M365g Spring 2017 Bowen

Name_

Exam #2

Instructions. Please put your name at the top of the exam. Read over the entire exam before you begin; you should work on the problems you'll find easiest first. Continue your work on the backs of pages or on extra sheets. *If your solution runs over onto these pages, please indicate that clearly*. If you use extra sheets, be sure to staple them to the rest of your exam and put your name on them.

Questions

- 1. True/False
 - (a) Define $S = \{(x, y, z) \in \mathbb{R}^3 : xyz = 0\}$. Then S is a smooth surface.
 - (b) Let $\Delta \subset S^2$ be a triangle whose sides lie along great circles. Then the sum of the angles formed at the vertices exceeds π .
 - (c) Let $\sigma: U \to \mathbb{R}^3$ be a surface patch on an oriented surface $S \subset \mathbb{R}^3$ and

$$I = Edu^{2} + 2Fdudv + Gdv^{2}$$
$$II = Ldu^{2} + 2Mdudv + Ndv^{2}$$

the induced first and second fundamental forms. Suppose F = M = 0. Then the Gauss curvature vanishes.

- (d) The map σ is area-preserving if and only if $EG F^2 = 1$. (Here, and in subsequent problems, we use the standard metric in the (u, v)-plane.)
- (e) The map σ is conformal if and only if E = G.
- (f) Let $S \subset \mathbb{R}^3$ be a surface and $p \in S$. Then there exists a Cartesian coordinate system (x, y, z) in \mathbb{R}^3 and a function $f : \mathbb{R}^2 \to \mathbb{R}$ such that S is the graph $\{(x, y, f(x, y)) \in \mathbb{R}^3 : x, y \in \mathbb{R}\}.$

2. Let 0 < r < R and consider the torus $S \subset \mathbb{R}^3$ described by the equations

$$x = (R + r\cos\phi)\cos\theta$$
$$y = (R + r\cos\phi)\sin\theta$$
$$z = r\sin\phi$$

where $0 \leq \phi, \theta \leq 2\pi$. Consider the parametrized curve $\gamma : [0, \pi] \to S$ described by the equations $\phi = \pi/2$, $\theta = t$ and the vector field ξ along γ given by $\xi_{(x,y,z)} = (x, y, 0)$. Compute the covariant derivative $\nabla_{\gamma}\xi = \nabla_{\gamma'}\xi$ of ξ along γ .

3. Consider the helicoid, parametrized by

$$\sigma(u, v) = (v \, \cos u, v \, \sin u, \lambda u),$$

where λ is a positive constant, 0 < v < 2, and $-10\pi < u < 10\pi$. Complete the following for each point on the surface

- (a) Compute the first fundamental form.
- (b) Compute the second fundamental form.
- (c) Compute the Gauss and mean curvatures.
- (d) Compute the principal curvatures.
- (e) Write an expression for the total area of the image of σ . Do not evaluate the integrals.
- (f) Let C_1 be the image of the curve $t \mapsto \sigma(t,0)$ and C_2 the image of the curve $t \mapsto \sigma(0,t)$. Compute the angle of intersection of C_1 and C_2 .
- 4. Let S^2 be the unit sphere and γ be the latitudinal circle which is the intersection of the plane $z = z_0$ with S^2 (for some $z_0 \in (-1, 1)$. Compute $|\kappa_g|$ = the absolute value of the geodesic curvature of γ .