Homework #7

October 23, 2018

1 Background/Terminology

Let (X, μ) be a standard probability space. Let $\mathcal{R} \subset X \times X$ be a Borel subset that is also an equivalence relation. Then \mathcal{R} is **discrete** if its classes are countable. Let μ_l, μ_r be the measures on \mathcal{R} defined by

$$\mu_l(E) = \int \#\{y : (x, y) \in E\} \ d\mu(x)$$
$$\mu_r(E) = \int \#\{x : (x, y) \in E\} \ d\mu(y)$$

for $E \subset \mathbb{R}$. Then μ is \mathbb{R} -invariant if $\mu_l = \mu_r$. Also μ is \mathbb{R} -ergodic if for every measurable set $E \subset X$ that is a union of \mathbb{R} -classes, either $\mu(E) = 0$ or $\mu(X \setminus E) = 0$.

We will say that (\mathcal{R}, X, μ) is an **MER** if \mathcal{R} is a discrete Borel equivalence relation on (X, μ) and μ is \mathcal{R} -invariant.

More terminology:

- \mathcal{R} is **finite** if for a.e. x, the \mathcal{R} -class of x is finite.
- \mathcal{R} is hyperfinite if there exists an increasing sequence $S_1 \subset S_2 \subset \cdots$ of finite equivalence relations such that $\mathcal{R} = \bigcup_i S_i$ (everything taken mod measure 0 with respect to $\mu_l = \mu_r$).
- The \mathcal{R} -class of x is denoted $[x]_{\mathcal{R}}$.

- Two MERs $(\mathcal{R}_i, X_i, \mu_i)$ (i = 1, 2) are **isomorphic** if there exists a measure-space isomorphism $\Phi : (X_1, \mu_1) \to (X_2, \mu_2)$ such that for a.e. $x \in X_1$, the restriction of Φ to $[x]_{\mathcal{R}_1}$ is a bijection onto $[\Phi(x)]_{\mathcal{R}_2}$.
- A graphing is a measurable subset G ⊂ R such that if (x, y) ∈ G then (y, x) ∈ G and R is the smallest equivalence relation containing G. We think of G as representing the edges of a graph with vertex set X. In this case, the classes [x]_R are the connected components of G.

2 Homework problems

- 1. Show that any two hyperfinite ergodic MERs are isomorphic.
- 2. Now suppose \mathcal{R} is an ergodic hyperfinite MER. Also suppose \mathcal{G} is a graphing of \mathcal{R} and there is a uniform bound on the degrees of all vertices (so there exists D > 0 such that for all x there are at most D y's such that $(x, y) \in \mathcal{G}$). Show that for a.e. x, the connected component of x in the graphing \mathcal{G} is an amenable graph.
- 3. Give an example of a unimodular random graph (G, o) such that (G, o) is non-amenable as a unimodular random graph but almost surely (G, o) is amenable as a graph. Hint: Randomly subdivide the edges of the 3-regular tree to produce the unimodular random graph.