A quantitative version of the isoperimetric inequality

Francesco Maggi \& Aldo Pratelli

(joint work with Nicola Fusco)
The isoperimetric inequality states that, given a Borel set E of $\mathbb{R}^{n}, n \geq 2$, with finite Lebesgue measure $|E|$, its (distributional) perimeter $P(E)$ is greater or equal than the perimeter of a ball having the same volume as E. That is, if ω_{n} is the measure of the unit ball B of \mathbb{R}^{n}, we have

$$
\begin{equation*}
P(E) \geq n \omega_{n}^{1 / n}|E|^{(n-1) / n} \tag{1}
\end{equation*}
$$

with equality if and only if $E=x+r_{E} B$ for some $x \in \mathbb{R}^{n}$ and $r_{E}:=\left(|E| / \omega_{n}\right)^{1 / n}$.
In a quantitative version of inequality (1) the isoperimetric deficit $D(E)$,

$$
D(E):=\frac{P(E)}{n \omega_{n}^{1 / n}|E|^{(n-1) / n}}-1, \quad|E|>0,
$$

controls the distance of E from the set of balls $\left\{x+r_{E} B: x \in \mathbb{R}^{n}\right\}$. If we restrict our attention to the class of convex sets E it is natural to work with the Hausdorff distance, and the corresponding quantitative inequalities have been studied in depth, among others, by Bernstein [1], Bonnesen [2] (when $n=2$) and Fuglede [4] (for $n \geq 2$). In the general case, instead, it is natural to adopt the Vitali distance $d(E, F):=|E \Delta F|$, defined as the Lebesgue measure of the symmetric difference between E and F, and introduce the notion of asymmetry of E as

$$
A(E):=\inf \left\{\frac{d\left(E, x+r_{E} B\right)}{|E|}: x \in \mathbb{R}^{n}\right\}
$$

In this setting, a quantitative isoperimetric inequality was shown by Hall, Hayman and Weitsman [8] and Hall [7]. They prove that

$$
\begin{equation*}
A(E) \leq C(n) D(E)^{1 / 4}, \quad \text { i.e. } P(E) \geq n \omega_{n}^{1 / n}|E|^{(n-1) / n}\left\{1+\left(\frac{A(E)}{C(n)}\right)^{4}\right\} \tag{2}
\end{equation*}
$$

(here and in the following, $C(n)$ is a constant depending only on the dimension n and possibly changing its value from line to line). A stronger result, in terms of decay rate of A with respect to D, is in fact contained in Hall's paper [7], where it is shown that

$$
\begin{equation*}
A(E) \leq C(n) D(E)^{1 / 2}, \quad \text { whenever } E \text { is axially symmetric. } \tag{3}
\end{equation*}
$$

The decay rate here is sharp, as one can check considering the ellipses $E(r):=$ $\left\{x \in \mathbb{R}^{n}:\left(r x_{1}\right)^{2}+\sum_{i=2}^{n} x_{i}^{2}=1\right\}$ in the limit $r \rightarrow 1$. Hall conjectures the validity of (3) on arbitrary sets, i.e. that

$$
\begin{equation*}
A(E) \leq C(n) D(E)^{1 / 2}, \quad \text { for every Borel set } E . \tag{4}
\end{equation*}
$$

In [5] we prove (4), in the way explained below.
Without loss of generality it is assumed that $|E|=\omega_{n}$. Furthermore, as $A(E) \leq$ 2, up to taking $C(n) \geq 2 / \sqrt{\delta(n)}$, one can assume that $D(E) \leq \delta(n)$ for some fixed $\delta(n)$. One can prove that $A(E) \rightarrow 0$ when $D(E) \rightarrow 0$, and this implies that E is
somehow close to a ball, in a soft qualitative way, provided we choose $\delta(n)$ small enough. We try to replace E with a "more symmetric" set E^{\prime}, in such a way that the validity of (4) on E can be deduced from the validity of (4) on E^{\prime}. This amounts in proving that

$$
\begin{equation*}
A(E) \leq C(n) A\left(E^{\prime}\right), \quad D\left(E^{\prime}\right) \leq C(n) D(E) . \tag{5}
\end{equation*}
$$

