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The isoperimetric inequality in the Gauss space
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The Gauss measure is a probability measure on Rn defined by setting for any
measurable set E ⊂ Rn

γn(E) =
1

(2π)n/2

∫

E
e−

|x|2

2 dx .

If E is a set of locally fnite perimeter, the Gaussian perimeter of E is defined as

Pγ(E) =
1

(2π)n/2

∫

∂∗E
e−

|x|2

2 dHn−1(x) ,

where ∂∗E stands for the essential boundary of E in the sense of De Giorgi and
Hn−1 denotes the (n − 1)-dimensional Hausdorff measure. Clearly, both γn and
Pγ are invariant by rotations around the origin. As in the Euclidean case, also the
Gaussian perimeter can be characterized in a variational form. Namely, one has

Pγ(E) = sup
{

∫

E

(

divϕ(x) − x · ϕ
)

dγn : ϕ ∈ C1
0 (R

n;Rn), ∥ϕ∥∞ ≤ 1
}

.

It is well known that if E is a set such that γn(E) = r ∈ (0, 1), then

(1) Pγ(E) ≥ Pγ(Hν,s) ,

where ν ∈ Sn−1 and Hν,s is the half-space Hν,s = {x : x · ν > s} such that

r = γn(Hν,s) =
1√
2π

∫ ∞

s
e−t2/2 ds := Φ(s) .

Using the function Φ, inequality (1) may be restated as

Pγ(E) ≥
1√
2π

e−[Φ−1(γn(E))]2/2 .

The first proofs of the Gauss isoperimetric inequality (1) appeared in [6] and [1],
followed later by different ones, both of geometric and probabilistic nature (see e.g.
the references in [3]). However, only recently it was proved by Carlen and Kerce
([2]) that half-spaces are the only sets for which equality holds in (1). Their proof
makes use of probabilistic arguments involving the Ornstein-Uhlenbeck semigroup.
We present here a variational proof following the old idea of Steiner to deduce
the isoperimetric inequality in the Euclidean case by a symmetrization argument.
The analog in the Gauss space of the Steiner symmetrization is the so called
Ehrhard symmetrization, first introduced in [4]. More precisely, in [3] the Gaussian
isoperimetric inequality (1), together with the characterization of the equality
cases, is quickly obtained by proving that the Gaussian perimeter strictly decreases
under the Ehrhard symmetrization of a set E in a given direction ν ∈ Sn−1, unless
the one dimensional sections of E parallel to ν are half-lines or lines.
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By using Ehrhard symmetrization in [3] we prove also a quantitative version of
inequality (1). In fact we show that the stronger inequality holds

(2) Pγ(E) ≥ Pγ(Hν,s) +
λ2(E)

C2(n, r)
,

where λ(E) is the asymmetry index of the set E,

λ(E) = min
ν∈Sn−1

{

γn
(

E△Hν,s

)

: γ(Hν,s) = γn(E) = r
}

.

The quantitative inequality (2) can be also rewritten as

λ(E) ≤ C(n, r)
√

δ(E) ,

where δ(E) = Pγ(E)− Pγ(Hν,s) is the isoperimetric deficit of E.
Inequality (2) extends to the Gaussian context the quantitative (Euclidean) isoperi-
metric inequality proved in [5]

Λ2(E) ≤ C(n)
√

∆(E) ,

where Λ(E) is the Fraenkel asymmetry of E

Λ(E) = min
x∈Rn

{ |E△Br(x)|
|E|

: |E| = |Br|
}

and D(E) is the isoperimetric deficit

D(E) =
P (E)− P (Br)

P (Br)
,

P (E) and P (Br) being the Euclidean perimeter of E and of a ball of radius r,
respectively.
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