Bowen

Name

Exam \#1

Instructions. Please put your name at the top of the exam. Read over the entire exam before you begin; you should work on the problems you'll find easiest first. Continue your work on the backs of pages or on extra sheets. If your solution runs over onto these pages, please indicate that clearly. If you use extra sheets, be sure to staple them to the rest of your exam and put your name on them.

Questions

1. Suppose $f: S_{1} \rightarrow S_{2}$ is a local diffeomorphism and $\gamma:(a, b) \rightarrow S_{1}$ is a regular curve. Show that $f \circ \gamma$ is a regular curve.

Solution. It is a regular curve because $D(f \circ \gamma)=D f \circ \gamma^{\prime}, D f$ is injective (since it is a local diffeomorphism) and γ^{\prime} never zero (since γ is regular).

Common mistakes. Some students wrote f^{\prime} instead of $D f$ or even $\frac{d f}{d \gamma}$, neither of which are are right since f is a map from one surface to another. Also it's not enough to say that f is a local diffeomorphism since that's given in the problem. One should state that $D f$ is injective.
2. Consider the following four parametrized plane curves $\gamma_{i}:[0,1] \rightarrow \mathbb{R}^{2}, i=A, B, C, D$:

$$
\begin{aligned}
\gamma_{A}(t) & =(\cos (2 \pi t), \sin (2 \pi t)) \\
\gamma_{B}(t) & =(2 \cos (2 \pi t), 2 \sin (2 \pi t)) \\
\gamma_{C}(t) & =\left(t, t^{2}\right) \\
\gamma_{D}(t) & =\left(t, \sin \left(\frac{1}{t+.001}\right)\right)
\end{aligned}
$$

Order these curves by length and then by curvature. You need not compute the lengths and curvatures exactly to complete this task! A few sketches should give you the right idea.

Solution. By length: $C<A<B<D$. By curvature $B<A<C<D$.
Reasons: γ_{D} oscillates wildly from -1 to 1 . In fact,

$$
\frac{1}{t+0.001}=k \pi
$$

if and only if $t=\frac{1}{k \pi}-0.001$. So γ_{D} will oscillate several hundred times between -1 and 1 for $0<t<1$. For this reason, it has the largest curvature and longest length.
γ_{A} is a circle with length 2π and curvature 1.
γ_{B} is a circle with length 4π and curvature $1 / 2$.
γ_{C} is parametrizing part of a parabola. You can compute its length and curvature exactly. Because it is convex and $\gamma_{C}(0)=(0,0), \gamma_{C}(1)=(1,1)$, it's length cannot be any more than 2 . So it has the shortest length. Its curvature is

$$
\kappa=\frac{2}{\left(1+4 t^{2}\right)^{3 / 2}}
$$

which is maximized at $t=0$. So it has larger curvature that either of the two circles for t near 0 . It has smaller curvature than first circle near $t=1$.

My mistake. Sorry! I should have said maximum curvature instead of just "curvature".
3. Consider the helix $C \subset \mathbb{R}^{3}$ parametrized by

$$
\gamma(t)=(\cos (\alpha t), \sin (\alpha t), \beta t)
$$

where $\alpha, \beta>0$ are such that $\alpha^{2}+\beta^{2}=1$. So $C=\gamma(\mathbb{R})$ is the image of γ.
(a) Compute the Frenet frame $\vec{t}, \vec{n}, \vec{b}$ at an arbitrary point of C.
(b) Compute the curvature and torsion at an arbitrary point of C

Solution.

$$
\gamma^{\prime}(t)=\vec{t}=(-\alpha \sin \alpha t, \alpha \cos \alpha t, \beta), \quad\left\|\gamma^{\prime}\right\|=1
$$

$$
\begin{gathered}
\overrightarrow{t^{\prime}}=\left(-\alpha^{2} \cos \alpha t,-\alpha^{2} \sin \alpha t, 0\right), \quad \kappa=\left\|\overrightarrow{t^{\prime}}\right\|=\alpha^{2} \\
\vec{n}=\kappa^{-1} \vec{t}=(-\cos \alpha t,-\sin \alpha t, 0) \\
\vec{b}=\vec{t} \times \vec{n}=(\beta \sin \alpha t,-\beta \cos \alpha t, \alpha) \\
\vec{b}^{\prime}=\alpha \beta(\cos \alpha t, \sin \alpha t, 0)=-\tau \vec{n} \\
\tau=\alpha \beta .
\end{gathered}
$$