If the set E^{\prime} is obtained from E by a symmetrization procedure, one usually gets the second inequality for free (possibly with constant 1, if the given symmetrization decreases the perimeter and leaves the Lebesgue measure unchanged); however, on symmetrizing, we expect to lower the asymmetry too, so that the two inequalities are somehow in competition.

This kind of approach is adopted in [8]. They prove that, given E, a direction ν can be found so that E^{*}, the Schwarz symmetrization of E with respect to ν, satisfies

$$
\begin{equation*}
A(E) \leq C(n) A\left(E^{*}\right)^{1 / 2} \tag{6}
\end{equation*}
$$

Recall that E^{*} is the set which intersection E_{t}^{*} with $\{x \cdot \nu=t\}$ is a $(n-1)$ dimensional ball centered at $t \nu$ and \mathcal{H}^{n-1}-measure equal to $\mathcal{H}^{n-1}\left(E_{t}\right)$, where $E_{t}:=$ $E \cap\{x \cdot \nu=t\}$. The set E^{*} is axially symmetric and satisfies $P\left(E^{*}\right) \leq P(E)$ (thus $\left.D\left(E^{*}\right) \leq D(E)\right)$. The existence of ν such that (6) holds is clearly a non trivial fact, as one can easily produce a set E such that $A(E)>0$ but $E^{*}=B$ with respect to a given ν.

By applying (3) to E^{*} one finds $A\left(E^{*}\right) \leq C(n) D\left(E^{*}\right)^{1 / 2} \leq C(n) D(E)^{1 / 2}$, so deriving (2) from (6). However, being the exponent $1 / 2$ in (6) optimal, Hall's conjecture cannot be proved this way.

The key notion of our approach is that of n-symmetric set. We say that a set E is n-symmetric if it is invariant by reflection with respect to the n coordinate hyperplanes. The crucial consequence of this definition is that the minimization problem defining $A(E)$ can be somehow trivialized. Indeed, if E is n-symmetric then a simple symmetry argument shows that

$$
\begin{equation*}
A(E)=\inf _{x \in \mathbb{R}^{n}} \frac{d(E, x+B)}{\omega_{n}} \leq \frac{d(E, B)}{\omega_{n}} \leq 3 A(E) \tag{7}
\end{equation*}
$$

This property allows to prove (4) by induction on the class of n-symmetric sets. Indeed if E is n-symmetric and E^{*} is its Schwarz symmetrization with respect to, say, the x_{1}-axis, then

$$
\omega_{n} A(E) \leq d(E, B) \leq d\left(E, E^{*}\right)+d\left(E^{*}, B\right)
$$

Since E is n-symmetric, E^{*} is n-symmetric too. Therefore by applying (7) and (3) to E^{*} we find

$$
d\left(E^{*}, B\right) \leq 3 \omega_{n} A\left(E^{*}\right) \leq C(n) D\left(E^{*}\right)^{1 / 2} \leq C(n) D(E)^{1 / 2} .
$$

On the other hand, $E_{t}=E \cap\left\{x_{1}=t\right\}$ is a $(n-1)$-symmetric set in $\left\{x_{1}=t\right\}$, while E_{t}^{*} is an $(n-1)$-dimensional ball centered at the center of symmetry of E_{t},
and with the same \mathcal{H}^{n-1}-measure. Thus, again by (7),

$$
d\left(E, E^{*}\right)=\int_{\mathbb{R}} \mathcal{H}^{n-1}\left(E_{t} \Delta E_{t}^{*}\right) d t \leq 3 \int_{\mathbb{R}} \mathcal{H}^{n-1}\left(E_{t}\right) A_{\mathbb{R}^{n-1}}\left(E_{t}\right) d t
$$

