M365g Spring 2017 Bowen

Name_____

Practice Final

Instructions. Please put your name at the top of the exam. Read over the entire exam before you begin; you should work on the problems you'll find easiest first. Continue your work on the backs of pages or on extra sheets. *If your solution runs over onto these pages, please indicate that clearly*. If you use extra sheets, be sure to staple them to the rest of your exam and put your name on them.

Questions

- 1. For each of the following surfaces describe all parametrized geodesics. The surface is cut out by the indicated equation in (x, y, z)-space. Justify your answer carefully.
 - (a) The plane z = 0.
 - (b) The cylinder $x^2 + y^2 = 1$.
 - (c) The sphere $x^2 + y^2 + z^2 = 1$.
- 2. Let γ be a smooth curve on a surface. What is the relationship between the covariant derivative $\nabla_{\gamma} \gamma'$ and the geodesic curvature κ_g ?
- 3. Suppose $S = \sigma(U)$ is a surface such that every point is umbilic. Let $\kappa : S \to \mathbb{R}$ be the principal curvature at p.
 - (a) Show $\vec{N}_u = -\kappa \sigma_u$ and $\vec{N}_v = -\kappa \sigma_v$.
 - (b) By differentiating the above, show κ is constant.
 - (c) If $\kappa = 0$, show \vec{N} is constant (and hence S is contained in a plane).
 - (d) If $\kappa \neq 0$ show $\vec{N} = -\kappa \sigma + \vec{b}$ for some constant \vec{b} (and hence S is contained in a sphere).

4. Holonomy.

- (a) Prove the following simple theorem. Let $S_1, S_2 \subset \mathbb{E}^3$ be surfaces which are tangent along a curve $C \subset S_1 \cap S_2$. Let $p, q \in C$ and suppose $P_i : T_p S_i \to T_q S_i$ is parallel transport along C from p to q in the surface $S_i, i = 1, 2$. Then $P_1 = P_2$.
- (b) Compute the holonomy around the parallel $z = z_0$ on the unit sphere S^2 with $0 < z_0 < 1$.
- (c) Consider the cone $z = x^2 + y^2$. Compute the holonomy around the circle at level $z = z_1$ on this curve (for some fixed $z_1 > 0$). Hint: by using part (a) and part (b) you can reduce this to a simple computation.
- 5. A ruled surface has a parametrization of the form

$$\sigma(u,v) = \gamma(u) + v\delta(u),$$

where $\gamma : (\alpha, \beta) \to \mathbb{E}^3$ is a curve of points and $\delta : (\alpha, \beta) \to \mathbb{R}^3$ is a curve of vectors. Assume that γ is unit speed and δ is unit length.

- (a) Compute the Gauss curvature K. Show that the ruled surface is flat, i.e., K = 0, if and only if the three vectors $\dot{\gamma}, \delta, \dot{\delta}$ are linearly dependent.
- (b) One way this can happen is if $\dot{\delta} = 0$. What is the surface in this case?
- (c) Another possibility is that $\dot{\gamma}$ is a multiple of δ . What is the surface in this case?
- (d) Give an example of a flat ruled surface not of either of the above types.
- (e) Give an example of a nonflat ruled surface.
- 6. Cylindrical curves. Consider a curve of the form $\gamma(t) = (\cos(t), \sin(t), f(t))$ where f is a smooth function.
 - (a) Compute the speed and curvature of γ at time t in terms of the (unknown) function f and its derivatives. Hint:

$$\kappa = \frac{\|\gamma' \times \gamma''\|}{\|\gamma'\|^3}$$

- (b) Think of the curve as lying on the cylinder $x^2 + y^2 = 1$. Compute its geodesic and normal curvatures.
- 7. Let γ be a smooth closed curve with curvature bounded below by a positive constant $\delta > 0$. Let $\epsilon > 0$ and

$$\sigma(u, v) = \gamma(u) + \epsilon \cos(v)\vec{n}(u) + \epsilon \sin(v)\vec{b}(u)$$

where \vec{n}, \vec{b} are the unit normal and binormal vectors to γ . Prove that: if $\epsilon > 0$ is sufficiently small then σ is a regular surface.