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Exercise 2.54
Let G be the graph whose vertices are {0, 1, 2, 3, . . . } and whose edges are the pairs of vertices that differ by 1.
Let c be some conductance function on the edges. Define θ on the edge set as follows. Define θ(n, n + 1) = 1 and
θ(n+ 1, n) = −1 for all n = 0, 1, 2, . . . . Clearly, θ is a unit flow from 0 to ∞. I claim that this is the only unit flow
from 0 to ∞ on G. Indeed, any unit flow θ from 0 to ∞ must satisfy that θ(0, 1) = 1 and thus θ(1, 0) = −1. Since
d∗θ(1) = 0, θ(1, 2) has to be 1. Thus, we see inductively that θ(n, n+ 1) = 1 and θ(n+ 1, n) = −1 for all n.

The energy functional of this unique unit flow from 0 to ∞ is

E (θ) =

∞∑
n=0

θ(n, n+ 1)2

c(n, n+ 1)
=

∞∑
n=0

1

c(n, n+ 1)
(1)

Define

c(n, n+ 1) = c(n, n− 1) =


1 if n ≡ 0 mod 3

3 if n ≡ 1 mod 3

9 if n ≡ 2 mod 3

We can check that if p(0, 1) = 1,

p(n, n+ 1) =

{
1
10 if n ≡ 0 mod 3
3
4 otherwise

and

p(n, n− 1) =

{
9
10 if n ≡ 0 mod 3
1
4 otherwise

Therefore, the network (G, c) defined as above corresponds to the first random walk. We know that the random
walk is recurrent if for any unit flow from 0 to ∞, its energy is infinite. Since θ defined above is the only unit flow
from 0 to ∞, it suffices to show that E (θ) =∞. Indeed, by (1),

E (θ) =

∞∑
n=0

1

c(n, n+ 1)
= 1 +

1

3
+

1

9
+ 1 +

1

3
+

1

9
+ 1 +

1

3
+

1

9
+ · · · =∞.

So the first random walk is recurrent.
Now let us consider the second random walk described in the exercise. If n ≥ 1, and n is not a multiple of 3,

then
p(n, n+ 1) = P(head)

(3
4

)
+ P(tail)

(1
2

)
=

1

2
· 3
4
+

1

2
· 1
2
=

5

8

and
p(n, n− 1) = P(head)

(1
4

)
+ P(tail)

(1
2

)
=

1

2
· 1
4
+

1

2
· 1
2
=

3

8
.

Likewise, if n ≥ 1, and n is a multiple of 3, then p(n, n+1) = 3/10 and p(n, n−1) = 7/10. So now, for n = 0, 1, 2, . . . ,
we define

c′(3n, 3n+ 1) =
(25
21

)n
and

c′(3n+ 1, 3n+ 2) =
5

3

(25
21

)n
and

c′(3n+ 2, 3n+ 3) =
25

9

(25
21

)n
.
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Now the network (G, c′) corresponds to the second random walk described in the exercise. In this network, the
energy of θ is, according to (1),

∞∑
n=0

1

c′(3n, 3n+ 1)
+

∞∑
n=0

1

c′(3n+ 1, 3n+ 2)
+

∞∑
n=0

1

c′(3n+ 2, 3n+ 3)
=

∞∑
n=0

(21
25

)n
+

∞∑
n=0

5

3

(21
25

)n
+

∞∑
n=0

25

9

(21
25

)n
.

Note that the right-hand side is the sum of three convergent geometric series. Thus the energy of θ is finite and the
random walk is transient.

I think finally I need to show that for the second random walk, Xn/n converges to some positive constant almost
surely. I am unable to do this.

Exercise 2.71
(a)

Consider a random walk Yn in G. V (G) is a single communicating class, so all the vertices in V (G) are recurrent.
Let x ∈ V (G).

0 = Pa(Yn never returns to a)
≥ Pa(Yn = x for some n and Yn never returns to a after its first visit to x)
= Pa(Yn = x for some n)Px(Yn never visits a)

by the strong Markov property. So

0 = Pa(Yn = x for some n)Px(Yn never visits a).

Since V (G) is a single communicating class, therefore

Pa(Yn = x for some n) > 0.

