Name
M381C Exam 1
Instructions: Do as many problems as you can. Complete solutions (except for minor flaws) to 4 problems will be considered a good performance.

1. Let $E \subset \mathbb{R}$ be a set with positive finite measure. Show that for any number $0<c<1$ there exists an open interval I such that

$$
m(I \cap E) \geq c m(I)
$$

Hint: recall that for every $\epsilon>0$ there exists an open set $O \supset E$ with $m(O \backslash E)<\epsilon$.
Solution \#1. Let $\epsilon>0$. There exists an open set $O \supset E$ such that $m(O \backslash E)<\epsilon$.
Because O is open, it can be expressed as a countable union of pairwise disjoint intervals $O=\cup_{i=1}^{\infty} I_{i}$. Suppose that $\frac{m\left(I_{i} \cap E\right)}{m\left(I_{i}\right)}<c$ for all i. Then

$$
m(E)=\sum_{i=1}^{\infty} m\left(I_{i} \cap E\right)=\sum_{i=1}^{\infty} \frac{m\left(I_{i} \cap E\right)}{m\left(I_{i}\right)} m\left(I_{i}\right)<c \sum_{i=1}^{\infty} m\left(I_{i}\right)=c m(O) \leq c(\epsilon+m(E))
$$

So we obtain $\frac{(1-c)}{c} m(E) \leq \epsilon$. However, ϵ is arbitrary. So if we choose it to be less than $\frac{(1-c)}{c} m(E)$ then this can't work. So there must be some interval satisfying the result.
Solution \#2. Apply Lebesgue's Differentiation Theorem to χ_{E} : for a.e. x,

$$
\chi_{E}(x)=\lim _{I \rightarrow x} \frac{1}{m(I)} \int_{I} \chi_{E} d m=\lim _{I \rightarrow x} \frac{m(I \cap E)}{m(I)}
$$

Consider the case $x \in E$ to obtain the result.
2. Let $Z \subset \mathbb{R}$ have measure zero. Prove that $Z^{2}=\left\{x^{2}: x \in Z\right\}$ also has measure zero.

Solution. Let $Z_{n}=Z \cap[-n, n]$. It suffices to show that $m\left(Z_{n}^{2}\right)=0$ for each n. Let $\epsilon>0$ and $O \supset Z_{n}$ be an open set such that $m(O)<\epsilon / n$ and $O \subset[-2 n, 2 n]$. Then $O^{2} \supset Z^{2}$. If $I=[a, b]$ in an interval of O then $I^{2}=\left[a^{2}, b^{2}\right]$ and

$$
m\left(I^{2}\right)=b^{2}-a^{2} \leq n(b-a)=2 n m(I)
$$

Since this is true for every interval, we have

$$
m\left(Z_{n}^{2}\right) \leq m\left(O^{2}\right) \leq 2 n m(O) \leq 2 \epsilon
$$

Since this is true for every $\epsilon>0, m\left(Z_{n}^{2}\right)=0$.
3. Suppose $\left\{f_{n}\right\}$ is a sequence of measurable functions on $[0,1]$ such that

$$
\lim _{n, m \rightarrow+\infty} m\left(\left\{x \in[0,1]:\left|f_{n}(x)-f_{m}(x)\right|>\epsilon\right\}\right)=0
$$

for every $\epsilon>0$. Prove that there exists a measurable function f such that f_{n} converges to f in measure as $n \rightarrow \infty$.
Hint: Let $\left\{n_{j}\right\}$ be a subsequence such that for every $j<k$

$$
m\left(\left\{x \in[0,1]:\left|f_{n_{j}}(x)-f_{n_{k}}(x)\right|>1 / j\right\}\right)<2^{-j}
$$

Show that $\left\{f_{n_{j}}\right\}$ converges pointwise a.e.
Solution. Let $\left\{n_{j}\right\}$ be a subsequence such that for every $j<k$

$$
m\left(\left\{x \in[0,1]:\left|f_{n_{j}}(x)-f_{n_{k}}(x)\right|>1 / j\right\}\right)<2^{-j}
$$

I claim that $\left\{f_{n_{j}}\right\}$ converges pointwise a.e. To see this, let

$$
E_{j}=\left\{x \in[0,1]:\left|f_{n_{j}}(x)-f_{n_{k}}(x)\right|>1 / j\right\}
$$

and

$$
E_{0}=\left\{x \in[0,1]: \limsup _{j, k \rightarrow \infty}\left|f_{n_{j}}(x)-f_{n_{k}}(x)\right|>0\right\}
$$

Observe that

$$
E_{0}=\limsup _{j \rightarrow \infty} E_{j}=\cap_{n=1}^{\infty} \cup_{j \geq n} E_{j}
$$

It follows that

$$
m\left(E_{0}\right) \leq m\left(\cup_{j \geq n} E_{j}\right) \leq 2^{-n+1}
$$

for every n. Thus $m\left(E_{0}\right)=0$ which implies $\left\{f_{n_{j}}\right\}$ converges pointwise a.e. Let $f_{\infty}=$ $\lim _{j} f_{n_{j}}$ be the limit function. Because $\left\{f_{n_{j}}\right\}$ converges pointwise a.e. to f_{∞}, this sequence also converges in measure to f_{∞}. It follows from the triangle inequality that $\left\{f_{n}\right\}$ converges in measure to f_{∞}.
4. Let $f \geq 0$ be an integrable nonnegative function on \mathbb{R}. Define a measure μ on \mathbb{R} by

$$
\mu(E)=\int_{E} f d m
$$

(for any measurable subset $E \subset \mathbb{R}$). Prove that if g is any bounded measurable function on $[0,1]$ then $\int g d \mu=\int f g d m$.
Solution. Observe that the equation is true if g is the characteristic function of a measurable set. By linearity, the equation must be true if g is simple. So

$$
\int g d \mu=\sup _{\phi \leq g} \int \phi d \mu=\sup _{\phi \leq g} \int f \phi d m=\int f g d m
$$

where the supremums are over all simple functions $\phi \leq g$. The last equality holds by Lebesgue's Dominated Convergence Theorem, or by the Bounded Convergence Theorem since we may assume, without loss of generality that the support of ϕ is contained in the support of g.

