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The isoperimetric inequality states that, given a Borel set E of R™, n > 2, with
finite Lebesgue measure |E|, its (distributional) perimeter P(F) is greater or equal
than the perimeter of a ball having the same volume as F. That is, if w, is the
measure of the unit ball B of R™, we have
(1) P(E) > nwl/®|E|(n=D/n
with equality if and only if E = 2 4+ rgB for some z € R” and 75 := (|E|/wy,)"/™.
In a quantitative version of inequality (1) the isoperimetric deficit D(F),
P(E)

D(F) :=
(E) nwrl/n|E\("_1)/"

-1, |E|>0,

controls the distance of E from the set of balls {x + rgB : x € R™}. If we restrict
our attention to the class of convex sets F it is natural to work with the Hausdorff
distance, and the corresponding quantitative inequalities have been studied in
depth, among others, by Bernstein [1], Bonnesen [2] (when n = 2) and Fuglede [4]
(for n > 2). In the general case, instead, it is natural to adopt the Vitali distance
d(E,F) := |EAF|, defined as the Lebesgue measure of the symmetric difference
between E and F', and introduce the notion of asymmetry of E as

d(E B
A(E) ::inf{ (E.z+rpB) ::L“ER”} :
|E]
In this setting, a quantitative isoperimetric inequality was shown by Hall, Hayman
and Weitsman [8] and Hall [7]. They prove that

AE)\*
(2) A(E) <C(n)D(E)Y*, ie. P(E)>nwl/"E|mY/n {1+ (C<( ;) } :
n
(here and in the following, C'(n) is a constant depending only on the dimension n
and possibly changing its value from line to line). A stronger result, in terms of
decay rate of A with respect to D, is in fact contained in Hall’s paper [7], where
it is shown that

(3) A(E) < C(n)D(E)Y?, whenever E is axially symmetric.
The decay rate here is sharp, as one can check considering the ellipses F(r) :=

{x € R™: (razq1)? + > 1, o7 = 1} in the limit » — 1. Hall conjectures the validity
of (3) on arbitrary sets, i.e. that

(4) A(E) < C(n)D(E)'/?, for every Borel set E.

In [5] we prove (4), in the way explained below.

Without loss of generality it is assumed that |E| = w,,. Furthermore, as A(E) <
2, up to taking C'(n) > 2/4/6(n), one can assume that D(E) < §(n) for some fixed
d(n). One can prove that A(E) — 0 when D(E) — 0, and this implies that E is
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somehow close to a ball, in a soft qualitative way, provided we choose d(n) small
enough. We try to replace E with a “more symmetric” set E’, in such a way
that the validity of (4) on E can be deduced from the validity of (4) on E’. This
amounts in proving that

(5) A(E) < C(n)A(E'), D(E') < C(n)D(E).

If the set E’ is obtained from E by a symmetrization procedure, one usually gets
the second inequality for free (possibly with constant 1, if the given symmetrization
decreases the perimeter and leaves the Lebesgue measure unchanged); however, on
symmetrizing, we expect to lower the asymmetry too, so that the two inequalities
are somehow in competition.

This kind of approach is adopted in [8]. They prove that, given F, a direction
v can be found so that E*, the Schwarz symmetrization of F with respect to v,
satisfies

(6) A(E) < C(n)A(E*)Y/2.

Recall that E* is the set which intersection E; with {z -v = t} is a (n — 1)-
dimensional ball centered at tv and H"~!-measure equal to H" ' (E};), where E; :=
En{z-v =t}. The set E* is axially symmetric and satisfies P(E*) < P(FE) (thus
D(E*) < D(E)). The existence of v such that (6) holds is clearly a non trivial
fact, as one can easily produce a set F such that A(F) > 0 but E* = B with
respect to a given v.

By applying (3) to E* one finds A(E*) < C(n)D(E*)Y/? < C(n)D(E)Y/?, so
deriving (2) from (6). However, being the exponent 1/2 in (6) optimal, Hall’s
conjecture cannot be proved this way.

The key notion of our approach is that of n-symmetric set. We say that a set
FE is n-symmetric if it is invariant by reflection with respect to the n coordinate
hyperplanes. The crucial consequence of this definition is that the minimization
problem defining A(E) can be somehow trivialized. Indeed, if E is n-symmetric
then a simple symmetry argument shows that

d(B,x+B) _ d(E,B)

(7) A(E) = inf

zER™ Wn Wn

< 3A(E).