where $A_{\mathbb{R}^{n-1}}$ denotes the asymmetry in $\left\{x_{1}=t\right\}$. If $D_{\mathbb{R}^{n-1}}$ is the corresponding notion of isoperimetric deficit, by induction one finds

$$
\begin{equation*}
\int_{\mathbb{R}} \mathcal{H}^{n-1}\left(E_{t}\right) A_{\mathbb{R}^{n-1}}\left(E_{t}\right) d t \leq C(n) \int_{\mathbb{R}} \mathcal{H}^{n-1}\left(E_{t}\right) \sqrt{D_{\mathbb{R}^{n-1}}\left(E_{t}\right)} d t \tag{8}
\end{equation*}
$$

In turn this last quantity is controlled by $D(E)^{1 / 2}$. This can be heuristically justified by recalling that, if we define $v(t)=\mathcal{H}^{n-1}\left(E_{t}\right), p(t)=\mathcal{H}^{n-2}\left(\partial E_{t}\right)$ and

$$
q(t)=\mathcal{H}^{n-2}\left(\partial E_{t}^{*}\right)=(n-1) \omega_{n-1}^{1 /(n-1)} v(t)^{(n-2) /(n-1)}
$$

then, by the Coarea Formula,

$$
P(E) \geq \int_{\mathbb{R}} \sqrt{v^{\prime}(t)^{2}+p(t)^{2}} d t, \quad P\left(E^{*}\right)=\int_{\mathbb{R}} \sqrt{v^{\prime}(t)^{2}+q(t)^{2}} d t
$$

As $P\left(E^{*}\right) \geq P(B)$ by the isoperimetric inequality, we have

$$
\begin{align*}
P(B) D(E) & =P(E)-P(B) \geq P(E)-P\left(E^{*}\right) \\
& \geq \int_{\mathbb{R}} \sqrt{\left(v^{\prime}\right)^{2}+q^{2}\left(1+D_{\mathbb{R}^{n-1}}\left(E_{t}\right)\right)^{2}}-\sqrt{\left(v^{\prime}\right)^{2}+q^{2}} d t \tag{9}\\
& \gtrsim \int_{\mathbb{R}} q(t)^{2} D_{\mathbb{R}^{n-1}}\left(E_{t}\right) d t,
\end{align*}
$$

so that, loosely speaking, one passes from the last term in (9) to the one in (8) by Hölder inequality. To make these arguments completely rigorous a crucial role is played by the aforementioned assumption $D(E) \leq \delta(n)$, but this is too technical to be further discussed in here.

Summarizing, n-symmetric sets have some special properties that allow to deduce from (3) that

$$
\begin{equation*}
A(E) \leq C(n) D(E)^{1 / 2} \quad \text { if } E \text { is } n \text {-symmetric. } \tag{10}
\end{equation*}
$$

In turn we can deduce (4) from (10) once we show that, given a set E, then a n-symmetric set E^{\prime} can be found so that (5) holds true. We now pass to discuss this last step. We start by considering a simpler task, i.e. we just ask E^{\prime} to be symmetric with respect to one hyperplane, say $\left\{x_{1}=0\right\}$. Up to translating E in the x_{1}-direction we achieve $\left|E \cap\left\{x_{1}>0\right\}\right|=\left|E \cap\left\{x_{1}<0\right\}\right|$. If we denote by E_{1}^{+}the set obtained by reflecting $E \cap\left\{x_{1}>0\right\}$ w.r.t. $\left\{x_{1}=0\right\}$, and similarly define E_{1}^{-}, then $E_{1}^{ \pm}$are both symmetric with respect to $\left\{x_{1}=0\right\}$, have the same measure as E and satisfy $P\left(E_{1}^{+}\right)+P\left(E_{1}^{-}\right) \leq 2 P(E)$. Therefore $D\left(E_{1}^{ \pm}\right) \leq 2 D(E)$, and the second inequality in (5) is certainly achieved. On the other hand it could be as well that $A(E)>0$ but $A\left(E_{1}^{ \pm}\right)=0$, if for example

$$
\begin{equation*}
E=\left[B \cap\left\{x_{1}>0\right\}\right] \cup\left[\left(B+e_{2}\right) \cap\left\{x_{1}<0\right\}\right] . \tag{11}
\end{equation*}
$$