So Px(Yn never visits a) has to be 0. (Likewise, Px(Yn never visits z) = 0.)
Because Gm ⊂ Gm+1 for all m, therefore, for random walk starting at at x, if Yn visits V (G) \ V (Gm+1) before

hitting a or z, then it has to visit V (G) \ V (Gm) before hitting a or z. Therefore,

Px(Yn visits V (G) \ V (Gm) before hitting a or z) ↓ Px

( ⋂
k≥1

{Yn visits V (G) \ V (Gk) before hitting a or z}
)

(2)

as m→∞. If Yn starting at x ever visits a or z, then it has only visited finitely many vertices before hitting {a, z}.
Since (Gm)m≥1 exhaust G, there must be an m large enough such that Gm contains all the states visited by Yn
until it hits {a, z}, i.e. Yn does not exit Gm before hitting {a, z}. Therefore,⋂

k≥1

{Yn starting at x visits V (G) \ V (Gk) before hitting a or z}

⊂
{
Yn starting at x never visits {a, z}

}
⊂{Yn starting at x never visits a}

Since we already found out that Px(Yn never visits a) = 0, therefore,

Px

( ⋂
k≥1

{Yn visits V (G) \ V (Gk) before hitting a or z}
)
= 0.

Therefore, by (2), Px(Yn exists Gm before hitting a or z) ↓ 0 as m→∞.
Now fix x ∈ V (G). Let ε > 0. Because we already established that

Px(Yn visits V (G) \ V (Gm) before hitting a or z) ↓ 0

as m→∞, there exists M ∈ N such that for all m ≥M ,

Px(Yn visits V (G) \ V (Gm) before hitting a or z) < ε. (3)

2



Replacing M by a larger natural number if necessary, we may assume that x ∈ V (GM ). Let N ≥ M be such that
GN contains all the edges in G that are incident with the vertices in GM . Let m ≥ N and consider the a random
walk Xk in Gm starting at x. We consider the probability that Xk hits a before it hits z.

P(Xk hits a before it hits z)
=Px(τa < τz and Xk remains in GM until it hits {a, z})︸ ︷︷ ︸

♣

+ Px(τa < τz and Xk visits V (Gm) \ V (GM ) before it hits {a, z})︸ ︷︷ ︸
♠

Because m ≥ N and N is chosen such that GN contains all the edges in G that are incident with the vertices in
GM , the transition probabilities at each vertex y ∈ GM are the same for the random walks Xk and Yk. Thus,

♣ = Px(Yk hits a before z and remains in GM before hitting {a, z})
= Px(Yk hits a before z)− Px(Yk hits a before z and visits V (G) \ V (GM ) before hitting {a, z})︸ ︷︷ ︸

♥

Therefore,
Px(Xk hits a before it hits z) = Px(Yk hits a before z)−♥+♠.

So by the triangle inequality,∣∣Px(Yk hits a before z)− Px(Xk hits a before it hits z)
∣∣ ≤ |♥|+ |♠| = ♥+♠ (4)

as ♥,♠ ≥ 0.

♠ ≤ Px

(
Xk visits V (Gm) \ V (GM ) before it hits {a, z}

})
= Px

(
Yk visits V (G) \ V (GM ) before it hits {a, z}

})
since the transition probabilities at each vertex y ∈ GM are the same for the random walks Xk and Yk. Therefore,
by (3),

♠ < ε.

Likewise,
♥ ≤ Px(Yk visits V (G) \ V (GM ) before hitting {a, z})<ε.

Because ♠,♥ < ε, by (4), ∣∣Px(Yk hits a before z)− Px(Xk hits a before it hits z)
∣∣ < 2ε.

Note that by the uniqueness of harmonic functions,

Px(Xk hits a before it hits z) = vm(x).

Therefore, ∣∣Px(Yk hits a before z)− vm(x)
∣∣ ≤ 2ε.

This is true for any m ≥ N . Since ε and x are arbitrary , therefore we conclude that for any x ∈ V (G),

lim
n→∞

vn(x) = Px(Yk hits a before z).

If we define v(x) to be limn→∞ vn(x), the

v(x) = Px(Yk hits a before z).
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(b)

Let m ≤ n. Observe that im can be extended to a unit flow from a to z in Gn by defining im(e) = 0 for any edge
e in E(Gn) \ E(Gm). (And note that the extension is indeed a unit flow from a to z in Gn.) Therefore, by the
Thompson’s energy principle,

E (im;Gn) ≥ E (in;Gn).

Note that E (im;Gn) = E (im;Gm). Therefore

E (im;Gm) ≥ E (in;Gn).

Therefore,
(
E (in;Gn)

)
n∈N is a decreasing sequence of non-negative numbers. It therefore converges.

Fix ε > 0. There exists N ≥ 0 such that for n > m ≥ N ,

lim
k→∞

E (ik;Gk) + ε > E (im;Gm) ≥ E (in;Gn) ≥ lim
k→∞

E (ik;Gk).

So ∣∣E (im;Gm)− E (in;Gn)
∣∣ < ε.

