Bowen

Name \qquad

Practice Exam \#1

Instructions. Please put your name at the top of the exam. Read over the entire exam before you begin; you should work on the problems you'll find easiest first. Continue your work on the backs of pages or on extra sheets. If your solution runs over onto these pages, please indicate that clearly. If you use extra sheets, be sure to staple them to the rest of your exam and put your name on them.

Questions

1. Is it possible to have a simple closed regular space curve with no vertices, i.e., with no points at which the derivative of the curvature vanishes? Either sketch a proof that it is not possible or sketch a construction of an example.
2. Show that if $\gamma:(a, b) \rightarrow \mathbb{R}^{3}$ is a curve whose image is contained in a regular surface patch $\sigma: U \rightarrow \mathbb{R}^{3}$ then $\gamma(t)=\sigma(u(t), v(t))$ for some smooth map $t \mapsto(u(t), v(t)) \in U$. In your proof, you can make free use of the inverse function theorem for maps $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, but you shouldnt assume any results about surfaces beyond the basic definitions (unless you prove them, of course).
3. (a) State carefully the definition of a (regular smooth) surface patch.
(b) Find a domain U in the plane for which the function

$$
\sigma(u, v)=(u, v, u \sin (u v))
$$

is a surface patch. Verify that σ is indeed a surface patch.
4. Answer each below as True or False. You need not provide further explanation.
(a) Let $\kappa:(a, b) \rightarrow \mathbb{R}$ be any (smooth) function. Then there exists a parametrized plane curve $\gamma:[a, b] \rightarrow \mathbb{R}^{2}$ whose signed curvature is κ.
(b) Let γ be a regular with nonzero curvature everywhere whose image lies on the unit sphere. Then γ has constant torsion.
(c) Suppose $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a smooth function, and for every $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ with $F\left(x_{0}, y_{0}\right)=0$, we have $\frac{\partial F}{\partial y}\left(x_{0}, y_{0}\right) \neq 0$. Then the set of points

$$
C=\left\{(x, y) \in \mathbb{R}^{2}: F(x, y)=0\right\}
$$

is the graph $\left\{(x, f(x)) \in \mathbb{R}^{2}: x \in \mathbb{R}\right\}$ of a smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$.
(d) Let γ be a simple closed curve. Then its length Length (γ) and the area it encloses satisfy

$$
\operatorname{Area}(\gamma) \leq \frac{1}{4 \pi} \operatorname{Length}(\gamma)^{2}
$$

5. Let γ be a regular space curve. Define a vector-valued function \vec{d} by

$$
\vec{d}=\tau \vec{t}+\kappa \vec{b}
$$

Show that

$$
\begin{aligned}
\vec{t} & =\vec{d} \times \vec{t} \\
\vec{n}^{\prime} & =\vec{d} \times \vec{n} \\
\vec{b}^{\prime} & =\vec{d} \times \vec{b}
\end{aligned}
$$

\vec{d} is called the Darboux vector field.