5 . Let f be a continuous function on $[0,1]$. Find

$$
\lim _{n \rightarrow \infty} n \int_{0}^{1} x^{n} f(x) d x
$$

Justify your answer. Hint: the answer is not zero.
Solution. Because f is continuous $f(x)$ is close to $f(1)$ whenever x is close to 1 . More precisely, for any $\epsilon>0$ there is a $\delta>0$ such that if $1-\delta \leq x \leq 1$ then

$$
|f(x)-f(1)|<\epsilon
$$

Observe that $n x^{n}$ is monotone decreasing as $n \rightarrow \infty$ for every $x \in[0,1-\delta]$ (if we start with n large enough so that $1-\delta<n /(n+1)$). Moreover $n x^{n} \rightarrow 0$ for any $0 \leq x<1$ as $n \rightarrow \infty$. So Lebesgue's Dominated Convergence Thereom implies

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n \int_{0}^{1} x^{n} f(x) d x & =\lim _{n \rightarrow \infty} n \int_{0}^{1-\delta} x^{n} f(x) d x+\lim _{n \rightarrow \infty} n \int_{1-\delta}^{1} x^{n} f(x) d x \\
& =\lim _{n \rightarrow \infty} n \int_{1-\delta}^{1} x^{n} f(x) d x
\end{aligned}
$$

By direct computation,

$$
\lim _{n \rightarrow \infty} n \int_{1-\delta}^{1} x^{n} d x=1
$$

So,

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left|n \int_{1-\delta}^{1} x^{n} f(x) d x-f(1)\right| & =\limsup _{n \rightarrow \infty}\left|n \int_{1-\delta}^{1} x^{n} f(x) d x-n \int_{1-\delta}^{1} x^{n} f(1) d x\right| \\
& \leq \limsup _{n \rightarrow \infty} n \int_{1-\delta}^{1} x^{n}|f(x)-f(1)| d x \\
& \leq \limsup _{n \rightarrow \infty} n \int_{1-\delta}^{1} x^{n} \epsilon d x=\epsilon
\end{aligned}
$$

Since this is true for every $\epsilon>0$ we have

$$
\lim _{n \rightarrow \infty} n \int_{1-\delta}^{1} x^{n} f(x) d x=f(1)
$$

6. Suppose $\left\{f_{n}\right\}$ are integrable functions on [0,1] and that $\lim _{n \rightarrow \infty} f_{n}(x)=f_{\infty}(x)$ for a.e. x. Suppose also that $\left\|f_{n}\right\|_{1} \rightarrow\left\|f_{\infty}\right\|_{1}<\infty$ as $n \rightarrow \infty$. Show that $\int_{0}^{1} \mid f_{n}(x)-$ $f_{\infty}(x) \mid d x \rightarrow 0$ as $n \rightarrow \infty$.

Hint: Because f_{∞} is integrable, for every $\epsilon>0$ there exists $\delta>0$ such that if $E \subset[0,1]$ has $m(E)<\delta$ then $\int_{E}\left|f_{\infty}\right| d m<\epsilon$.
Solution. Let $\epsilon>0$. By absolute continuity of the integral, there exists a $\delta>0$ such that if $E \subset[0,1]$ has $m(E)<\delta$ then $\int_{E}\left|f_{\infty}\right| d m<\epsilon$. By Egorov's Theorem, there exists a set $E \subset[0,1]$ with $m(E)<\delta$ such that f_{n} converges uniformly to f_{∞} on $[0,1] \backslash E$. Therefore,

$$
\limsup _{n} \int_{0}^{1}\left|f_{n}-f_{\infty}\right| d m=\underset{n}{\limsup } \int_{E}\left|f_{n}-f_{\infty}\right| d m
$$

Now $\int_{E}\left|f_{\infty}\right| d m<\epsilon$. Moreover,

$$
\int_{E}\left|f_{\infty}\right|-\left|f_{n}\right| d m=\left\|f_{\infty}\right\|_{1}-\left\|f_{n}\right\|_{1}-\left(\int_{E^{c}}\left|f_{\infty}\right|-\left|f_{n}\right| d m\right) \rightarrow 0
$$

as $n \rightarrow \infty$. So $\lim \sup _{n} \int_{E}\left|f_{n}\right| d m<\epsilon$. Therefore,

$$
\limsup \int_{E}\left|f_{n}-f_{\infty}\right| d m \leq \limsup _{n} \int_{E}\left|f_{n}\right| d m+\int\left|f_{\infty}\right| d m<2 \epsilon
$$

So we have shown

$$
\limsup _{n} \int_{0}^{1}\left|f_{n}-f_{\infty}\right| d m \leq 2 \epsilon
$$

Since ϵ is arbitrary, this proves it.

