Homework \#7

October 23, 2018

1 Background/Terminology

Let (X, μ) be a standard probability space. Let $\mathcal{R} \subset X \times X$ be a Borel subset that is also an equivalence relation. Then \mathcal{R} is discrete if its classes are countable. Let μ_{l}, μ_{r} be the measures on \mathcal{R} defined by

$$
\begin{aligned}
& \mu_{l}(E)=\int \#\{y:(x, y) \in E\} d \mu(x) \\
& \mu_{r}(E)=\int \#\{x:(x, y) \in E\} d \mu(y)
\end{aligned}
$$

for $E \subset \mathcal{R}$. Then μ is \mathcal{R}-invariant if $\mu_{l}=\mu_{r}$. Also μ is \mathcal{R}-ergodic if for every measurable set $E \subset X$ that is a union of \mathcal{R}-classes, either $\mu(E)=0$ or $\mu(X \backslash E)=0$.

We will say that (\mathcal{R}, X, μ) is an MER if \mathcal{R} is a discrete Borel equivalence relation on (X, μ) and μ is \mathcal{R}-invariant.

More terminology:

- \mathcal{R} is finite if for a.e. x, the \mathcal{R}-class of x is finite.
- \mathcal{R} is hyperfinite if there exists an increasing sequence $\mathcal{S}_{1} \subset \mathcal{S}_{2} \subset \cdots$ of finite equivalence relations such that $\mathcal{R}=\cup_{i} \mathcal{S}_{i}$ (everything taken mod measure 0 with respect to $\left.\mu_{l}=\mu_{r}\right)$.
- The \mathcal{R}-class of x is denoted $[x]_{\mathcal{R}}$.
- Two MERs $\left(\mathcal{R}_{i}, X_{i}, \mu_{i}\right)(i=1,2)$ are isomorphic if there exists a measure-space isomorphism $\Phi:\left(X_{1}, \mu_{1}\right) \rightarrow\left(X_{2}, \mu_{2}\right)$ such that for a.e. $x \in X_{1}$, the restriction of Φ to $[x]_{\mathcal{R}_{1}}$ is a bijection onto $[\Phi(x)]_{\mathcal{R}_{2}}$.
- A graphing is a measurable subset $\mathcal{G} \subset \mathcal{R}$ such that if $(x, y) \in \mathcal{G}$ then $(y, x) \in \mathcal{G}$ and \mathcal{R} is the smallest equivalence relation containing \mathcal{G}. We think of \mathcal{G} as representing the edges of a graph with vertex set X. In this case, the classes $[x]_{\mathcal{R}}$ are the connected components of \mathcal{G}.

2 Homework problems

1. Show that any two hyperfinite ergodic MERs are isomorphic.
2. Now suppose \mathcal{R} is an ergodic hyperfinite MER. Also suppose \mathcal{G} is a graphing of \mathcal{R} and there is a uniform bound on the degrees of all vertices (so there exists $D>0$ such that for all x there are at most $D y$'s such that $(x, y) \in \mathcal{G})$. Show that for a.e. x, the connected component of x in the graphing \mathcal{G} is an amenable graph.
3. Give an example of a unimodular random graph (G, o) such that (G, o) is non-amenable as a unimodular random graph but almost surely (G, o) is amenable as a graph. Hint: Randomly subdivide the edges of the 3-regular tree to produce the unimodular random graph.