Note that this set E exhibit the bad behavior with respect to symmetrization by reflection only in the x_{1}-direction. Luckily enough, this is a general fact, and one
can prove that given two coordinate directions, say x_{1} and x_{2}, and considered the four sets $E_{1}^{ \pm}, E_{2}^{ \pm}$, then there exists at least one set E^{\prime} among them such that $A(E) \leq C(n) A\left(E^{\prime}\right)$. Being certainly $D\left(E^{\prime}\right) \leq 2 D(E)$, we have found E^{\prime} satisfying (5), and having an hyperplane of symmetry.

This procedure can be applied ($n-1$)-times so to find (up to a possible final rotation) a set E^{\prime} symmetric with respect to the first ($n-1$) coordinate hyperplanes and such that (5) holds. At this stage we are forced to symmetrize E^{\prime} with respect to the x_{n}-direction, and clearly the above selection argument cannot be repeated further without possibly stepping into a loop. However, it comes out that one among $\left(E^{\prime}\right)_{n}^{+}$and $\left(E^{\prime}\right)_{n}^{-}$(defined in the obvious way after translating E^{\prime} so that $\left.\left|E^{\prime} \cap\left\{x_{n}>0\right\}\right|=\left|E^{\prime} \cap\left\{x_{n}>0\right\}\right|\right)$ shall satisfy (5). This is basically due to the fact that being E^{\prime} already symmetric with respect to x_{1}, \ldots, x_{n-1}, it is then impossible to meet in the x_{n}-direction the situation exemplified by (11).

Apart from being useful in proving inequality (4), these kind of arguments, and especially the notion of n-symmetry, can be effectively used in the study of quantitative versions of the Sobolev inequalities

$$
S(n, p)\left(\int_{\mathbb{R}^{n}}|f|^{n p /(n-p)}\right)^{(n-p) / n p} \leq\left(\int_{\mathbb{R}^{n}}|\nabla f|^{p}\right)^{1 / p}
$$

for $1 \leq p<n$. The cases $p=1$ and $1<p<n$ are of course quite different, and are considered, respectively, in [6] and [3].

References

[1] F.Bernstein, Über die isoperimetrische Eigenschaft des Kreises auf der Kugeloberfläche und in der Ebene, Math. Ann, 60 (1905), 117-136.
[2] T.Bonnesen, Über die isoperimetrische Defizit ebener Figuren, Math. Ann., 91 (1924), 252268.
[3] A.Cianchi, N.Fusco, F.Maggi \& A.Pratelli, A quantitative form of the sharp Sobolev inequality, in preparation.
[4] B.Fuglede, Stability in the isoperimetric problem for convex or nearly spherical domains in \mathbb{R}^{n}, Trans. Amer. Math. Soc., 314 (1989), 619-638.
[5] N.Fusco, F.Maggi \& A.Pratelli, The quantitative sharp isoperimetric inequality, submitted paper.
[6] N.Fusco, F.Maggi \& A.Pratelli, The sharp quantitative Sobolev inequality for functions of bounded variation, submitted paper.
[7] R.R.Hall, A quantitative isoperimetric inequality in n-dimensional space, J. Reine Angew. Math., 428 (1992), 161-176.
[8] R.R.Hall, W.K.Hayman \& A.W.Weitsman, On asymmetry and capacity, J. d'Analyse Math., 56 (1991), 87-123.

