In the problems below indicate your answers by drawing boxes around them. You must clearly show your work to get credit for a problem.

For Problems 1-4, let \(X_1, X_2, X_3 \) be a random sample from a geometric population with unknown parameter \(p \), i.e. the population distribution is given by

\[
f(x) = p(1 - p)^{x-1} \quad \text{for} \quad x \in \{1, 2, 3, \ldots\}
\]

1. Find the likelihood function for \(p \) corresponding to a sample \((x_1, x_2, x_3) \).

\[
L(x_1, x_2, x_3 | p) = f(x_1 | p) \cdot f(x_2 | p) \cdot f(x_3 | p)
\]

\[
= p(1-p)^{x_1-1} \cdot p(1-p)^{x_2-1} \cdot p(1-p)^{x_3-1}
\]

\[
= p^3 (1-p)^{x_1 + x_2 + x_3 - 3}
\]
2. Let X be the sample mean. That is, $X = (X_1 + X_2 + X_3)/3$. State the definition of sufficiency of X for ρ that uses the likelihood function for ρ. Use this to decide if X is sufficient for ρ.

X is sufficient for ρ iff $L(\rho) = g(\bar{X}, \rho)$

i.e., the dependence of $L(\rho)$ on the data can be expressed through \bar{X} alone.

$L(\rho) = \frac{\rho^3}{(1-\rho)^3} \rho^3 \bar{X} = g(\bar{X}, \rho)$
3. In the context above, let \(Y = X_1 + X_2 + X_3 \) be a statistic. Let \((1,1,2)\) be random sample. Find the probability of this sample given that \(Y = 4 \). Simplify as much as possible.

\[
P\left(X_1 = 1 \cap X_2 = 1 \cap X_3 = 2 \mid \Sigma = 4 \right) \\
= \frac{P\left(X_1 = 1 \cap X_2 = 1 \cap X_3 = 2 \mid \Sigma = 4 \right)}{P(\Sigma = 4)} \\
= \frac{P\left(X_1 = 1 \cap X_2 = 1 \cap X_3 = 2 \right)}{P(\Sigma = 4)} \\
= \frac{p(1-p)^7 p(1-p)^7 p(1-p)^2 \sum x_1 x_2 x_3^2}{p(1-p)^{x_1-1} p(1-p)^{x_2-1} p(1-p)^{x_3-1}} \\
= \frac{p^3 (1-p)^7 \sum x_1 x_2 x_3^2}{p^3 (1-p)^{x_1-1} p(1-p)^{x_2-1} p(1-p)^{x_3-1}} \\
= \frac{p (1-p)^7}{\sum x_1 x_2 x_3^2} = \frac{1}{N} \\
\text{Where } N = \# \text{ of } (x_1, x_2, x_3) \text{ s.t. } x_1 + x_2 + x_3 = 4 \\
N = 3 \text{ since } \\
\begin{array}{c|c|c|c}
 x_1 & x_2 & x_3 \\
 \hline
 1 & 1 & 2 \\
 1 & 2 & 1 \\
 2 & 1 & 1 \\
\end{array}
4. Again, let \(Y = X_1 + X_2 + X_3 \). Find the m.g.f. of \(Y \). Use the m.g.f. to compute \(E(Y) \).

The m.g.f. for a geometric population is \(\psi_X(t) = \frac{pe^t}{1-(1-p)e^t} \).

\[
\psi_Y(t) = \psi_{X_1, X_2, X_3}(t) = \psi_{X_1}(t) \cdot \psi_{X_2}(t) \cdot \psi_{X_3}(t) = \left(\frac{pe^t}{1-(1-p)e^t} \right)^3 = \frac{p^3e^{3t}}{(1-(1-p)e^t)^3}
\]

\[
E(Y) = \frac{d}{dt} \psi_Y(t) \bigg|_{t=0} = \frac{3p^3e^{2t}(1-(1-p)e^t)^2 + p^3e^{3t} \cdot 3(1-(1-p)e^t)^2(1-p)e^t}{(1-(1-p)e^t)^6} \bigg|_{t=0}
\]

\[
= \frac{3p^3(1-(1-p))^3 + p^3 \cdot 3(1-(1-p))^2(1-p)}{(1-(1-p))^6}
\]

\[
= \frac{3p^6 + 3p^5(1-p)}{p^6} = \frac{3}{p}
\]
5. Of the students in Luecke High, 40% come from Pebbles Middle School and the rest from Starlight Middle School. A student coming from Pebbles has a probability of .7 of graduating from Luecke High. A student from Starlight has a probability of .5 of graduating. You are talking to a Luecke High graduate. What is the probability that she went to Pebbles Middle School?

\[P = \text{Pebbles M.S.} \]
\[S = \text{Starlight M.S.} \]
\[L = \text{graduating Luecke High} \]

\[
P(p|L) = \frac{P(p \cap L)}{P(L)} = \frac{P(L|p) \cdot P(p)}{P(L|p) \cdot P(p) + P(L|s) \cdot P(s)}
\]

\[
= \frac{.7 \cdot .4}{.7 \cdot .4 + .5 \cdot .6}
\]

\[
= \frac{.28}{.58}
\]

\[
= \frac{.483}{.58}
\]
6. I think it takes 25 minutes on average to jog from my house to Barton Creek and back. My dog feels like it takes much less time. I record 9 jogging times and find the average of these jogs to be 21 minutes with a variance of 16 minutes2. To settle our disagreement, my dog poses to you the following question. Assume that my running times are normally distributed with mean 25 and variance 16. What is the probability that a random sample of 9 jogs would be as above; that is, that their average would be at most 21 minutes?

\[
\bar{X} = \frac{1}{9} (X_1 + \ldots + X_9)
\]

\[
\bar{X} \sim N(25, 16)
\]

\[
\bar{X} = \frac{1}{9} (X_1 + \ldots + X_9)
\]

\[
\sim N(25, \frac{16}{9})
\]

\[
P(\bar{X} \leq 21) = P\left(\frac{\bar{X} - 25}{\frac{4}{\sqrt{3}}} \leq \frac{21 - 25}{\frac{4}{\sqrt{3}}} \right)
\]

\[
= P(Z \leq -3)
\]

\[
= 0.0013
\]