This property allows to prove (4) by induction on the class of n-symmetric sets.
Indeed if E is n-symmetric and E* is its Schwarz symmetrization with respect to,
say, the xi-axis, then

wn A(E) < d(E, B) < d(E, E*) + d(E*, B) .

Since E is n-symmetric, E* is n-symmetric too. Therefore by applying (7) and
(3) to E* we find

d(E*, B) < 3w, A(E*) < C(n)D(E*)Y? < C(n)D(E)Y2.

On the other hand, E; = EN{x; = t} is a (n — 1)-symmetric set in {x; = t},
while E} is an (n — 1)-dimensional ball centered at the center of symmetry of Ej,
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and with the same H"~!-measure. Thus, again by (7),
d(E, E*) :/H”_l(EtAEt*)dt §3/H”_1(Et)ARn_1(Et)dt,
R R

where Agn.-1 denotes the asymmetry in {x; = t}. If Dgn-1 is the corresponding
notion of isoperimetric deficit, by induction one finds

(8) /RHnl(Et)ARn_l(Et)dt < C(n)/RH"1(Et)\/DRn_1(Et)dt.

In turn this last quantity is controlled by D(E)l/ 2. This can be heuristically

justified by recalling that, if we define v(t) = H"~1(E,), p(t) = H"?(JE;) and
a(t) = H'2OE;) = (n = w5 o)/
then, by the Coarea Formula,

> / OO T p2dt,  P(EY) = / NCIOEET O3

As P(E*) > P(B) by the 1soper1metrlc inequality, we have
P(B)D(E) = P(E) — P(B) = P(E) — P(E")

(9) /\/ 2(1+ Dgn1(Ey))? — (V)2 + ¢2 dt
2 [ 0D (B,
R

so that, loosely speaking, one passes from the last term in (9) to the one in (8) by
Holder inequality. To make these arguments completely rigorous a crucial role is
played by the aforementioned assumption D(E) < é(n), but this is too technical
to be further discussed in here.

Summarizing, n-symmetric sets have some special properties that allow to de-
duce from (3) that

(10) A(E) < C(n)D(E)'/? if E is n-symmetric.

In turn we can deduce (4) from (10) once we show that, given a set F, then a
n-symmetric set £’ can be found so that (5) holds true. We now pass to discuss
this last step. We start by considering a simpler task, i.e. we just ask E’ to be
symmetric with respect to one hyperplane, say {x1 = 0}. Up to translating E in
the zq-direction we achieve |E N {x; > 0}| = |E N {z1 < 0}|. If we denote by
E; the set obtained by reflecting E N {z; > 0} w.rt. {z; = 0}, and similarly
define E; , then Eli are both symmetric with respect to {1 = 0}, have the same
measure as F and satisfy P(E") 4+ P(E]) < 2P(E). Therefore D(EY) < 2D(E),
and the second inequality in (5) is certainly achieved. On the other hand it could
be as well that A(E) > 0 but A(ET) = 0, if for example

(11) E=[Bn{z; >0} U[(B+e)Nn{z <0}].

Note that this set E exhibit the bad behavior with respect to symmetrization by
reflection only in the xi-direction. Luckily enough, this is a general fact, and one
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can prove that given two coordinate directions, say x1 and x2, and considered
the four sets 5, Ef, then there exists at least one set £/ among them such that
A(E) < C(n)A(E'). Being certainly D(E’) < 2D(FE), we have found E’ satisfying
(5), and having an hyperplane of symmetry.

This procedure can be applied (n — 1)-times so to find (up to a possible final
rotation) a set E' symmetric with respect to the first (n—1) coordinate hyperplanes
and such that (5) holds. At this stage we are forced to symmetrize E’ with respect
to the xz,-direction, and clearly the above selection argument cannot be repeated
further without possibly stepping into a loop. However, it comes out that one

among (E')} and (E');, (defined in the obvious way after translating E’ so that
|E' N {z, > 0} = |E' N {x,, > 0}|) shall satisfy (5). This is basically due to

the fact that being E’ already symmetric with respect to x1,...,x,_1, it is then
impossible to meet in the x,-direction the situation exemplified by (11).

Apart from being useful in proving inequality (4), these kind of arguments,
and especially the notion of n-symmetry, can be effectively used in the study of
quantitative versions of the Sobolev inequalities

(n—p)/np 1/p
st ([ 1eme) T < ([ war)

for 1 < p <n. The cases p =1 and 1 < p < n are of course quite different, and
are considered, respectively, in [6] and [3].
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