
Name M381C Exam 1
Instructions: Do as many problems as you can. Complete solutions (except for minor flaws)
to 4 problems will be considered a good performance.

1. Let E ⊂ R be a set with positive finite measure. Show that for any number 0 < c < 1
there exists an open interval I such that

m(I ∩ E) ≥ cm(I).

Hint: recall that for every ε > 0 there exists an open set O ⊃ E with m(O \ E) < ε.

Solution #1. Let ε > 0. There exists an open set O ⊃ E such that m(O \ E) < ε.

Because O is open, it can be expressed as a countable union of pairwise disjoint intervals
O = ∪∞i=1Ii. Suppose that m(Ii∩E)

m(Ii)
< c for all i. Then

m(E) =
∞∑
i=1

m(Ii ∩ E) =
∞∑
i=1

m(Ii ∩ E)

m(Ii)
m(Ii) < c

∞∑
i=1

m(Ii) = cm(O) ≤ c(ε+m(E)).

So we obtain (1−c)
c
m(E) ≤ ε. However, ε is arbitrary. So if we choose it to be less than

(1−c)
c
m(E) then this can’t work. So there must be some interval satisfying the result.

Solution #2. Apply Lebesgue’s Differentiation Theorem to χE: for a.e. x,

χE(x) = lim
I→x

1

m(I)

∫
I

χE dm = lim
I→x

m(I ∩ E)

m(I)
.

Consider the case x ∈ E to obtain the result.

2. Let Z ⊂ R have measure zero. Prove that Z2 = {x2 : x ∈ Z} also has measure zero.

Solution. Let Zn = Z ∩ [−n, n]. It suffices to show that m(Z2
n) = 0 for each n. Let

ε > 0 and O ⊃ Zn be an open set such that m(O) < ε/n and O ⊂ [−2n, 2n]. Then
O2 ⊃ Z2. If I = [a, b] in an interval of O then I2 = [a2, b2] and

m(I2) = b2 − a2 ≤ n(b− a) = 2nm(I).

Since this is true for every interval, we have

m(Z2
n) ≤ m(O2) ≤ 2nm(O) ≤ 2ε.

Since this is true for every ε > 0, m(Z2
n) = 0.

3. Suppose {fn} is a sequence of measurable functions on [0, 1] such that

lim
n,m→+∞

m({x ∈ [0, 1] : |fn(x)− fm(x)| > ε}) = 0

for every ε > 0. Prove that there exists a measurable function f such that fn converges
to f in measure as n→∞.

Hint: Let {nj} be a subsequence such that for every j < k

m({x ∈ [0, 1] : |fnj
(x)− fnk

(x)| > 1/j}) < 2−j.



Show that {fnj
} converges pointwise a.e.

Solution. Let {nj} be a subsequence such that for every j < k

m({x ∈ [0, 1] : |fnj
(x)− fnk

(x)| > 1/j}) < 2−j.

I claim that {fnj
} converges pointwise a.e. To see this, let

Ej = {x ∈ [0, 1] : |fnj
(x)− fnk

(x)| > 1/j}

and
E0 = {x ∈ [0, 1] : lim sup

j,k→∞
|fnj

(x)− fnk
(x)| > 0}.

Observe that
E0 = lim sup

j→∞
Ej = ∩∞n=1 ∪j≥n Ej.

It follows that
m(E0) ≤ m(∪j≥nEj) ≤ 2−n+1

for every n. Thus m(E0) = 0 which implies {fnj
} converges pointwise a.e. Let f∞ =

limj fnj
be the limit function. Because {fnj

} converges pointwise a.e. to f∞, this
sequence also converges in measure to f∞. It follows from the triangle inequality that
{fn} converges in measure to f∞.

4. Let f ≥ 0 be an integrable nonnegative function on R. Define a measure µ on R by

µ(E) =

∫
E

f dm

(for any measurable subset E ⊂ R). Prove that if g is any bounded measurable function
on [0, 1] then

∫
g dµ =

∫
fg dm.