(c) Let $S \subset \mathbb{R}^{3}$ be the union of the normal lines to C. We can parametrize S by

$$
\sigma(u, v)=\gamma(u)+v \vec{n}(u) .
$$

Is S a smooth surface? You do not have to check injectivity.
Solution. So σ is regular if and only if

$$
\sigma_{u}=\gamma^{\prime}(u)-v \kappa \vec{t}(u)+v \tau \vec{b}(u)=(1-v \kappa) \vec{t}+v \tau \vec{b}
$$

and $\sigma_{v}=\vec{n}(u)$ are linearly independent. We claim that σ_{u} is never zero. Because \vec{b}, \vec{t} are orthonormal, σ_{u} is zero if and only if both $1-v \kappa=0$ and $v \tau=0$ but this is impossible since $\kappa, \tau>0$.
Since σ_{u} is never zero and $\vec{t}, \vec{n}, \vec{b}$ are orthonormal, σ_{u} and σ_{v} are independent.
4. Find a basis for the tangent space to the surface $x^{2}+y^{2}-z^{2}=1$ at the point $\left(2^{-1 / 2}, 2^{-1 / 2}, 0\right)$. Show that this tangent space contains the z-axis.

Solution. There are many different ways to parametrize this surface. Here's one:

$$
\sigma(\theta, z)=\left(\sqrt{1+z^{2}} \cos (\theta), \sqrt{1+z^{2}} \sin (\theta), z\right)
$$

Taking derivatives

$$
\begin{gathered}
\sigma_{\theta}=\left(-\sqrt{1+z^{2}} \sin (\theta), \sqrt{1+z^{2}} \cos (\theta), 0\right) \\
\sigma_{z}=\left(z\left(1+z^{2}\right)^{-1 / 2} \cos (\theta), z\left(1+z^{2}\right)^{-1 / 2} \sin (\theta), 1\right)
\end{gathered}
$$

Note $\sigma(\pi / 4,0)=\left(2^{-1 / 2}, 2^{-1 / 2}, 0\right)$. So

$$
\sigma_{\theta}(\pi / 4,0)=\left(-2^{1 / 2}, 2^{1 / 2}, 0\right)
$$

$$
\sigma_{z}(\pi / 4,0)=(0,0,1)
$$

This is a basis for the tangent space at $\left(2^{-1 / 2}, 2^{-1 / 2}, 0\right)$.
Common mistakes. It doesn't work if you parametrize by $\sigma(u, v)=\left(u, v, \sqrt{u^{2}+v^{2}-1}\right)$.
The problem is that this patch does not contain an open neighborhood around ($2^{-1 / 2}, 2^{-1 / 2}, 0$) because it is not injective in a neighborhood of $\left(2^{-1 / 2}, 2^{-1 / 2}, 0\right)$. So if you use this parametrization, you will get infinite derivatives.
5. Suppose $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a smooth function, and for every $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ with $F\left(x_{0}, y_{0}\right)=$ 0 , we have $\frac{\partial F}{\partial y}\left(x_{0}, y_{0}\right) \neq 0$. Prove that the set of points

$$
C=\left\{(x, y) \in \mathbb{R}^{2}: F(x, y)=0\right\}
$$

is the graph $\left\{(x, f(x)) \in \mathbb{R}^{2}: x \in \mathbb{R}\right\}$ of a smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$.
Solution. Define $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $G(x, y)=(x, F(x, y))$. Because

$$
D G=\left(\begin{array}{cc}
1 & 0 \\
F_{x} & F_{y}
\end{array}\right)
$$

has determinant $F_{y} \neq 0$, it is invertible. So the inverse function theorem implies the existence of a local inverse which necessarily has the form $H(x, y)=(x, h(x, y))$ for some function h. We define $f(x)=h(x, 0)$ to finish the solution.

You might object that we have only shown that C is locally the graph of a smooth function. But actually, f is globally defined. This is because f is uniquely specified by the requirement that $F\left((x, f(x))=0\right.$ since $F_{y} \neq 0$ and F is smooth implies that F_{y} does not change sign. So $F\left(x, y_{2}\right)-F\left(x, y_{1}\right)=\int_{y_{1}}^{y_{2}} F_{y}(x, u) d u$ cannot be zero unless $y_{1}=y_{2}$.

Common mistakes. There was a lot of confusion about how to apply the IFT. You cannot apply the IFT directly to F because its domain and range have different dimensions.