So ∣∣E (im;Gn)− E (in;Gn)
∣∣ < ε. (5)

in is in the F space on Gn since it is the gradient of the associted voltage function. In Gn, im − in has zero
divergence, since in and (the extension of) im are both unit flows from a to z. Therefore, im − in is in the
orthogonal complement in `2−

(
E(Gn)

)
to the F space on Gn. Therefore, by the Pythagorean theorem (on inner

product spaces),
E (im − in;Gn) + E (in;Gn) = E (im;Gn)

So
E (im − in;Gn) = E (im;Gn)− E (in;Gn) < ε (6)

because of (5). Also note that im and in both can be extended to unit flows from a to z in G by defining im(e) = 0
for e ∈ E(G) \ E(Gm) and likewise for in. Note that

E (im − in;Gn) = E (im − in;G).

Therefore, by (6),
E (im − in;G) < ε.

This is true as long as n > m ≥ N . Since ε is arbitrary, therefore, (the extension to G of) in form a Cauchy
sequence in `2−

(
E(G)

)
, which is complete. So in converges in `2−

(
E(G)

)
. Write this `2 limit as i. For any edge e0

in E(G),
r(e0)

(
in(e0)− i(e0)

)2 ≤ E (in − i;G)→ 0

as n→∞. Since r(e0) > 0, therefore, ∣∣in(e0)− i(e0)∣∣→ 0

as n→∞. So i is also the pointwise limit for in.
Let θ be a finitely supported unit flow in G from a to z. Then there exists M ≥ 0 such that for all m ≥M , θ is

supported on Gm and θ �Gm
is a unit flow from a to z in Gm. Since im and θ �Gm

are both unit flows from a to z
in Gm, their difference θ �Gm −im has zero divergence, and therefore lies in the orthogonal complement to the F
space in `2−

(
V (Gm)

)
. Since im is in the F space on Gm, therefore the inner product of θ �Gm −im and im is zero.

Note that the inner product in `2−
(
V (Gm)

)
of θ �Gm

−im and im equals the inner product in `2−
(
V (G)

)
of θ − im

and im. So
(im, θ − im)r = 0 (7)

for all m ≥M . Here (·, ·)r denotes the inner product on `2−
(
V (G)

)
.

We have deduced that θ �Gm
−im lies in the orthogonal complement to the F space in `2−

(
V (Gm)

)
. Since Gm

is finite, θ �Gm
−im lie in the ♦ space on Gm. Since the ♦ space on Gm is spanned by cycles in Gm, which can

be viewed by extension as cycles in G, therefore the ♦ space on Gm is a subspace of the ♦ space on G. Therefore,
θ − im lies in the ♦ space on G.
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Now that θ − im lies in the ♦ space on G, and im → i in `2−
(
E(G)

)
, and ♦ is a closed subspace of `2−

(
E(G)

)
,

therefore θ − i is in ♦. Since the inner product on an inner product space is continuous, therefore,

(i, θ − i)r = lim
m→∞

(im, θ − im)r = 0

because of (7) .
Because θ − i lies in the ♦ space on G, and because i ∈F ⊂ ♦⊥ and because i+ (θ − i) = θ, therefore

i = P♦⊥(θ).

(c)

In Gn, apply volatage u by imposing u(a) = R(a↔ z) and u(z) = 0. Then ∇u is the resulting current flow from a
to z and

u(a)− u(z) = d∗(∇u)(a)R(a↔ z;Gn).

Since u(a) = R(a↔ z) > 0 and u(0) = 0, therefore

d∗(∇u)(a) = 1.

So ∇u is a unit current flow from a to z. By Thompson’s energy principle, the unit current flow from a to z in Gn

is unique. So
∇u = in

i.e.
du = inr. (8)

Since u and R(a↔ z)vn are both harmonic on V (Gn) \ {a, z} and since they agree on {a, z}, by the uniqueness of
harmonic functions,

R(a↔ z;Gn)vn = u. (9)

since in is a unit current flow from a to z, therefore

E (in;Gn) = R(a↔ z;Gn).

So by (9),
E (in;Gn)vn = u.

So
E (in;Gn)dvn = du = inr (10)

by (8). We already established in (a) and (b) that

lim
n→∞

E (in;Gn) = E (i;G)

and that
lim
n→∞

vn = v

and that
lim
n→∞

in = i

pointwise. Therefore by (10),
E (i;G)dv = ir.

(d)

In (c) we already established
E (in;Gn) = R(a↔ z;Gn).

In (b) we established that
(
E (in;Gn)

)
n∈N is a decreasing sequence of non-negative numbers that converge to E (i;G).

