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The isoperimetric inequality states that, given a Borel set E of Rn, n ≥ 2, with
finite Lebesgue measure |E|, its (distributional) perimeter P (E) is greater or equal
than the perimeter of a ball having the same volume as E. That is, if ωn is the
measure of the unit ball B of Rn, we have

(1) P (E) ≥ nω1/n
n |E|(n−1)/n ,

with equality if and only if E = x + rEB for some x ∈ Rn and rE := (|E|/ωn)1/n.
In a quantitative version of inequality (1) the isoperimetric deficit D(E),

D(E) :=
P (E)

nω1/n
n |E|(n−1)/n

− 1 , |E| > 0 ,

controls the distance of E from the set of balls {x + rEB : x ∈ Rn}. If we restrict
our attention to the class of convex sets E it is natural to work with the Hausdorff
distance, and the corresponding quantitative inequalities have been studied in
depth, among others, by Bernstein [1], Bonnesen [2] (when n = 2) and Fuglede [4]
(for n ≥ 2). In the general case, instead, it is natural to adopt the Vitali distance
d(E, F ) := |E∆F |, defined as the Lebesgue measure of the symmetric difference
between E and F , and introduce the notion of asymmetry of E as

A(E) := inf

{

d(E, x + rEB)

|E|
: x ∈ R

n

}

.

In this setting, a quantitative isoperimetric inequality was shown by Hall, Hayman
and Weitsman [8] and Hall [7]. They prove that

(2) A(E) ≤ C(n)D(E)1/4 , i.e. P (E) ≥ nω1/n
n |E|(n−1)/n

{

1 +

(

A(E)

C(n)

)4
}

,

(here and in the following, C(n) is a constant depending only on the dimension n
and possibly changing its value from line to line). A stronger result, in terms of
decay rate of A with respect to D, is in fact contained in Hall’s paper [7], where
it is shown that

(3) A(E) ≤ C(n)D(E)1/2 , whenever E is axially symmetric.

The decay rate here is sharp, as one can check considering the ellipses E(r) :=
{x ∈ Rn : (rx1)2 +

∑n
i=2 x2

i = 1} in the limit r → 1. Hall conjectures the validity
of (3) on arbitrary sets, i.e. that

(4) A(E) ≤ C(n)D(E)1/2 , for every Borel set E.

In [5] we prove (4), in the way explained below.
Without loss of generality it is assumed that |E| = ωn. Furthermore, as A(E) ≤

2, up to taking C(n) ≥ 2/
√

δ(n), one can assume that D(E) ≤ δ(n) for some fixed
δ(n). One can prove that A(E) → 0 when D(E) → 0, and this implies that E is
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somehow close to a ball, in a soft qualitative way, provided we choose δ(n) small
enough. We try to replace E with a “more symmetric” set E′, in such a way
that the validity of (4) on E can be deduced from the validity of (4) on E′. This
amounts in proving that

A(E) ≤ C(n)A(E′) , D(E′) ≤ C(n)D(E) .(5)

If the set E′ is obtained from E by a symmetrization procedure, one usually gets
the second inequality for free (possibly with constant 1, if the given symmetrization
decreases the perimeter and leaves the Lebesgue measure unchanged); however, on
symmetrizing, we expect to lower the asymmetry too, so that the two inequalities
are somehow in competition.

This kind of approach is adopted in [8]. They prove that, given E, a direction
ν can be found so that E∗, the Schwarz symmetrization of E with respect to ν,
satisfies

(6) A(E) ≤ C(n)A(E∗)1/2 .

Recall that E∗ is the set which intersection E∗
t with {x · ν = t} is a (n − 1)-

dimensional ball centered at tν and Hn−1-measure equal to Hn−1(Et), where Et :=
E ∩{x ·ν = t}. The set E∗ is axially symmetric and satisfies P (E∗) ≤ P (E) (thus
D(E∗) ≤ D(E)). The existence of ν such that (6) holds is clearly a non trivial
fact, as one can easily produce a set E such that A(E) > 0 but E∗ = B with
respect to a given ν.

By applying (3) to E∗ one finds A(E∗) ≤ C(n)D(E∗)1/2 ≤ C(n)D(E)1/2, so
deriving (2) from (6). However, being the exponent 1/2 in (6) optimal, Hall’s
conjecture cannot be proved this way.

The key notion of our approach is that of n-symmetric set. We say that a set
E is n-symmetric if it is invariant by reflection with respect to the n coordinate
hyperplanes. The crucial consequence of this definition is that the minimization
problem defining A(E) can be somehow trivialized. Indeed, if E is n-symmetric
then a simple symmetry argument shows that

(7) A(E) = inf
x∈Rn

d(E, x + B)

ωn
≤

d(E, B)

ωn
≤ 3A(E) .

This property allows to prove (4) by induction on the class of n-symmetric sets.
Indeed if E is n-symmetric and E∗ is its Schwarz symmetrization with respect to,
say, the x1-axis, then

ωnA(E) ≤ d(E, B) ≤ d(E, E∗) + d(E∗, B) .

