Name
M381C Exam 2
Instructions: Do as many problems as you can. Complete solutions (except for minor flaws) to 2-3 problems will be considered a good performance.

1. Suppose ϕ is a real-valued function on \mathbb{R} such that

$$
\phi\left(\int_{0}^{1} f(x) d x\right) \leq \int_{0}^{1} \phi(f(x)) d x
$$

for every real-valued bounded measurable f. Show that ϕ is convex.
Solution. Let $a<b \in \mathbb{R}$ and $t \in(0,1)$. Define $f(x)=a$ if $0 \leq x \leq t$ and $f(x)=b$ otherwise. Then $\int_{0}^{1} f d x=t a+(1-t) b$. So the hypotheses imply

$$
\phi(t a+(1-t) b) \leq t \phi(a)+(1-t) \phi(b)
$$

which is equivalent to convexity.
2. Suppose (X, μ) is a measure space with $\mu(X)<\infty$. Show that for any bounded measurable function f on X,

$$
\lim _{p \rightarrow \infty}\|f\|_{p}=\|f\|_{\infty}
$$

Solution. This is Theorem 8.1 in the book. For every number $0 \leq t<\|f\|_{\infty}$, there is a set $E \subset X$ such that $f \geq t \chi_{E}$. By direct computation, we see that $\left\|t \chi_{E}\right\|_{p} \rightarrow t$ as $p \rightarrow$ ∞. By monotonicity, this implies $\liminf _{p \rightarrow \infty}\|f\|_{p} \geq t$. Therefore $\lim \inf _{p \rightarrow \infty}\|f\|_{p} \geq$ $\|f\|_{\infty}$. On the other hand, since $f \leq\|f\|_{\infty}$, we have $\|f\|_{p} \leq \mu(E)^{1 / p}\|f\|_{\infty}$ for every p which implies the oppositive inequality.
3. Let F be an increasing real-valued function on a bounded interval $I=(a, b)$. Suppose that for almost every $x \in I$, the limit

$$
f(x)=\lim _{k \rightarrow \infty} \frac{F(x+1 / k)-F(x)}{1 / k}
$$

exists and is finite. Explain why f is measurable on I, and why

$$
\int_{a}^{b} f d x \leq F\left(b^{-}\right)-F\left(a^{+}\right)
$$

Solution. F is measurable because it is monotone (the inverse image of an interval of the form (r, ∞) is an interval of the form $(s, \infty))$. f is measurable because it is a limit of measurable functions. The last part was in a lecture and is also in the book.
4. Suppose that \mathcal{H} is a Hilbert space,

- $\left\{v_{n}\right\}_{n=1}^{\infty} \subset \mathcal{H}, v_{\infty} \in \mathcal{H}$,
- $\lim _{n \rightarrow \infty}\left\langle v_{n}, w\right\rangle=\left\langle v_{\infty}, w\right\rangle$ for every $w \in \mathcal{H}$
- $\left\|v_{n}\right\| \rightarrow\left\|v_{\infty}\right\|$ as $n \rightarrow \infty$.

Show that $\lim _{n \rightarrow \infty} v_{n}=v_{\infty}$ (i.e., $\lim _{n \rightarrow \infty}\left\|v_{n}-v_{\infty}\right\|=0$).
Solution.

$$
\left\|v_{n}-v_{\infty}\right\|^{2}=\left\|v_{n}\right\|^{2}-2 \operatorname{Re}\left\langle v_{n}, v_{\infty}\right\rangle+\left\|v_{\infty}\right\|^{2} .
$$

By hypothesis,

$$
\left\langle v_{n}, v_{\infty}\right\rangle \rightarrow\left\langle v_{\infty}, v_{\infty}\right\rangle=\left\|v_{\infty}\right\|^{2} .
$$

Therefore,

$$
\lim _{n \rightarrow \infty}\left\|v_{n}-v_{\infty}\right\|^{2}=\lim _{n \rightarrow \infty}\left\|v_{n}\right\|^{2}-2\left\|v_{\infty}\right\|^{2}+\left\|v_{\infty}\right\|^{2}=0
$$

5. Suppose f is absolutely continuous on $[0,1]$. Show that f has bounded variation. Solution. This is in the book.