Therefore,
R(a↔ z;Gn)↘ E (i;G)

as n→∞.
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(e)

Fix x ∈ V (G). Let K be a natural number sufficiently large such that for all k ≥ K, x and all the edges in G that
are incident with x are contained in Gk. Note that π(x;Gk) = π(x;G) for all k ≥ K. We showed in (c) that the
voltage E (ik;Gk)vk gives rise to unit curret flow from a to z in Gk. Therefore, for k ≥ K,

Gz(a, x;Gk) = π(x;Gk)E (ik;Gk)vk(x). (11)

Because π(x;Gk) = π(x;G) for all k ≥ K and we have established in (a) and (b) that limk→∞ E (ik;Gk) = E (i;G)
and that limk→∞ vk(x) = v(x) (and that these limits are both finite), therefore, it follows from (11) that

Gz(a, x;Gk)→ π(x;G)E (i;G)v(x) = E (i)π(x)v(x)

as k →∞.
But I am unable to show that limk→∞ Gz(a, x;Gk) equals Gz(a, x;G).

(f)

Exercise 2.104
Since rough isometry is an equivalence relation, it suffices to show that the regular tree of degree 3 is roughly
isometric to the regular tree of degree d for any d > 3. Fix d > 3.

Denote the 3-regular tree by T 3. We color the edges red/blue.

1. Begin with a path in T 3 of length d− 3. Color the edges on this path red. For each vertex on this red path,
color all its incident edges that are currently uncolored blue.

2. The edges that have been colored so far form finite tree. For each leaf in this colored tree, find a path of length
d− 3 starting at that vertex consisting of edges that are currently uncolored. Color the edges on these paths
red. For each vertex on the newly added red paths, color all its incident edges that are currently uncolored
blue.

3. Repeat step 2 iteratively.

The above defines an edge coloring of all of T 3. Now define a new graph K = (V (K), E(K)) where

V (K) = {red paths of length d− 3 in T 3}

and
E(K) = {blue edges in T 3}

and a vertex in K, i.e. a red path in T 3 is incident with an edge in K, i.e. a blue edge in T 3 if and only if the red
path and the blue edge share a vertex in T 3.

We can caculate how many blue edges are incident with a red path: a red path of length d − 3 contains d − 2
vertices. Each vertex is incident with one blue edge, except the two vertices at the ends of the red path are each
incident with 2 blue edges. Thus a red path is incident with d− 2 + 2 = d blue edges. Therefore, K is d-regular.

For any two red paths P1 and P2 in T 3, since T 3 is a tree, there exists a unique path P whose two ends coincide
with P1 and P2. Therefore, there exists a unique path between any two verties in K. So K is a tree.

Therefore, K is the d-regular tree.
Define

φ : V (T 3)→ V (K)

such that φ(v) is the unique red path lenght d− 3 that contains v.
Now we prove that φ is a rough isometry from T 3 to K.
First, note that φ effectively contracts all the red paths, and therefore,

distance
(
φ(u), φ(v)

)
≤ distance(u, v)

for all vertices u and v in T 3.
On the other hand, given any two red paths P1 and P2 of length d− 3 in T 3, pick vertices v1 and v2 in P1 and

P2 respectively such that v1 and v2 are as far apart as possible. Let P be the unique path in T 3 from v1 and v2.
Since v1 and v2 are chosen to be as far apart as possible, P1 and P2 must be the ends of P . P is a concatenation of
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alternating red and blue paths. Each red path is at most of lenth d− 3. If we add an artifical blue edge to one end
of P and obtain a path P ′, then in P ′ is a concatenation of alternating red and blue paths that begin with a red
path and ends with a blue path. Thus we can pair up the maximal blue and red paths in P ′. Within each pair, the
red path is of length no greater than d− 3 and the blue path is of length no smaller than 1. So the ratio between
the number of red edges and the number of blue edges in P ′ is at most d− 3 : 1. So the proportion of blue edges in
P ′ is at least 1/((d− 3) + 1) = 1/(d+ 2). The distance between φ(v1) = P1 and φ(v2) = P2 is the number of blue
edges contained in P , which is one fewer than the number of blue edges in P ′. So

distance
(
φ(v1), φ(v2)

)
+ 1 ≥ 1

d+ 2
length(P ′) ≥ 1

d+ 2
length(P ) =

1

d+ 2
distance(v1, v2)

So
distance

(
φ(v1), φ(v2)

)
≥ 1

d+ 2
distance(v1, v2)− 1. (12)

Since v1 and v2 were chosen in P1 and P2 respectively such that v1 and v2 are as far apart as possible, therefore,
(12) holds for any vertices v1 and v2 in T 3. Therefore we have that for all vertices v1 and v2 in T 3,

1

d+ 2
distance(v1, v2)− 1 ≤ distance

(
φ(v1), φ(v2)

)
≤ distance(v1, v2).

φ is clearly a surjection. Therefore, φ is a rough isometry from T 3 to K. Since K is the d-regular tree, we have
proved that the 3-regular tree is roughly isometric to the d-regular tree for any d > 3 .
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