Solution. Observe that the equation is true if g is the characteristic function of a
measurable set. By linearity, the equation must be true if g is simple. So∫

g dµ = sup
φ≤g

∫
φ dµ = sup

φ≤g

∫
fφ dm =

∫
fg dm

where the supremums are over all simple functions φ ≤ g. The last equality holds by
Lebesgue’s Dominated Convergence Theorem, or by the Bounded Convergence Theo-
rem since we may assume, without loss of generality that the support of φ is contained
in the support of g.

5. Let f be a continuous function on [0, 1]. Find

lim
n→∞

n

∫ 1

0

xnf(x) dx.

Justify your answer. Hint: the answer is not zero.

Solution. Because f is continuous f(x) is close to f(1) whenever x is close to 1. More
precisely, for any ε > 0 there is a δ > 0 such that if 1− δ ≤ x ≤ 1 then

|f(x)− f(1)| < ε.



Observe that nxn is monotone decreasing as n→∞ for every x ∈ [0, 1− δ] (if we start
with n large enough so that 1− δ < n/(n+ 1)). Moreover nxn → 0 for any 0 ≤ x < 1
as n→∞. So Lebesgue’s Dominated Convergence Thereom implies

lim
n→∞

n

∫ 1

0

xnf(x) dx = lim
n→∞

n

∫ 1−δ

0

xnf(x) dx+ lim
n→∞

n

∫ 1

1−δ
xnf(x) dx

= lim
n→∞

n

∫ 1

1−δ
xnf(x) dx.

By direct computation,

lim
n→∞

n

∫ 1

1−δ
xn dx = 1.

So,

lim sup
n→∞

|n
∫ 1

1−δ
xnf(x) dx− f(1)| = lim sup

n→∞
|n
∫ 1

1−δ
xnf(x) dx− n

∫ 1

1−δ
xnf(1) dx|

≤ lim sup
n→∞

n

∫ 1

1−δ
xn|f(x)− f(1)| dx

≤ lim sup
n→∞

n

∫ 1

1−δ
xnε dx = ε.

Since this is true for every ε > 0 we have

lim
n→∞

n

∫ 1

1−δ
xnf(x) dx = f(1).

6. Suppose {fn} are integrable functions on [0, 1] and that limn→∞ fn(x) = f∞(x) for

a.e. x. Suppose also that ‖fn‖1 → ‖f∞‖1 < ∞ as n → ∞. Show that
∫ 1

0
|fn(x) −

f∞(x)| dx→ 0 as n→∞.

Hint: Because f∞ is integrable, for every ε > 0 there exists δ > 0 such that if E ⊂ [0, 1]
has m(E) < δ then

∫
E
|f∞| dm < ε.

Solution. Let ε > 0. By absolute continuity of the integral, there exists a δ > 0
such that if E ⊂ [0, 1] has m(E) < δ then

∫
E
|f∞| dm < ε. By Egorov’s Theorem,

there exists a set E ⊂ [0, 1] with m(E) < δ such that fn converges uniformly to f∞ on
[0, 1] \ E. Therefore,

lim sup
n

∫ 1

0

|fn − f∞| dm = lim sup
n

∫
E

|fn − f∞| dm.

Now
∫
E
|f∞| dm < ε. Moreover,∫

E

|f∞| − |fn| dm = ‖f∞‖1 − ‖fn‖1 −
(∫

Ec

|f∞| − |fn| dm
)
→ 0

as n→∞. So lim supn
∫
E
|fn| dm < ε. Therefore,

lim sup
n

∫
E

|fn − f∞| dm ≤ lim sup
n

∫
E

|fn| dm+

∫
|f∞| dm < 2ε.



So we have shown

lim sup
n

∫ 1

0

|fn − f∞| dm ≤ 2ε.

Since ε is arbitrary, this proves it.


