m381c: Homework #13

November 20, 2014

- 1. Let X be a compact metric space. Let $\{\mu_n\}_{n=1}^{\infty}$ and μ_{∞} be regular Borel probability measures on X. Show that the following are equivalent:
 - (a) for every $f \in C_c(X)$, $\lim_{n\to\infty} \mu_n(f) = \mu_\infty(f)$;
 - (b) for every closed set $F \subset X$, $\limsup_{n \to \infty} \mu_n(F) \le \mu_\infty(F)$;
 - (c) for every open set $O \subset X$, $\liminf_{n \to \infty} \mu_n(O) \ge \mu_\infty(O)$.

This is called the **Portmanteau Theorem**.

- 2. Let μ be a regular Borel probability measure on a locally compact separable metric space X. Show that there exists a unique smallest closed set $F \subset X$ such that $\mu(X \setminus F) = 0$. 'Smallest' means that if $F' \subset F$ is any closed subset and $\mu(X \setminus F') = 0$ then F = F'. This set is called the **support** of μ .
- 3. Construct a Borel probability measure on \mathbb{R} whose support is the middle thirds Cantor set.
- 4. Construct a Borel probability measure μ on \mathbb{R} such that
 - μ is singular to Lebesgue measure and
 - the support of μ is \mathbb{R} .