m381c: Homework #14

November 26, 2014

- 1. Show that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \pi^2/6$. Hint: consider the function $f(x) = \frac{\pi x}{2}$ on $[0, 2\pi)$. Compute the Fourier coefficients of this function and use $\frac{1}{2\pi} \int_0^{2\pi} f(x)^2 dx = \sum_{n \in \mathbb{Z}} |\hat{f}(n)|^2$.
- 2. We'll show in class that the span of $\{e_n\}_{n\in\mathbb{Z}}$ is dense in $C(\mathbb{T})$ (where $e_n(x) = e^{inx}$ and we are identifying \mathbb{T} with $[0, 2\pi)$). Use this (or any other method) to show that polynomials are dense in C([0, 1]).
- 3. Suppose $f \in L^1(\mathbb{T})$. Prove that $f \in C^{\infty}(\mathbb{T})$ if and only if the Fourier coefficients $\hat{f}(n)$ "decrease rapidly" as $|n| \to \infty$. That is for any $\alpha > 0$ there exists a constant C_{α} such that

$$|f(n)| \le C_{\alpha} |n|^{-\alpha}$$

for all $n \in \mathbb{Z}$. Hint: if $f \in C^{\infty}$ use the relation $\widehat{f'}(n) = (in)\widehat{f}(n)$ (we will prove this in class; you don't have to show it). If \widehat{f} decreases rapidly use the Inversion Theorem (see below):

Theorem 0.1 (Inversion Theorem). Let $f \in L^1(\mathbb{T})$ and assume that the Fourier series of f converges absolutely: $\sum_{n \in \mathbb{Z}} |\hat{f}(n)| < \infty$. Then there exists a continuous function $g \in C(\mathbb{T})$ such that f = g a.e. Moreover, the Fourier series $\sum_{n \in \mathbb{Z}} \hat{f}(n)e_n$ converges uniformly to g.

You don't have to prove this since we'll prove it in class.