Since E is n-symmetric, E∗ is n-symmetric too. Therefore by applying (7) and
(3) to E∗ we find

d(E∗, B) ≤ 3ωnA(E∗) ≤ C(n)D(E∗)1/2 ≤ C(n)D(E)1/2 .

On the other hand, Et = E ∩ {x1 = t} is a (n − 1)-symmetric set in {x1 = t},
while E∗

t is an (n− 1)-dimensional ball centered at the center of symmetry of Et,
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and with the same Hn−1-measure. Thus, again by (7),

d(E, E∗) =

∫

R

Hn−1(Et∆E∗
t )dt ≤ 3

∫

R

Hn−1(Et)ARn−1(Et)dt ,

where ARn−1 denotes the asymmetry in {x1 = t}. If DRn−1 is the corresponding
notion of isoperimetric deficit, by induction one finds

(8)

∫

R

Hn−1(Et)ARn−1(Et)dt ≤ C(n)

∫

R

Hn−1(Et)
√

DRn−1(Et)dt .

In turn this last quantity is controlled by D(E)1/2. This can be heuristically
justified by recalling that, if we define v(t) = Hn−1(Et), p(t) = Hn−2(∂Et) and

q(t) = Hn−2(∂E∗
t ) = (n − 1)ω1/(n−1)

n−1 v(t)(n−2)/(n−1) ,

then, by the Coarea Formula,

P (E) ≥
∫

R

√

v′(t)2 + p(t)2dt , P (E∗) =

∫

R

√

v′(t)2 + q(t)2dt .

As P (E∗) ≥ P (B) by the isoperimetric inequality, we have

P (B)D(E) = P (E) − P (B) ≥ P (E) − P (E∗)

≥
∫

R

√

(v′)2 + q2(1 + DRn−1(Et))2 −
√

(v′)2 + q2 dt

!
∫

R

q(t)2DRn−1(Et)dt ,

(9)

so that, loosely speaking, one passes from the last term in (9) to the one in (8) by
Hölder inequality. To make these arguments completely rigorous a crucial role is
played by the aforementioned assumption D(E) ≤ δ(n), but this is too technical
to be further discussed in here.

Summarizing, n-symmetric sets have some special properties that allow to de-
duce from (3) that

(10) A(E) ≤ C(n)D(E)1/2 if E is n-symmetric.

In turn we can deduce (4) from (10) once we show that, given a set E, then a
n-symmetric set E′ can be found so that (5) holds true. We now pass to discuss
this last step. We start by considering a simpler task, i.e. we just ask E′ to be
symmetric with respect to one hyperplane, say {x1 = 0}. Up to translating E in
the x1-direction we achieve |E ∩ {x1 > 0}| = |E ∩ {x1 < 0}|. If we denote by
E+

1 the set obtained by reflecting E ∩ {x1 > 0} w.r.t. {x1 = 0}, and similarly
define E−

1 , then E±
1 are both symmetric with respect to {x1 = 0}, have the same

measure as E and satisfy P (E+
1 ) + P (E−

1 ) ≤ 2P (E). Therefore D(E±
1 ) ≤ 2D(E),

and the second inequality in (5) is certainly achieved. On the other hand it could
be as well that A(E) > 0 but A(E±

1 ) = 0, if for example

(11) E =
[

B ∩ {x1 > 0}
]

∪
[

(B + e2) ∩ {x1 < 0}
]

.

Note that this set E exhibit the bad behavior with respect to symmetrization by
reflection only in the x1-direction. Luckily enough, this is a general fact, and one
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can prove that given two coordinate directions, say x1 and x2, and considered
the four sets E±

1 , E±
2 , then there exists at least one set E′ among them such that

A(E) ≤ C(n)A(E′). Being certainly D(E′) ≤ 2D(E), we have found E′ satisfying
(5), and having an hyperplane of symmetry.

This procedure can be applied (n − 1)-times so to find (up to a possible final
rotation) a set E′ symmetric with respect to the first (n−1) coordinate hyperplanes
and such that (5) holds. At this stage we are forced to symmetrize E′ with respect
to the xn-direction, and clearly the above selection argument cannot be repeated
further without possibly stepping into a loop. However, it comes out that one
among (E′)+n and (E′)−n (defined in the obvious way after translating E′ so that
|E′ ∩ {xn > 0}| = |E′ ∩ {xn > 0}|) shall satisfy (5). This is basically due to
the fact that being E′ already symmetric with respect to x1, . . . , xn−1, it is then
impossible to meet in the xn-direction the situation exemplified by (11).

Apart from being useful in proving inequality (4), these kind of arguments,
and especially the notion of n-symmetry, can be effectively used in the study of
quantitative versions of the Sobolev inequalities

S(n, p)

(
∫

Rn

|f |np/(n−p)

)(n−p)/np

≤
(
∫

Rn

|∇f |p
)1/p

,

for 1 ≤ p < n. The cases p = 1 and 1 < p < n are of course quite different, and
are considered, respectively, in [6] and [3].

References
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