ

X

Φ
��

g // X

Φ
��

Y g
// Y

intertwining the actions.

Main Problem: Classify actions of Γ up to measure conjugacy.
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Bernoulli shifts

If κ is a probability measure on a space K then the full shift-action

Γy(K Γ, κΓ)

with the product measure κΓ is the Bernoulli shift over G with
base κ.

von Neumann’s question: Is the full 2-shift over Z measurably
conjugate to the full 3-shift?

{0,1}Z

∃Φ?
��

// {0,1}Z

∃Φ?
��

{0,1,2}Z // {0,1,2}Z
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Measure entropy ala Kerr-Li

Let Γy(X , µ) be an action by homeomorphisms and µ an invariant
probability measure.

The measure sofic entropy of Γy(X , µ) is the exponential growth
rate of the number of approximately equidistributed periodic orbits that
can be distinguished at scale ε (and then send ε↘ 0).
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Measure entropy ala Kerr-Li

The empirical distribution of a map φ : V → X is the probability
measure

Pφ :=
1
|V |

∑
v∈V

δφ(v) ∈ Prob(X ).

If O ⊂ Prob(X ) is an open neighborhood of µ then a
(σ, δ,F ,O)-pseudo-periodic orbit is a map φ : V → X such that φ is a
(σ, δ,F )-pseudo-periodic orbit and Pφ ∈ O.
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Measure entropy ala Kerr-Li

The sofic entropy of Γy(X , µ) with respect to Σ is

hΣ(Γy(X , µ)) :=

sup
ε>0

inf
δ,F ,O

lim sup
n→∞

|Vn|−1 log covε((σ, δ,F ,O)-pseudo-periodic orbits, ρ∞).
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Main Results

1 (Variational Principle, Kerr-Li) hΣ(ΓyX ) = supµ hΣ(Γy(X , µ)).

2 (B., Kerr-Li) Measure sofic entropy is a measure conjugacy
invariant.

3 (B., Kerr-Li) If Γ is amenable then sofic entropy agrees with
classical entropy.

4 The sofic entropy a Bernoulli shift action is the Shannon entropy of
the base:

hΣ(Γy(K , κ)Γ) = H(κ) :=
∑
k∈K

−κ({k}) log κ({k}).

5 So the 2-shift over F2 is not isomorphic to the 4-shift over F2!
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Classification of Bernoulli shifts
Conjecture: Assume |Γ| =∞. Then

Γy(K , κ)Γ ∼= Γy(L, λ)Γ ⇔ H(κ) = H(λ).

⇒
Γ = Z (Kolmogorov, 1958)
Γ amenable groups (folklore or Kieffer?, 1970s)
Γ sofic (B. 2010, Kerr-Li 2011)

⇐
Γ = Z (Ornstein, 1970)
Γ amenable (Ornstein-Weiss, 1980)
Z ≤ Γ (Stepin, 1975)
∀Γ, |K | > 2 and |L| > 2 (B. 2012)
∀Γ (Seward, 2018)
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Further topics
Markov chains over free groups (B. 2010) : a variant of sofic
entropy theory via random permutations yields exact computations
and structural results although a classification remains elusive.

Algebraic dynamics : there is an explicit formula for the sofic
entropy of principal algebraic actions and many nice structural
results are due to Ben Hayes that generalizes earlier work of D.
Kerr, H. Li, B., Deninger-Schmidt, Deninger, Lind-Schmidt-Ward,
Rufus Bowen, Yuzvinskii and others.

Rokhlin entropy is an upper bound for sofic entropy. Brandon
Seward has used it to prove generalizations of Krieger’s generator
theorem and Sinai’s Factor Theorem for all countable groups.

Weak Pinsker Conjecture: Tim Austin recently posted a solution
for actions of amenable groups. I have a counterexample in the
case of free group actions based on sofic entropy theory and the
hardcore model on random regular graphs.
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